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Abstract: The key result of this work is the use of the global characteristics of the polarization
singularities of the entire beam as a whole, rather than the analysis of local polarization, Stokes
and Poincare–Hopf indices. We extend Berry’s concept of the topological charge of scalar beams to
hybrid vector beams. We discuss tightly focusing a new type of nth-order hybrid vector light field
comprising n C-lines (circular polarization lines). Using a complex Stokes field, it is shown that the
field polarization singularity index equals n/2 and does not preserve in the focal plane. The intensity
and Stokes vector components in the focal plane are expressed analytically. It is theoretically and
numerically demonstrated that at an even n, the intensity pattern at the focus is symmetrical, and
instead of C-lines, there occur C-points around which axes of polarization ellipses are rotated. At
n = 4, C-points characterized by singularity indices 1/2 and ‘lemon’-type topology are found at the
focus. For an odd source field order n, the intensity pattern at the focus has no symmetry, and the
field becomes purely vectorial (with no elliptical polarization) and has n V-points, around which
linear polarization vectors are rotating.

Keywords: light beam with inhomogeneous elliptic polarization; topological charge; polarization
singularity; C-points; C-lines

1. Introduction

For the first time, vector singularities as a generalization of scalar singularities were
proposed in 1983 by J.F. Nye [1], where lines of zero-valued transverse components of
the E-field were called ‘disclinations’ (to distinguish them from scalar edge and screw
dislocations [2]). However, both in Refs. [1,2] and in Ref. [3], the polarization singular-
ities were studied locally, i.e., in a neighborhood of singular (critical) points. It would
be of significant interest to investigate globally inhomogeneously polarized light fields
characterized by different (linear, elliptical, or circular) polarizations at different points of
the beam cross-section. That is, we aim to determine topological charges and singularity
indices of the whole light field. Such studies become relevant due to a growing number
of publications concerned with inhomogeneously polarized vector fields [4]. Inhomoge-
neously polarized beams can be generated by interferometry [5] or inside a cavity [6], as
well as with q-plates [7], metasurfaces [8,9], polarization prisms [10], and spatial light
modulators [11]. Points of intensity nulls at which the linear polarization vector is not
defined are called V-points [3]. In a similar way, points of a light field with inhomogeneous
elliptical polarization where the direction of the major axis of the polarization ellipse is
undefined are called ‘C-points’, with the light being circularly polarized at such points. If
the C-points are arranged on a line, the line is called a C-line [3]. Polarization singulari-
ties are described by singularity indices, which are calculated similarly to the topological
charges of scalar light fields [12]. The polarization singularity index of V-points is called
a Poincare–Hopf index [3] and calculated using Stokes parameters [13–15]. Meanwhile,
the C-points are described by an index equal to the number of turns by π that the major
axis of the polarization ellipse makes around the C-point. The index of a C-point can take
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a fractional (half-integer) value if, on a complete turn, the polarization ellipse makes an
odd number of turns by π. When intersecting C-lines, the polarization ellipse axis makes a
jump by π/2.

In this work, we look into a hybrid nth order vector light field whose polarization
varies from linear to elliptical, to circular, depending on the polar angle. This field contains
just C-lines with their number being equal to n. For this field, we find components of the
Stokes vector and show the polarization index to be a half-integer, n/2. Using a Richards–
Wolf formalism [16], we derive analytical expressions for projections of the E-vector at
the tight focus for a source hybrid nth order vector field and analytical relations for the
field intensity at the focus. We find that at an even number n, the intensity has nth order
symmetry and C-points at the focus. Thus, we numerically demonstrate that C-lines in the
source field ‘disintegrate’ into C-points at the focus, which are located on the same C-lines.
We also derive analytical relationships for the projection of the Stokes vector at the focus,
which suggest that for an odd number n, the field at the focus is purely vectorial, consists
of vectors of linear polarization, has n V-points, and has no C-points.

2. Source Hybrid Vector Field with Polarization Singularity Points

Let us analyze a new hybrid nth order vector field defined in the original plane by
two transverse projections of the E-vector and a Jones vector in the form:

En(ϕ) =
1√
2

(
cos nϕ

iα + sin nϕ

)
, (1)

where n is an integer, and 0 ≤ |α| ≤ 1. From (1), it follows that at n = 0; light field (1)
is elliptically polarized, while at |α| = 1, it is circularly polarized. At α = 0, field (1) has
an inhomogeneous nth order vector polarization. The intensity of the initial field (1) is
constant. Then, field (1) is focused by an aplanatic system (ideal spherical lens) with a high
numerical aperture, and the characteristics near the focus in free space are calculated (the
refractive index at the focus is 1).

Field (1) has points of linear, elliptical, and circular polarization. Points of circular
polarization are called C-points of polarization singularity because the direction of the
major axis of the ellipse polarization is undefined at such points [3]. Topology of the
polarization ellipses around a C-point is described by an index Ic, which shows how many
(integer) times the major axis of the polarization ellipse changes its direction by an angle of
π while making a full circle around the C-point. To find the index Ic of field (1), let us find
all projections of the Stokes vector [13] S = (S1, S2, S3), where

S1 =
|Ex |2−|Ey|2

|Ex |2+|Ey|2
, S2 =

2Re(E∗x Ey)
|Ex |2+|Ey|2

,

S3 =
2Im(E∗x Ey)
|Ex |2+|Ey|2

,
(2)

where Re and Im denote the real and imaginary parts of the number. From (2), the Stokes
vector is seen to be of unit length: S2

1 + S2
2 + S2

3 = 1. For field (1), the Stokes vector
components in Equation (2) take the form:

S1 = 2 cos 2nϕ−α2

1+α2 , S2 = 2 sin 2nϕ

1+α2 ,

S3 = 2α cos nϕ

1+α2 .
(3)

From (3), it follows that the polarization of light is linear on the rays outgoing from
the center at angles defined by the equation S3 = cos nϕ = 0. At angles ϕ that satisfy the
equation S3 = 1 or cos nϕ = ±1 and α = +1, −1, the light is circularly polarized. Elsewhere,
the light is elliptically polarized. Thus, we can infer that field (1) has no isolated C-points
but has C-lines, with the direction of the major axis of a polarization ellipse jumping by
π/2 on crossing the line. A single C-point is equivalent to a screw dislocation, and a C-line
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is equivalent to an edge dislocation. The number of C-lines in the source field (1) equals
the field order n, with the lines found on 2n rays outgoing from the center at angles πm/n,
m = 0, 1, 2, . . . , 2n − 1.

In [3], a local index of hybrid vector fields for polarization singularities (C-points)
was calculated, and the hybrid vector field itself was locally defined near the singularity.
Hereinafter, we shall calculate the topological index of the whole hybrid vector field (1)
in a global way, in a similar way to calculating the topological charge of the whole scalar
complex vortex field using Berry’s formula [12]. To these ends, let us form a complex
Stokes field by the rule:

Sc = S1 + iS2 (4)

For the source vector field (1), the complex Stokes field is given by

Sc = 2
exp(2inϕ)− α2

1 + α2 (5)

The Stokes index σ for field (5) can be calculated using Berry’s formula [12]:

σ =
1

2π
Im

2π∫
0

dϕ
∂Sc(ϕ)/∂ϕ

Sc(ϕ)
. (6)

Substituting Stokes field (5) into (6) yields:

σ = 1
2π Im

2π∫
0

dϕ
2in exp(2inϕ)
exp(2inϕ)−α2 =

n
π

2π∫
0

dϕ
(1−α2 cos 2nϕ)

(1+α4)−2α2 cos 2nϕ
.

(7)

Putting in Equation (7) α2 = 1, we find that σ = n and the index of the C-points and
the whole field (1) equals Ic = σ/2 = n/2. The index Ic can be a half-integer owing to the
tilt of the major axis of the polarization ellipse varying from 0 to π, rather than to 2π.
Putting in (7) α = 0, Equation (1) will describe an inhomogeneous linearly polarized field
(S3 = 0), containing just V-points (where the linear polarization vector is undefined), where
the Stokes index of Equation (7) equals σ = 2n; meanwhile, the Poincare–Hopf index [3]
of field (1) is half as large: η = n. At 0 < |α| < 1, the Stokes index in (7) can be calculated
using a reference integral [17]:

2π∫
0

cos mx
a + b cos x

dx =
2π√

a2 − b2

(√
a2 − b2 − a

b

)m

(8)

In view of (8) and at 0 < |α| < 1, the Stokes index of field (1) equals σ = 2n, whereas
the Poincare–Hopf index is η = σ/2 = n. In this case, there are no points where the light is
circularly polarized.

3. Vector Field with Polarization Singularity Points in the Plane of the Tight Focus

In this section, using a Richards–Wolf formalism [16], we derive projections of the
E-vector in the focal plane from source field (1). The vector field at the focus of the aplanatic
system (ideal spherical lens) is described by the Debye integral [16]:

U(ρ, ψ, z) = − i f
λ

αmax∫
0

2π∫
0

B(θ, ϕ)T(θ)P(θ, ϕ)×

× exp{ik[ρ sin θ cos(ϕ− ψ) + z cos θ]} sin θdθdϕ

(9)
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where U(ρ, ψ, z) is the electric or magnetic field in the focal plane; B(θ, ϕ) is the incident
electric or magnetic field (where θ is the polar angle, and ϕ is the azimuthal angle); T(θ) is
the apodization function (T(θ) = (cosθ)1/2); f is the focal length; k = 2π/λ is the wavenumber;
λ is the wavelength (in the simulation, it was equal to 532 nm); αmax is the maximal polar
angle determined by the numerical aperture of the lens (NA = sinαmax); and P(θ, ϕ) is the
polarization matrix for the electric and magnetic fields given by:

P(θ, ϕ) =

 1 + cos2 ϕ(cos θ − 1)
sin ϕ cos ϕ(cos θ − 1)
− sin θ cos ϕ

a(θ, ϕ)+

+

 sin ϕ cos ϕ(cos θ − 1)
1 + sin2 ϕ(cos θ − 1)
− sin θ sin ϕ

b(θ, ϕ),

(10)

where a(θ, ϕ) and b(θ, ϕ) are the polarization functions for the x- and y-components of
the incident beam, respectively. For the light field with hybrid polarization (1), the Jones
vectors are:

E(θ, ϕ) =

(
a(θ, ϕ)
b(θ, ϕ)

)
=

1√
2

(
cos nϕ
αi + sin nϕ

)
(11)

Substituting (11) into (10), and (10) into (9), we obtain:

Ex = − in+1
√

2
(I0,n cos nϕ + I2,n−2 cos(n− 2)ϕ)+

+ α√
2

I2,2 sin 2ϕ,

Ey = − in+1
√

2
(I0,n sin nϕ− I2,n−2 sin(n− 2)ϕ)+

+ α√
2
(I0,0 − I2,2 cos 2ϕ),

Ez =
√

2in I1,n−1 cos(n− 1)ϕ− iα
√

2I1,1 sin ϕ,

(12)

where the integrals in (12) take the form:

Iν,µ =
(

π f
λ

) θmax∫
0

sinν+1( θ
2 ) cos3−ν( θ

2 )×,

× cos1/2(θ)A(θ)eikz cos θ Jµ(x)dθ,
(13)

where λ is the wavelength of light; f is the focal length of an aplanatic system; x = krsinθ;
Jµ(x) is a Bessel function of the first kind; and NA = sinθmax is the numerical aperture. The
original amplitude function A(θ) (here, assumed to be real) may be constant (for a plane
wave) or described by a Gaussian beam:

A(θ) = exp

(
−γ2 sin2 θ

sin2 θ0

)
,

where γ is constant. At α = 0, the field at the focus described by Equation (12) is identical (up
to a constant 1/

√
2) to the field at the focus from a nth order radially polarized wave [18]:

Ex = − in+1
√

2
(I0,n cos nϕ + I2,n−2 cos(n− 2)ϕ),

Ey = − in+1
√

2
(I0,n sin nϕ− I2,n−2 sin(n− 2)ϕ),

Ez =
√

2in I1,n−1 cos(n− 1)ϕ.

(14)
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Field (14) contains just V-points of polarization singularity while having neither C-
points nor C-lines. At n = 0 and α = 1, field (12) is fully identical to the field at the focus
from an incident wave with right-handed circular polarization [19]:

Ex = − i√
2

(
I0,0 + ei2ϕ I2,2

)
,

Ey = 1√
2

(
I0,0 − ei2ϕ I2,2

)
,

Ez = −
√

2eiϕ I1,1.

(15)

Because of this, the source field (1) and the field in the focus in (12) can be called
hybrid, as at some points they have linear, elliptical, or circular polarization.

For field (12), the intensity at the focus is given by

I = 1
2

{
I2
0,n + I2

2,n−2 + 2I0,n I2,n−2 cos 2(n− 1)ϕ+

α2 I2
0,0 + α2 I2

2,2 − 2αI0,0 I2,2 cos 2ϕ+

4I2
1,n−1 cos2(n− 1)ϕ + 4α2 I2

1,1 sin2 ϕ−

2α cos
(

n+1
2

)
π[sin nϕ(I0,0 I0,n + I2,2 I2,n−2)−

sin(n− 2)ϕ(I0,0 I2,n−2 + I2,2 I0,n)−
sin ϕ sin(n− 1)ϕI1,1 I1,n−1]}.

(16)

Equation (16) is rather cumbersome, but putting n = 2p (even) yields cos(n + 1)π/2 = 0,
leading to a simpler relationship of the intensity:

In=2p = 1
2

{
I2
0,n + I2

2,n−2+

+2I0,n I2,n−2 cos 2(n− 1)ϕ+

α2 I2
0,0 + α2 I2

2,2 − 2αI0,0 I2,2 cos 2ϕ+

4I2
1,n−1 cos2(n− 1)ϕ + 4α2 I2

1,1 sin2 ϕ
}

.

(17)

From (17), the intensity at the center of the focal plane is seen to be non-zero because the
term α2 I2

0,0 is non-zero. The intensity pattern has a central symmetry, as Equation (17) contains
cosines of the double angle 2ϕ, as well as squared cosine and sine functions, meaning
that replacing ϕ with ϕ + π introduces no changes to the intensity pattern. From (17), the
intensity pattern is also seen to have 2(n − 1) local intensity peaks (not considering central
intensity maximum) because the term cos2(n − 1) ϕ changes sign 2(n − 1) times per full
circle. At odd numbers n = 2p + 1, we obtain cos(n + 1)π/2 = ±1, which means that the
intensity in Equation (16) has no central symmetry due to different intensity values at ϕ
and ϕ + π, but has a central intensity peak, similar to the previous case.

Let us derive formulae for projections of the Stokes vector at the focus. Since these
formulae are rather cumbersome, below, we give only relationships for projections of
symmetrical fields at the focus for an even number n = 2p. The Stokes vector can be defined
in a different way using four projections, rather than three used in definition (2):

s0 = |Ex|2 +
∣∣Ey
∣∣2, s1 = |Ex|2 −

∣∣Ey
∣∣2,

s2 = 2Re
(
E∗x Ey

)
, s3 = 2Im

(
E∗x Ey

)
.

(18)
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Based on (18), for field (12) (at n = 2p) we obtain:

s0 = 1
2

(
I2
0,n + I2

2,n−2 + 2I0,n I2,n−2 cos 2(n− 1)ϕ+

α2 I2
0,0 + α2 I2

2,2 − 2α2 I0,0 I2,2 cos 2ϕ
)

,

s1 = 1
2

(
I2
0,n cos 2nϕ + I2

2,n−2 cos 2(n− 2)ϕ+

2I0,n I2,n−2 cos 2ϕ− α2 I2
0,0 − α2 I2

2,2 cos 4ϕ+

2α2 I0,0 I2,2 cos 2ϕ
)
,

s2 = 1
2

(
I2
0,n sin 2nϕ + I2

2,n−2 sin 2(n− 2)ϕ+

2I0,n I2,n−2 sin 2ϕ− α2 I2
2,2 cos 4ϕ+

2α2 I0,0 I2,2 cos 2ϕ
)
,

s3 = α sin
(

n+1
2

)
π[cos nϕ(I0,0 I0,n − I2,2 I2,n−2)+

cos(n− 2)ϕ(I0,0 I2,n−2 − I2,2 I0,n)].

(19)

In (19), the relations for s0, s1, s2 are given for even numbers n = 2p, except for s3
which holds at any n. The purpose is to demonstrate that at odd n = 2p + 1, we have
s3 = S3 = 0; hence, we can infer that the field at the focus has no C-points, being purely
vectorial and composed of linear polarization vectors.

Using two components of the field from Equation (19), the complex Stokes field can
be expressed as

Sc = s1 + is2 = 1
2

[
I2
0,ne2inϕ + I2

2,n−2e2i(n−2)ϕ−

α2 I2
2,2e4iϕ + 2e2iϕ(α2 I0,0 I2,2 + I0,n I2,n−2

)
− α2 I2

0,0

]
.

(20)

From (20), it follows that the topological charge of the vortex Stokes field is undefined,
varying over the entire focal plane, for at large radii r, the amplitudes by the exponents
vary in magnitudes, making it impossible to determine which term in the sum (20) is larger
in the absolute value at each particular case. For instance, at some radii, the Stokes index
of field (20) can be σ = 2n, being σ = 2(n − 2) at other radii and taking values of 4, 2, or
0 elsewhere. What may be said definitely is that near the optical axis, only the last term in
(20) remains non-zero, which has no vortex phase. Hence, at any n, the Stokes index at the
center of the focus is zero (σ = 0). Conclusions arrived at in this section are validated by
the numerical modeling.

4. Numerical Modeling

Figure 1 depicts a distribution of polarization ellipses in the source field (1) at different
n: 3(a), 2(b), 1(c), and 4(d). Indices for C-lines of the fields in Figure 1, derived from
Equation (7) using a complex Stokes field, equal Ic = σ/2 = n/2: 3/2(a), 1(b), 1/2(c), and
2(d). From Figure 1a, field (1) with n = 3 is seen to have three C-lines located at angles
ϕ = πm/3, m = 0, 1, 2. The tilt of the major axis of the polarization ellipses changes by
π/2 at each of six sectors between the adjacent C-lines. Thus, after a full circle, the tilt of
the major axis changes by 6π/2 = 3π, meaning that the index of the field in Figure 1a is
Ic = 3π/(2π) = 3/2. In a similar way, in Figure 1b, field (1) with n = 2 has two C-lines located
on the Cartesian axes. With the angle ϕ in a sector between C-lines changing from 0 to π/2,
the tilt of the major axis of the polarization ellipse is rotated by an angle of π/2; hence after
a full circle around the center, the tilt of the major axis changed by 4π/2. Hence, the index
of the field in Figure 1b equals Ic = 2π/(2π) = 1. In Figure 1c, the C-line is found on the
horizontal Cartesian axis. With the angle ϕ in one of the sectors between C-lines changing
from 0 to π (in the upper semi-plane), the tilt of the polarization ellipse major axis is rotated
by π/2, and in the bottom semi-plane, the tilt of the major axis is also rotated by π/2.
Hence, after a full circle, the polarization ellipse makes a turn by π, and the singularity
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index equals Ic = π/(2π) = 1/2. Finally, in Figure 1d, a change in the tilt of the major axis of
polarization ellipses can be analyzed in a similar way.
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length of λ = 532 nm and numerical aperture NA = 0.95. Shown in Figure 2b,c are an am-
plitude and phase of the complex Stokes field 1 2сS s is= + , which was calculated with the 
aid of the Stokes vector components in Equation (19). From Figure 2a, it is seen that ac-
cording to theoretical predictions in Equations (16) and (17), the intensity pattern at the 
focus remains unchanged after replacing φ by φ + π, with an intensity peak located at the 
center. From Figure 2c, it is seen that there is no singular point at the center of the phase 

Figure 1. Polarization patterns (shown in half-tones and with arrows) in the source field (1) at
α = 1 at different orders n: 3 (a), 2 (b), 1 (c), 4 (d). The arrows show the handedness of the E-vector;
the origin of the ellipse is determined based on the phase of the field at this point.

Shown in Figure 2a is a total intensity at the focus of field (1) at α = 1 and n = 2. The
numerical modeling was conducted using a Richards–Wolf formalism [16] for a wavelength
of λ = 532 nm and numerical aperture NA = 0.95. Shown in Figure 2b,c are an amplitude
and phase of the complex Stokes field Sc = s1 + is2, which was calculated with the aid of
the Stokes vector components in Equation (19). From Figure 2a, it is seen that according to
theoretical predictions in Equations (16) and (17), the intensity pattern at the focus remains
unchanged after replacing ϕ by ϕ + π, with an intensity peak located at the center. From
Figure 2c, it is seen that there is no singular point at the center of the phase pattern for
the Stokes field (20), because there is no isolated intensity null. Two isolated intensity
nulls (singularity points) in Figure 2c, each having the topological charge 1, are seen on
the vertical axis (1 and 2 points in Figure 2c). In Figure 2d, the arrows specify a pattern
of the polarization ellipses at the focus. Figure 2e depicts C-points at the focus, which are
all located on the Cartesian axes; it is where the C-lines are located in the source plane
(Figure 1b). Thus, the numerical modeling has shown that as a result of tightly focusing,
C-lines ‘disintegrate’ into a number of C-points arranged on the same lines. This effect is
analogous to an effect of astigmatic edge-to-screw dislocation conversion of a wavefront in
scalar paraxial optics [20]. Indices of two symmetrical and closest to the center C-points on
the horizontal Cartesian axis are Ic = +1/2 (1 and 2 points in Figure 2e), with the indices of
the next two neighboring C-points located farther from the center on the horizontal axis
being Ic = –1/2 (3 and 4 points in Figure 2e).
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Figure 2. (a) An intensity I = Ix + Iy + Iz, (b) amplitude, and (c) phase of a complex Stokes field (20) 
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Figure 2. (a) An intensity I = Ix + Iy + Iz, (b) amplitude, and (c) phase of a complex Stokes field (20)
when field (1) at n = 2. (d) Pattern of elliptic polarization at the focus, and (e) pattern of points with
circular, elliptic, and linear polarization.

In a similar way, Figure 3 depicts the numerical simulation results at the focus for
n = 3 (the rest of the parameters being the same as in Figure 2). Figure 3a suggests that
in agreement with the theoretical prediction in (16), the intensity pattern at the focus at
odd n = 3 is asymmetric. As can be inferred from (19), there is a vector field with purely
inhomogeneous linear polarization at the focus (Figure 3d), as putting n = 2p + 1, we obtain
s3 = S3 = 0. In a phase pattern of the complex Stokes field in Figure 3c, there occurs three
phase singularity points with the topological charge +2 (1, 2, and 3 points in Figure 3c).
In total, the Stokes index is σ = 6, and the V-points singularity index is η = σ/2 = 3. The
pattern in Figure 3d is seen to contain three V-points (two points of the ‘center’ type and
one point of the ‘knot’ type). Thus, when field (1) has an odd order n, the C-lines (Figure 1a)
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of the original plane are transformed into a number of V-points (Figure 3d), and the whole
field becomes vectorial (with no points of elliptical polarization).
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a plot for the Stokes index σ against the radius R of an origin-centered circle along which 
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that at different radii R, the Stokes index takes values of 8, 6, 2, 0, which is in good agree-
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Figure 3. (a) An intensity I = Ix + Iy + Iz, (b) amplitude, and (c) phase of the complex Stokes field
(20) when focusing field (1) at n = 3. (d) A pattern of linear polarization vectors at the focus: black
V-points of the ‘center’ type and red V-point of the “knot” type.

Shown in Figure 4a is an intensity pattern at the focus, which has a fourth-order
symmetry relative to the Cartesian coordinates. The amplitude and phase of the complex
Stokes field are depicted in Figure 4b,c. Phase singularities points linked with the C-points
are observed in the phase pattern of the Stokes field (Figure 4e). Finally, Figure 4f depicts a
plot for the Stokes index σ against the radius R of an origin-centered circle along which the
phase delay of the Stokes field (20) of Figure 4c is calculated. From the plot, it is seen that
at different radii R, the Stokes index takes values of 8, 6, 2, 0, which is in good agreement
with the theory in Equation (20).
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From Figure 4e,d, the C-points are seen to lie on the Cartesian axes and two diagonal 
lines, where C-lines were located in the original plane (Figure 1d). Two center-symmet-
rical C-points located on the horizontal axis (Figure 4e,f) have a singularity index of +1/2, 
producing a ‘lemon’-shaped topology. Remarkably, when making a circle around such a 
C-point, the surface of the polarization ellipses produces a Mobius strip in the 3-D space 
[21–23]. 

Figure 5 depicts the neighborhood of a C-point (marked with bold black) in more 
detail, showing a characteristic tilt of the major axis of polarization ellipses (‘lemon’-type 
topology) lying on a circle centered on the C-point. The axes of the polarization ellipses 
are seen to turn by an angle of π when making a full circle, i.e., the index of the C-point 
equals 1/2. 

Figure 4. (a) An intensity I = Ix + Iy + Iz, (b) amplitude, and (c) phase of the complex Stokes field (20)
when focusing field (1) at n = 4. (d) Pattern of points characterized by circular, elliptic, and linear
polarization at the focus, (e) pattern of the elliptical polarization in focus and (f) dependence of the
Stokes index σ on the radius R of the circle on which it is calculated (1 µm frame size).

From Figure 4e,d, the C-points are seen to lie on the Cartesian axes and two diagonal
lines, where C-lines were located in the original plane (Figure 1d). Two center-symmetrical
C-points located on the horizontal axis (Figure 4e,f) have a singularity index of +1/2,
producing a ‘lemon’-shaped topology. Remarkably, when making a circle around such
a C-point, the surface of the polarization ellipses produces a Mobius strip in the 3-D
space [21–23].

Figure 5 depicts the neighborhood of a C-point (marked with bold black) in more
detail, showing a characteristic tilt of the major axis of polarization ellipses (‘lemon’-type
topology) lying on a circle centered on the C-point. The axes of the polarization ellipses are
seen to turn by an angle of π when making a full circle, i.e., the index of the C-point equals
1/2.



Photonics 2021, 8, 227 11 of 14
Photonics 2021, 8, 227 11 of 14 
 

 

 
Figure 5. Polarization ellipses for a field fragment at the focus depicted in Figure 4e (limited by −1 
µm < x < 0; −0.5 µm< y < 0.5 µm) and a C-point with Ic = 1/2 (found at −0.47 µm; 0) marked with a 
black point around which the major axes of the polarization ellipses centered on a circle of radius 
0.15 µm are depicted as blue lines. 

5. Discussion 
The key result of this work is the use of the global characteristics of the polarization 

singularities of the entire beam as a whole, rather than the analysis of local polarization, 
Stokes and Poincare–Hopf indices [3]. For this, we extended Berry’s concept [12] of the 
topological charge of scalar beams to structured vector beams. We have shown in our 
work that n C-lines in the initial hybrid field (1), in a sharp focus, decay into n separate C-
points with an index of 1/2. The instability of V-points and C-lines was shown earlier for 
paraxial laser beams [24] and in uniaxial crystals [25]. It was shown in [24] that in the 
superposition of two Laguerre-Gauss vector beams with azimuthal numbers m and n, 
m n−  V-points are formed in the initial plane, which, when this superposition propa-

gates, decay into 2 m n−  C-points. That is, the initial vector beam with linear polariza-
tion at each point turns out to be unstable, and, during propagation, points with both 
elliptical and circular polarizations are formed. It is shown in another work [25] that, de-
pending on the magnitude of the delay between the ordinary and extraordinary rays in a 
uniaxial crystal, the axis of which is rotated by 45 degrees, C-line decays into two C-points. 

We named the light field (1) a hybrid vector beam to differ it from vector cylindrical 
beams [4], which have only linear polarization in their cross section. In the light beam (1), 
depending on the azimuthal angle, the polarization changes from linear to elliptical and 
circular several times. Light fields with hybrid polarization of other types other than (1) 
are investigated in [26–30]. A hybrid vector beam (1) could be generated using the optical 
setup shown in Figure 6. 

  

Figure 5. Polarization ellipses for a field fragment at the focus depicted in Figure 4e (limited by
−1 µm < x < 0; −0.5 µm< y < 0.5 µm) and a C-point with Ic = 1/2 (found at −0.47 µm; 0) marked
with a black point around which the major axes of the polarization ellipses centered on a circle of
radius 0.15 µm are depicted as blue lines.

5. Discussion

The key result of this work is the use of the global characteristics of the polarization
singularities of the entire beam as a whole, rather than the analysis of local polarization,
Stokes and Poincare–Hopf indices [3]. For this, we extended Berry’s concept [12] of the
topological charge of scalar beams to structured vector beams. We have shown in our
work that n C-lines in the initial hybrid field (1), in a sharp focus, decay into n separate
C-points with an index of 1/2. The instability of V-points and C-lines was shown earlier
for paraxial laser beams [24] and in uniaxial crystals [25]. It was shown in [24] that in
the superposition of two Laguerre-Gauss vector beams with azimuthal numbers m and n,
|m− n| V-points are formed in the initial plane, which, when this superposition propagates,
decay into 2|m− n| C-points. That is, the initial vector beam with linear polarization at
each point turns out to be unstable, and, during propagation, points with both elliptical
and circular polarizations are formed. It is shown in another work [25] that, depending
on the magnitude of the delay between the ordinary and extraordinary rays in a uniaxial
crystal, the axis of which is rotated by 45 degrees, C-line decays into two C-points.

We named the light field (1) a hybrid vector beam to differ it from vector cylindrical
beams [4], which have only linear polarization in their cross section. In the light beam (1),
depending on the azimuthal angle, the polarization changes from linear to elliptical and
circular several times. Light fields with hybrid polarization of other types other than (1)
are investigated in [26–30]. A hybrid vector beam (1) could be generated using the optical
setup shown in Figure 6.
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Figure 6. Optical setup for generation of hybridly polarized beam (1). HWP is a half-wave plate; PBS
is a polarizing beam splitter; BS is a beam splitter; M1, M2 are mirrors.

Linearly polarized light from the laser is shown in Figure 6 to propagate through a half-
wave plate, which rotates polarization onto 45 degrees. After a polarizing beam splitter,
there are two propagating beams with orthogonal linear polarization. The first beam
propagates through a liquid crystal q-plate and acquires a cylindrical vector polarization
of the nth order. In addition, the second beam propagates through a wedge and acquires
a phase delay, which can be adjusted by shifting the wedge. After a beam splitter, both
beams became hybrid and satisfies (1).

Concluding this section, let us explain the application of Berry’s formula (6) to de-
termine the singularity index of the hybrid field (1). Berry’s formula is usually used to
determine the topological charge of scalar optical vortices. Scalar optical vortices also have
an orbital angular momentum, which is calculated by another formula, different from
(6). In this paper, we have extended the application of Berry’s formula (6). We applied it
to calculate the polarization singularity index of any vector field for the first time. If the
vector field has one V-point, then the Stokes index (6) σ will be two times greater than the
Poincare–Hopf index [3] (η = σ/2), which is equal to the singularity index of the V-point. If
the field has one C-point, then the Stokes index (6) will also be two times greater than the
singularity index of the C-point (Ic = σ/2). However, if we apply formula (6) to the entire
vector field, which can contain several V-points and several C-points, then the Stokes index
(6) σ will be equal to the doubled sum of the indices of all singularity points.

6. Conclusions

Summing up, we have theoretically and numerically studied a new type of nth order
hybrid vector light field that is tightly focused with an aplanatic system. The polarization
of the source hybrid vector field varies in the original plane from linear to elliptical and
circular with the polar angle. The polarization pattern of the field has n C-lines of circular
polarization that pass through the center. Components for the Stokes vector of such a field
have been analytically derived, and the field polarization singularity index has been shown
to equal n/2. Based on a Richards–Wolf formalism, analytical relationships for projections
of the E-vector and an intensity of light at the tight focus have been deduced. At an even n,
the intensity at the focus has been shown to possess a central symmetry and has C-points
lying on lines coincident with the C-lines of the source field. Analytical relationships have
been deduced to describe projections of the Stokes vector at the focus, which suggest that
at an odd n, the field at the focus is purely vectorial and has several V-points, while having
no C-points.
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