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Abstract: Recently developed optically transparent microelectrode technology provides a promising
approach for simultaneous high-resolution electrical and optical biointerfacing with tissues in vivo
and in vitro. A critically unmet need is designing high-performance stretchable platforms for con-
formal biointerfacing with mechanically active organs. Here, we report silver nanowire (Ag NW)
stretchable transparent microelectrodes and interconnects that exhibit excellent electrical and elec-
trochemical performance, high optical transparency, superior mechanical robustness and durability
by a simple selective-patterning process. The fabrication method allows the direct integration of
Ag NW networks on elastomeric substrates. The resulting Ag NW interface exhibits a low sheet
resistance (Rsh) of 1.52–4.35 Ω sq−1, an advantageous normalized electrochemical impedance of
3.78–6.04 Ω cm2, a high optical transparency of 61.3–80.5% at 550 nm and a stretchability of 40%.
The microelectrode arrays (MEAs) fabricated with this approach exhibit uniform electrochemical
performance across all channels. Studies on mice demonstrate that both pristine and stretched Ag
NW microelectrodes can achieve high-fidelity electrophysiological monitoring of cardiac activity
with/without co-localized optogenetic pacing. Together, these results pave the way for developing
stretchable and transparent metal nanowire networks for high-resolution opto-electric biointerfacing
with mechanically active organs, such as the heart.

Keywords: stretchable; transparent microelectrodes; nanowire; electrophysiology; optogenetics

1. Introduction

Technologies that can interact with biological systems to record and modulate cell
activity are crucial to biomedical research and medicine [1–3]. Electrophysiological record-
ing is one such technique, which allows monitoring the physiological dynamics of various
cells/tissues/organs with a high temporal and spatial resolution [4,5]. Optogenetics is an-
other, which can modulate the activity of specific cell-types by using light-sensitive proteins;
and it is functionally orthogonal to electrophysiological recording [6,7]. Bioelectronic de-
vices that allow simultaneous electrophysiological recording with optogenetic modulation
represent an emerging area to combine the advantages of both techniques for investigating
the complex (patho)physiology of bioelectric organ systems [8]. Conventional microelec-
trodes used in electrophysiology studies primarily rely on opaque metals [9,10]. These
microelectrodes are not ideal for multimodal device applications because they not only
produce significant light-induced electrical artifacts during electrophysiological recording
but also create optical shadows that block the field of view at the microelectrode sites,
thereby preventing co-localized opto-electric operations [11–13].

Recent progress in transparent microelectrodes based on carbon nanotube (CNT) [14],
graphene [15,16], metal nanogrid [17], metal nanonetwork [18], metal nanomesh [19],
and poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT:PSS)-indium tin
oxide (ITO)-Ag-ITO [20] have enabled light delivery through the microelectrodes for
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electrophysiological recording with co-localized optogenetic stimulation or optical map-
ping. Although those transparent microelectrodes all exhibit certain levels of bendabil-
ity/flexibility, only CNT demonstrates a high stretchability that is compliant enough to
mount on curvilinear surfaces or interface with dynamically deforming organs, such as the
heart muscle (~10% deformation) [21], the brain (up to 5% strain) [22], and the spinal cord
(10–20% tensile strain) [22]. A stretchable microelectrode is desired because it will deform
with the tissue while retaining the electrophysiological recording capabilities, which will
allow real-time recording from the same anatomical site under natural motion. However,
CNT recently raised concerns regarding its cytotoxicity as biointerfaces [23] and relative
high impedance [14], which is undesirable in low noise electrophysiology studies. In
addition, the quality of CNT is sensitive to fabrication methods [24,25].

One-dimensional metallic silver nanowire (Ag NW) is a widely used candidate mate-
rial for stretchable transparent conductive electrodes in conventional optoelectronic devices,
such as light-emitting diodes (LEDs) [26], displays [27,28], thin film transistors [29], and
touch panels [30], owing to its outstanding electrical, optical, and mechanical properties.
The nanowire network exhibits a high transparency because the open areas between the
interconnected nanowires allow light to pass through. The stretchability results from the
intersliding behavior of the nanowires. Our recent results show that the Ag NW structures
are biocompatible and exhibit a much higher surface roughness than planar metal micro-
electrodes, which is beneficial to increase the effective surface area for electrophysiological
recording applications [31]. However, until now, there has been few studies investigating
Ag NW stretchable and transparent microelectrodes for multimodal biointerfacing.

In this work, we report high-performance stretchable and transparent microelectrodes
and interconnects for simultaneous electrical and optical biointerfacing with mechanically
active beating hearts based on Ag NW structures. The Ag NW networks are directly
coated on stretchable and transparent elastomeric substrates using a selective-patterning
process. The resulting Ag NW features show a high optical transparency up to 80.5% at 550
nm, a desired stretchability of 40% for biointerfacing, an excellent electrical conductivity
with the sheet resistance (Rsh) of 1.52–4.35 Ω sq−1, and a low normalized electrochemical
impedance of 3.78–6.04 Ω cm2. The effectiveness of the Ag NW microelectrodes and inter-
connects in multimodal biointerfacing under mechanically active environments is verified
by simultaneous optogenetic stimulation and electrophysiological recording of ex vivo
Langendorff-perfused mouse hearts. These results highlight the potential application of
soft and transparent Ag NW microelectrodes in studies of complex, dynamically deforming,
and mechanically active biological organ systems.

2. Materials and Methods
2.1. Fabrication of Stretchable Ag NW Microelectrodes and Interconnects

Figure 1a presents the schematic illustration of the fabrication process of the micro-
electrode array (MEA) and interconnects. Polydimethylsiloxane (PDMS) is used as the
encapsulation and substrate material because it is biocompatible, optically transparent,
chemically inert, thermally stable, and exhibits a high stretchability [32–34]. Firstly, PDMS
substrate (~60 µm) was prepared by mixing the base and the curing agent (Sylgard 184,
Dow Corning, Midland, MI, USA) at a ratio of 10:1 by weight. After vacuum degassing, the
liquid mixture was spin-coated at 1000 rpm for 30 s onto a glass substrate, and thermally
cured at 70 ◦C for 3 h to form a crosslinked PDMS. A laser mill defined ultrathin polyimide
(PI) shadow mask film (DuPont, Wilmington, DE, USA) with desired patterns for the MEA,
interconnects, and bonding pads was laminated onto the cured PDMS substrate, followed
by oxygen plasma treatment (AutoGlow 100, Glow Research, Tempe, AZ, USA) at 20 W for
90 s. Next, the Ag NW/isopropyl alcohol solutions (ACS Material, Pasadena, CA, USA)
were sonicated and spin-coated on plasma-treated PDMS at 500 rpm for 50 s. Plasma
treatment is known to promote the adhesion between Ag NW and PDMS substrate [35].
Here, Ag NW networks were formed only on the plasma-treated PDMS region since the
rest of the areas were still covered by the shadow mask. The resulting films were dried at
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95 ◦C for 120 s. The PI shadow mask was then peeled off from the PDMS substrate. The
PDMS encapsulation layer (~60 µm) was prepared in the same manner as the PDMS sub-
strate, with an additional spin-coated polymethyl methacrylate (Microchem, Round Rock,
TX, USA) sacrificial layer on the glass slide. The microelectrode opening areas on the
PDMS encapsulation layer were defined by laser milling. The PDMS encapsulation layer
was released in acetone, treated with oxygen plasma, and quickly laminated on the Ag
NW/PDMS substrate. The completed device was peeled off from the glass slide.

2.2. Measurements

Optical properties of the Ag NW films were obtained using a spectrophotometer
(V-770 UV-vis/NIR, Jasco Inc., Easton, MD, USA). Scanning electron microscope (SEM)
images were taken with a Raith Pioneer instrument. Mechanical tests were performed
using a motorized test stand (ESM 1500, Mark-10, Copiague, NY, USA). Sheet resistance
values of the Ag NW structures were obtained from a four-point probe (SRM-232, Guardian
Manufacturing Inc., Cocoa, FL, USA). Electrochemical impedance was measured with a
Gamry potentiostat (Reference 600+, Gamry Instruments Inc., Warminster, PA, USA) with
a frequency that ranges from 1 Hz to 10 kHz. The electrochemical measurements were
performed in a 1× phosphate-buffered saline (PBS) solution (Sigma-Aldrich, St. Louis, MO,
USA) using a three-electrode configuration with Ag NW microelectrodes as the working
electrode, a platinum electrode as the counter electrode, and an Ag/AgCl electrode as
the reference electrode. The benchtop recording tests were conducted with a PowerLab
data acquisition system (PowerLab 16/35, AD Instruments Inc., Colorado Springs, CO,
USA). A 10 Hz sine wave signal with a 20 mV peak-to-peak amplitude was delivered
through a platinum electrode in a 1× PBS solution. The Ag NW microelectrodes and
another platinum electrode were connected to different channels of the PowerLab system
for comparing the recorded signals. MATLAB (MathWorks, Inc., Natick, MA, USA) was
used to process and analyze the signals.

2.3. Animal Experiments

All animal procedures were performed according to protocols approved by the In-
stitutional Animal Care and Use Committee of the George Washington University and
in conformance with Guide for the Care and Use of Laboratory Animals published by
the National Institutes of Health. Adult mice (The Jackson Laboratory, Bar Harbor, ME,
USA) with cardiomyocytes expressing channelrhodopsin-2 (ChR2) were used for the ex
vivo demonstration. Mice were anesthetized with 5% isoflurane in an anesthesia chamber.
Cervical dislocation was immediately performed after the mice were fully anesthetized and
unresponsive to physical stimuli. The chests were opened, and the hearts were quickly ex-
cised following thoracotomy. After aortic cannulation, the hearts were perfused in constant
pressure (70–90 mmHg) mode in a Langendorff system with a modified Tyrode’s solution
(in mM: NaCl 140, KCl 4.7, MgCl2 1.05, CaCl2 1.3, HEPES 10, Glucose 11.1, pH 7.4 at 37 ◦C)
bubbled with 100% O2. 10–12 µM of blebbistatin (Cayman Chemical, Ann Arbor, MI, USA)
was applied as an excitation-contraction uncoupler. The Ag NW microelectrodes were
placed at the anterior side of the heart inside the left ventricular region. For optogenetic
pacing, a blue (462 nm) LED (OptoLED Lite, Cairn Research, Faversham, UK) was used
as the light source. An optical fiber was connected to the LED and placed above the Ag
NW microelectrodes. Optical stimulation was set at 7.8 Hz and 9 Hz at 15% duty cycle to
induce pacing rates above the intrinsic heart rhythm. Electrical recordings were performed
in the three-electrode configuration using the Ag NW microelectrodes or a far-field needle
electrode (MLA1203, AD Instruments Inc.) as the working electrode. The capture of pacing
was verified in both reference electrocardiogram (ECG) from the needle electrode and
electrogram (EG) from the Ag NW microelectrodes. Signals were acquired at the sampling
frequency of 2 kHz and analyzed using the LabChart software (AD Instruments Inc.).
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3. Results
3.1. Optical, Electrical, and Mechanical Properties of Ag NW Structures

The Ag NW network density is controlled by the concentrations of Ag NW/isopropyl
alcohol solutions used in fabrication. Figure 1b presents the transmittance spectra of Ag
NW networks. The average transmittance values at 550 nm over 5 devices increase from
61.3 ± 2.16% to 75.2 ± 1.75%, and 80.5 ± 1.24% with the Ag NW concentrations decreasing
from 20 mg/mL to 10 mg/mL, and finally 8 mg/mL, respectively. Figure 1c shows an
optical image of an as fabricated 3 × 3 Ag NW MEA and interconnects on PDMS. The
pitch between different microelectrode sites is 2.15 mm and the dimension of a single
microelectrode is 650 × 650 µm2. The same microelectrode dimension is used in the rest
of this paper. The entire device shows a high optical transparency, including the MEA
recording sites and interconnect lines. Figure 1d presents a representative SEM image of
the Ag NW (10 mg/mL) networks on PDMS. The nanowires have a diameter ~120 nm
(Figure 1e) and a length between 10 and 20 µm.
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Figure 1. (a) Schematic illustration of the fabrication steps for the stretchable and transparent Ag
NW MEA and interconnects. (b) Transmittance spectra of Ag NW networks. (c) (Left) Schematic
design of a 3 × 3 Ag NW MEA and interconnects. The inner blue box highlights a microelectrode in
the MEA. (Right) Photograph of the 3 × 3 Ag NW MEA and interconnects to show the high optical
transparency. The device areas are highlighted by the red dashed box. (d) SEM image of the Ag NW
structures at 10 mg/mL. (e) Magnified SEM image of the Ag NW structures.

The average Rsh values increase from 1.52 ± 0.3 Ω sq−1 to 3.77 ± 0.3 Ω sq−1, and
4.35 ± 0.2 Ω sq−1 with the nanowire concentrations decreasing from 20 mg/mL to
10 mg/mL, and 8 mg/mL due to the reduced Ag NW density in the conductive networks.
The electrical performance of our Ag NW structures is comparable to other stretchable and
transparent Ag NW electrodes used in traditional optoelectronic applications [30,35,36],
and outperforms the CNT interconnects at similar transmittance values [14].
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To demonstrate the mechanical robustness of the Ag NW/PDMS structures against
cyclic strain experienced by many mechanically active tissues, strain tests of the Ag
NW/PDMS films are performed with 2.5 × 3.5 cm2 in size. Figure 2a shows the one-
time stretching performance. The Ag NW/PDMS films exhibit unchanged resistance at
the released state for up to 40% strain. Figure 2b shows the reliability over continuous
cyclic deformation. The resistance remains stable for over 500 cycles of stretching for up
to 20% strain. At 40% strain, the released Ag NW films show a dramatically increased
resistance after 500 cycles of stretching. This is due to the delamination of the Ag NW
junctions under continuous large mechanical stress [30]. Figure S1 shows the SEM image
of the Ag NW networks after 4500 cycles of stretching at 40% strain. A clear decrease
in the Ag NW network density is observed compared to the pristine film in Figure 1d.
Figure 2c,d show optical images of a blue LED device connected to a voltage source using
the Ag NW/PDMS films before and after continuous cyclic strain of 10% for 500 cycles.
The current and voltage readings shown on the voltage source indicate the resistance of the
system remains unchanged after stretching, confirming the stable electrical performance of
the Ag NW networks after 500 cycles of stretching at 10% strain.

Photonics 2021, 8, x FOR PEER REVIEW 5 of 11 
 

 

The average Rsh values increase from 1.52 ± 0.3 Ω sq−1 to 3.77 ± 0.3 Ω sq−1, and 4.35 ± 
0.2 Ω sq−1 with the nanowire concentrations decreasing from 20 mg/mL to 10 mg/mL, and 
8 mg/mL due to the reduced Ag NW density in the conductive networks. The electrical 
performance of our Ag NW structures is comparable to other stretchable and transparent 
Ag NW electrodes used in traditional optoelectronic applications [30,35,36], and outper-
forms the CNT interconnects at similar transmittance values [14]. 

To demonstrate the mechanical robustness of the Ag NW/PDMS structures against 
cyclic strain experienced by many mechanically active tissues, strain tests of the Ag 
NW/PDMS films are performed with 2.5 × 3.5 cm2 in size. Figure 2a shows the one-time 
stretching performance. The Ag NW/PDMS films exhibit unchanged resistance at the re-
leased state for up to 40% strain. Figure 2b shows the reliability over continuous cyclic 
deformation. The resistance remains stable for over 500 cycles of stretching for up to 20% 
strain. At 40% strain, the released Ag NW films show a dramatically increased resistance 
after 500 cycles of stretching. This is due to the delamination of the Ag NW junctions un-
der continuous large mechanical stress [30]. Figure S1 shows the SEM image of the Ag 
NW networks after 4500 cycles of stretching at 40% strain. A clear decrease in the Ag NW 
network density is observed compared to the pristine film in Figure 1d. Figure 2c,d show 
optical images of a blue LED device connected to a voltage source using the Ag 
NW/PDMS films before and after continuous cyclic strain of 10% for 500 cycles. The cur-
rent and voltage readings shown on the voltage source indicate the resistance of the sys-
tem remains unchanged after stretching, confirming the stable electrical performance of 
the Ag NW networks after 500 cycles of stretching at 10% strain. 

 
Figure 2. (a) Relative changes of resistance under stretching strain. (b) Relative changes of resistance 
after cyclic stretching cycles to different strains. R0 is the resistance before stretching, whereas R 
represents the resistance at a specific stretching cycle. The results are averaged over 5 devices. Pho-
tos of an operating blue LED connected by Ag NW/PDMS films (c) before and (d) after 500 stretching 
cycles at 10% strain. 

3.2. Electrochemical Properties of Ag NW Microelectrodes 
Electrochemical impedance represents the performance of a microelectrode at the 

abiotic/biotic interface and is an important characteristic of a microelectrode for electro-
physiological recording. A low impedance magnitude is desired to improve the recording 
quality and achieve a high signal-to-noise ratio (SNR). Figure 3a presents the impedance 
of Ag NW microelectrodes with different Ag NW concentrations measured by electro-
chemical impedance spectroscopy in a PBS solution. The frequency range of 10 Hz to 10 

Figure 2. (a) Relative changes of resistance under stretching strain. (b) Relative changes of resistance
after cyclic stretching cycles to different strains. R0 is the resistance before stretching, whereas R
represents the resistance at a specific stretching cycle. The results are averaged over 5 devices. Photos
of an operating blue LED connected by Ag NW/PDMS films (c) before and (d) after 500 stretching
cycles at 10% strain.

3.2. Electrochemical Properties of Ag NW Microelectrodes

Electrochemical impedance represents the performance of a microelectrode at the
abiotic/biotic interface and is an important characteristic of a microelectrode for electro-
physiological recording. A low impedance magnitude is desired to improve the recording
quality and achieve a high signal-to-noise ratio (SNR). Figure 3a presents the impedance of
Ag NW microelectrodes with different Ag NW concentrations measured by electrochemical
impedance spectroscopy in a PBS solution. The frequency range of 10 Hz to 10 kHz covers
different frequency bands to include both low-frequency and high-frequency biosignals.
Impedance values at 1 kHz are widely used for comparison of different electrophysiological
recording microelectrodes [13]. The average impedance values over 5 devices at 1 kHz for
the Ag NW microelectrodes decrease from 1.43 ± 0.07, to 1.30 ± 0.07, and 0.896 ± 0.08 kΩ
with Ag NW concentrations increasing from 8 mg/mL to 10 mg/mL, and 20 mg/mL,
respectively. Similar to the changes in Rsh, the smaller impedance values at larger Ag
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NW concentrations are due to the increased nanowire network density that improves
the effective interfacial areas of the microelectrodes. The uniformity of the nanowire net-
works is important to achieve robust electrochemical performance over a large area [37–39].
Figure 3b shows the impedance responses of 9 Ag NW microelectrodes in the 3 × 3 MEA
in Figure 1c. It is clear that the MEA exhibits a uniform electrochemical performance across
all channels with an average impedance of 1.30 ± 0.1 kΩ, which is crucial for simultaneous
high-fidelity electrophysiological recording at multiple sites and studying the propagation
of biosignals. The impedance results of the Ag NW microelectrodes are fitted with an
equivalent circuit model in Figure S2, which consists of solution resistance (RS), charge
transfer resistance (RCT), Warburg element for diffusion (ZWD), and constant phase element
(ZCPE). ZCPE is defined by 1

Y0(jω)n , where j is the unit imaginary number, ω is the angular
frequency, Y0 is the magnitude of ZCPE, and n is a constant defined by the phase angle of
ZCPE. The n value of our Ag NW microelectrodes is 0.73, which suggests a more capac-
itive interface [17]. Importantly, the impedance of the Ag NW microelectrodes remains
nearly unchanged as they are stretched over continuous cyclic strain of 10% for 500 cycles
(Figure 3c).
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Figure 3. (a) Impedance plot of the Ag NW microelectrodes. (b) Impedance spectra of all 9 microelec-
trodes in a 9-channel Ag NW MEA. (c) Variation of impedance versus stretching cycle for Ag NW
microelectrodes at a strain of 10%. Z0 is the initial impedance, whereas Z represents the impedance
at a specific stretching cycle. The results are averaged over 5 devices. (d) Normalized impedance
of Ag NW microelectrodes versus transmittance compared to major reported flexible transparent
microelectrodes such as CNT [14], graphene [16], nitrogen-doped graphene (N-graphene) [40], Au
nanogrid [17], Au bilayer nanomesh [41], ITO/Au grid [42], Au nanonetwork [18], and PEDOT:PSS-
ITO-Ag-ITO [20].

The performance of our Ag NW microelectrodes are compared to previously reported
flexible transparent microelectrodes for electrophysiology studies (Figure 3d), including
CNT [14], graphene [16], nitrogen-doped graphene (N-graphene) [40], Au nanogrid [17],
Au bilayer nanomesh [41], ITO/Au grid [42], Au nanonetwork [18], and PEDOT:PSS-
ITO-Ag-ITO [20]. For fair comparison, transmittance values at 550 nm are used while
all impedance values are at 1 kHz and have been normalized to the actual dimension
of each microelectrode. Our stretchable Ag NW microelectrodes exhibit low normalized
impedance values (3.78, 5.49, and 6.04 Ω cm2) at moderate to high optical transmittance
levels (61.3%, 75.2%, and 80.5%). This is among the best performance for transparent
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microelectrodes and also comparable to those from opaque solid Ag film microelectrodes
we previously reported [31].

We further demonstrate the recording capability and mechanical robustness of the Ag
NW microelectrodes using benchtop tests. Figure 4a demonstrates the benchtop recording
results of an acute sine wave input signal (10 Hz and 20 mV peak-to-peak amplitude) in a
1× PBS solution from the Ag NW microelectrodes. The power spectrum density (PSD) of
the signals in Figure 4b provides detailed noise and signal information in the frequency
domain. The large peak at 10 Hz originates from the input signal. The calculated SNR
is 40.7 dB. Figure 4c shows that the Ag NW microelectrodes can record the same sine
wave input signal with high-fidelity and no decrease in amplitude after been stretched at
10% strain for 500 cycles. The SNR from the PSD results in Figure 4d is 39.8 dB, respectively,
which is almost identical to the SNR for the pristine microelectrodes in Figure 4b. The
average SNRs from 5 devices before and after 500 cycles of stretching at 10% strain are
41.1 ± 0.7 dB and 39.8 ± 1.7 dB, respectively. Importantly, the SNRs remain stable even
after further stretching to 1000 cycles (38.9 ± 2.0 dB).
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Figure 4. (a) Benchtop recording results from the pristine Ag NW microelectrodes, with a 20 mV
peak-to-peak amplitude, 10 Hz sine wave input. (b) PSD of the electrical signals recorded by the Ag
NW microelectrodes in (a). (c) Benchtop recording results from the stretched Ag NW microelectrodes,
with the same 20 mV peak-to-peak amplitude, 10 Hz sine wave input. (d) PSD of the electrical signals
recorded by the stretched Ag NW microelectrodes in (c).

3.3. Ex Vivo Cardiac Electrophysiological Recording and Optogenetic Pacing

The stretchable and transparent Ag NW microelectrodes and interconnects allow for
simultaneous and co-localized optogenetic modulation and electrophysiological recording,
where photons pass through the device and illuminate the cell/tissue regions from which
the electrophysiological recordings are obtained. Figure 5 shows the experimental setup.
Concurrent optogenetic stimulation and cardiac recording from transgenic mouse hearts
expressing ChR2 are performed using the Ag NW microelectrodes. Figure 6a shows the
sinus rhythm recording results using a commercial reference electrode and pristine Ag
NW microelectrodes. The EG results from the Ag NW microelectrodes and ECG signals
from the reference electrode show similar morphology. The average durations of five QRS
complexes from the reference electrode and Ag NW microelectrodes are 10.4 ± 0.5 ms and
10.2 ± 0.5 ms, respectively. Those results indicate the high-fidelity recording capabilities of
the Ag NW microelectrodes. Figure 6b presents the recording results from a different mouse
heart using the reference electrode and stretched Ag NW microelectrodes (10% strain,
500 cycles). Similarly, the morphology of the signals shows strong correlations. The
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average durations of the QRS complexes are 10.4 ± 0.6 ms and 10.2 ± 0.8 ms for the
stretched Ag NW microelectrodes and reference electrode, respectively. Those results
suggest that both the pristine and stretched Ag NW microelectrodes can quantitatively
record cardiac activity with high precision.
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Figure 6. Electrophysiological recordings of heart rhythm from the reference electrode and Ag NW
microelectrodes (a) before and (b) after been stretched. EG recording from the pristine Ag NW
microelectrodes under optogenetic pacing at (c) 9 Hz and (d) 7.8 Hz, respectively. A representative
QRS complex under pacing is shown in (c) (Right). EG recording from the stretched Ag NW
microelectrodes under optogenetic pacing at (e) 9 Hz and (f) 7.8 Hz, respectively. A representative
QRS complex under pacing is shown in (e) (Right).

Optogenetic pacing of ChR2-expressing cardiomyocytes underneath the Ag NW mi-
croelectrodes is then performed. Figure 6c presents the recorded EG signals from the Ag
NW microelectrodes during optogenetic pacing at 9 Hz with a duty cycle at 15% (blue
traces). The average RR interval is 111.0 ± 0.3 ms, which is consistent with our previous
findings that the cardiac activity could be precisely controlled by optogenetic stimula-
tion [17]. The EG recording results from the Ag NW microelectrodes in Figure 6d confirm
the successful pacing of the heart rhythm under a different optogenetic pacing frequency at
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7.8 Hz. Moreover, results in Figure 6e, f suggest that the stretched (10% strain, 500 cycles)
Ag NW microelectrodes can also record the cardiac activity under different pacing fre-
quencies with high-fidelity. For example, the average RR interval value recorded by the
stretched Ag NW microelectrodes during 9 Hz optogenetic pacing is 111.0 ± 0.2 ms, which
is almost identical to the results in Figure 6c. Overall, the Ag NW microelectrodes enable
reliable co-localized monitoring of continuously beating hearts with/without optogenetic
modulation and are valuable to study normal and pathological cardiac physiology.

4. Conclusions

In summary, Ag NW stretchable and transparent MEAs and interconnects with ex-
cellent mechanical, optical, electrical, and electrochemical properties have been achieved
by sandwiching patterned Ag NW structures between PDMS substrate and encapsulation
layers. This simple and easy approach also allows fabrication of nanowire based MEAs
with a high uniformity. We expect this fabrication approach to be applicable to many
different metal nanowire systems. Proof-of-concept demonstrations indicate that both
pristine and stretched Ag NW microelectrodes allow real-time high-fidelity electrophysio-
logical recording of heart rhythm under simultaneous optogenetic pacing. The approach
presented here shows the significant potential of metal nanowire microelectrode technology
in combining electrophysiology with optophysiology to investigate dynamically deforming
organ systems.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/photonics8060220/s1, Figure S1: SEM image of the Ag NW structures at 10 mg/mL after 4500
stretching cycles at 40% strain. Figure S2: Equivalent circuit model with fitting parameters Rs, RCT,
ZWD, and ZCPE.
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