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Abstract: Nonstatic quantum light waves arise in time-varying media in general. However, from
a recent report, it turned out that nonstatic waves can also appear in a static environment where
the electromagnetic parameters of the medium do not vary in time. Such waves in Fock states
exhibit a belly and a node in turn periodically in the graphic of their evolution. This is due to the
wave expansion and collapse in quadrature space, which manifest a unique nonstaticity of the wave.
The principle for wave expansion and collapse is elucidated from rigorous analyses for the basic
nonstatic waves which are dissipative and amplifying ones. The outcome of wave nonstaticity can be
interpreted in terms of the coefficient of the quadratic exponent in the exponential function appearing
in the wave eigenfunction; if the imaginary part of the coefficient is positive, the wave expands,
whereas the wave collapses when it is negative. Using this principle, we further analyze novel
nonstatic properties of light waves which exhibit complicated time behaviors, i.e., for the case that
the waves not only undergo the periodical change of nodes and bellies but their envelopes exhibit
gradual dissipation/expansion as well.

Keywords: optics; optomechanics; light wave; wave nonstaticity

1. Introduction

If the parameters of a medium vary in time and/or in space, the waves through
which propagate become nonstatic. Most of the typical nonlinear wave interactions and
perturbations may result in nontrivial modifications of associated light waves. As well as
the waves modulated in such a way, the waves which undergo dissipation or amplification
are also a kind of nonstatic waves. Nonstatic short light pulses in dispersive polarized
time-varying media such as plasma have attracted considerable interest from the early
history of modern science [1–4]. Nonstatic light waves customized for a specific purpose
can be generated through effective manipulations and controlling of the waves with a
high precision. Concerning this, it is inevitably required to understand the mechanism
underlain the behavior of nonstatic light waves, including the influence of light-matter
interactions on their spatiotemporal modulations.

Nonstatic quantum light waves have been a focus of active research in optics and
related subjects during several decades [5–12]. In particular, the manipulation and applica-
tion of such waves are important in nano-optics according to their extensive role in nano
science and technology [13–19]. A promising application of nonstatic waves along this line
is a heterodyne detection of signals from a nano quantum dot through demodulation of a
quadrature [19]. Another noteworthy application is the technique of frequency shifts for
producing terahertz- and millimeter-waves, of which creations are difficult from other tech-
nological means [20]. Nonstatic waves are also applied to the experiment of the dynamical
Casimir effect in quantum information processing, which generates photons by changing a
cavity length in a non-adiabatic manner [21,22].

In our recent work [12], it has been shown that nonstatic waves can also arise even in
a transparent medium whose parameters do not vary. In this case, the shape of light waves
varies over time in a unique regular way as a manifestation of their nonstatic features. Such
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nonstatic waves undergo collapse and expansion in turn periodically in the quadrature
space. The waves constitute nodes in the graphic of their time evolution whenever they
maximally contract, whereas bellies are formed whenever their expansion is greatest.
The effects of such a nonstaticity can be quantitatively estimated using the measure of
nonstaticity which has been defined in the same previous work. As the nonstaticity measure
gradually grows, the wave variation caused by its nonstaticity becomes intense with an
enhancement of the amplitude.

For such nonstatic waves, a rigorous interpretation of the wave behavior may be
crucial for understanding the peculiar consequences of the nonstaticity. We will investigate
the mechanism for wave collapse and expansion in nonstatic waves in this work. To this
end, we analyze quantum behaviors separately for two different types of basic nonstatic
waves at first; they are the light waves that undergo a simple contraction and a simple
expansion, respectively. We will find a universal rule for interpreting the effects of wave
nonstaticity by examining the factors related to it. And then, we apply this rule in analyzing
the characteristics of more general nonstatic light waves which exhibit periodic collapse and
expansion where the envelope of such a variation shows gradual dissipation/amplification.
The effects of nonstaticity on the time behavior of quantum energy will also be investigated
in detail for each type of the wave.

2. Results and Discussion

2.1. Fundamental Properties of Nonstatic Light Waves

2.1.1. Measure of Nonstaticity

For a specific mode of a wave, we can write the vector potential as A(r, t) = u(r)q(t) [23]
where u(r) is the position function which is determined by a boundary condition, whereas
q(t) is quadrature which exhibits the time behavior of the amplitude of the wave. The
harmonic oscillator description of quantum wave functions 〈q|ψn(t)〉 for a light wave can
be represented in terms of e−W(t)q2/2 [12], where W(t) is a time function. Because W(t) is a
complex number in general, it can be divided into real (WR(t)) and imaginary parts (WI(t)):

W(t) = WR(t) + iWI(t). (1)

while W(t) is real (W = WR) for a static quantum wave, its imaginary term is not zero when
the waves are nonstatic. Hence, WI(t) is responsible for the appearance of the nonstatic
character in the waves. If we define D(t) = WI/WR, the root-mean-square (RMS) value of
D(t) is the quantitative measure D of nonstaticity [12]. In this work, we are interested in
the effects of D(t) on nonstatic behavior of the quantum waves. Although the environment
of the waves treated in Ref. [12] is static, we do not restrict to a static environment in
this work.

In the subsequent subsubsection, we will study the temporal behavior of the light
waves separately for positive value of D(t) and negative by introducing a damped and
an amplified light waves, respectively. In addition, we will also investigate the proper-
ties of more general nonstatic waves based on this approach, which exhibit complicated
time behaviors.

2.1.2. Nonstatic Waves Associated with Dissipation and Amplification

Although dissipation and amplification of a wave take place in nonstatic environments,
the analyses of the mechanism underlain such phenomena are useful in understanding
periodic behavior of nonstatic waves in a static environment (managed in Ref. [12]) and
their generalization. For this reason, it may be favorable to see dissipative and amplifying
waves at first.
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Dissipative Quantum Light Waves

Let us first see dissipational nonstatic waves. The classical equation of motion for
quadrature, which governs the time behavior of such waves, is of the form

q̈ + βq̇ + ω2
0q = 0, (2)

where β is the damping constant and ω0 is the natural frequency. We consider under-
damped case (β < 2ω0) for convenience. The quantum Hamiltonian for this system is
given by [24,25]

Ĥ = e−βt p̂2/(2ε) + εω2
0eβt q̂2/2, (3)

where p̂ = −ih̄∂/∂q and ε is the permittivity in the medium.
The wave functions and the quantum energies of this quantum light are represented

in Methods Section 4.2. We can easily confirm from the formula of the corresponding wave
functions given in Equation (24) that WR = (εωD/h̄)eβt and WI = [εβ/(2h̄)]eβt, where
ωD = (ω2

0− β2/4)1/2. Hence the ratioD defined in the previous subsubsection is a positive
constant in this case. The temporal evolution of the wave function (with n = 5), the ratio
D, and the quantum energy have been illustrated in Figure 1. Because D is positive and
does not depend on time, its RMS value, i.e., the measure of nonstaticity is the same as D,
and it is given by

DD = β/(2ωD). (4)

This is large when β is great. Hence, the nonstatic property is prominent when the waves
are highly dissipative. In the limit of the nondissipative light (β → 0), the measure of
nonstaticity reduces to zero: DS = 0.

Figure 1. Contour plot of the probability density |〈q|ψn〉D|2 (A) as a function of q and t for the
quantum wave given in Equation (24), where we have chosen β = 0.2; the corresponding temporal
evolutions of the ratio D(t) (B) and the quantum energy En(t) (C) for several different values of β.
The extra line in (C), i.e., the dash-dot line is quantum electric energy Tn(t) for the case of β = 0.2,
whose value is in fact the same as the magnetic energy Vn(t). We have used n = 5, ω0 = 1, h̄ = 1,
and ε = 1. For convenience, we take all values being dimensionless for this and subsequent figures.
This figure illustrates gradual wave collapse.
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The width of the probability density |〈q|ψn〉D|2 which is illustrated in Figure 1A
decreases by degrees as time goes by. Hence, an important consequence which we would like to
point out is that the wave function contracts through the lapse of time whenD is positive. Of course,
the contraction of the wave function is accompanied by gradual dissipation of the quantum
energy and its components, electric and magnetic energies, as can be seen from Figure 1C.
When D is high, such dissipations are also large (see green curves in Figure 1B,C).

As well as the consideration of the quadrature q, its conjugate quadrature p is of key
importance in the interpretation of the nonstatic waves. Regarding this, let us see the
Wigner distribution functions which are defined in this case as

Wn(q, p, t) =
1

πh̄

∫ ∞

−∞
[〈q + y|ψn(t)〉D]∗〈q− y|ψn(t)〉De2ipy/h̄dy. (5)

By using Equation (24), we readily have [26]

Wn(q, p, t) =
(−1)n

πh̄
e−2H̄/(h̄ωD)Ln

(
4H̄

h̄ωD

)
, (6)

where Ln are the Laguerre polynomials and

H̄ =
1
2

[
1
ε

e−βt
(

p +
1
2

εβeβtq
)2

+ εω2
Deβtq2

]
. (7)

The function in Equation (6) has been illustrated in Figure 2. This figure shows that the
uncertainty of q becomes small as time goes by. On the other hand, the uncertainty of
p grows with time as expected by the Heisenberg limit. This outcome agrees with the
analysis given in Ref. [26].

Amplifying Quantum Light Waves

Now we will see the nonstatic properties of light waves which undergo amplification.
Light waves are amplified when the electric conductivity is negative [27–29]. The classical
equation of motion for these waves is obtained by replacing β → −γ from Equation (2),
such that

q̈− γq̇ + ω2
0q = 0, (8)

where γ is known as the amplification constant. The quantum wave functions in the Fock
state and the corresponding quantum energies are represented in Methods
Section 4.3. Because WR = (εωA/h̄)e−γt and WI = −[εγ/(2h̄)]e−γt where ωA = (ω2

0 −
γ2/4)1/2 (see Equation (28) in Methods Section 4.3), D is a negative constant in this case.
The temporal behavior of the probability density associated with the wave function is
shown in Figure 3, together with the corresponding behaviors of D and the quantum en-
ergy. From Figure 3B, we see that D is different depending on the strength of amplification.
From the RMS value of D, we have the associated measure of nonstaticity as

DA = γ/(2ωA). (9)

This relation shows that the nonstatic property of the waves grows as γ becomes large. This
consequence can be compared to the fact that, for a dissipative wave, nonstatic features
become prominent when β is large.

From Figure 3A, we see that the probability density for this case gradually expands
over time as a consequence of the wave amplification. We thus confirm that the wave function
expands whenD is negative. This is contrast to the result of the former analysis in this subsubsection,
which is that the wave function shrinks when D is positive. We now emphasize these consequences
and they will be used as basic tools for interpreting the characteristics of several types of more
general nonstatic waves subsequently.

Figure 3C shows amplification of the corresponding quantum energy. When the
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measure of nonstaticity is large, the rate of the exponential growth of the energy is high.

Figure 2. Contour plot ofWn [Equation (6)] for several different times: we have chosen t = 0 for
(A), t = 4 for (B), and t = 8 for (C). We used n = 5, ω0 = 1, β = 0.2, h̄ = 1, and ε = 1: these choices
correspond to the wave in Figure 1A.
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Figure 3. Contour plot of the probability density |〈q|ψn〉A|2 (A) as a function of q and t for the
quantum wave given in Equation (28), where we have chosen γ = 0.2; the corresponding temporal
evolutions of the ratio D(t) (B) and the quantum energy En(t) (C) for several different values of
γ. The extra line (the dash-dot line) in C is quantum electric energy Tn(t)(= Vn(t)) for the case of
γ = 0.2. We have used n = 5, ω0 = 1, h̄ = 1, and ε = 1. This figure shows amplification of the
quantum light wave.

2.2. Interpreting Periodic Nonstatic Wave Behavior

The standard wave functions for nondissipative light which is described by the simple
harmonic oscillator (SHO) is static. By the way, we have shown in the previous work [12]
that the quantum description of light waves in a static environment through the SHO
Hamiltonian allows more generalized Schrödinger solutions related to nonstatic wave
phenomena. If we regard that not only the electromagnetic parameters in the medium but
the quantum energy of the wave does not vary over time in this case, such an emergence of
nonstatic waves is remarkable.

The SHO Hamiltonian for such waves in quantum optics is given by

Ĥ = p̂2/(2ε) + εω2
0 q̂2/2. (10)

The mathematical formula of nonstatic light waves associated with this Hamiltonian have
been described in Methods Section 4.4. From the wave functions given in Equation (32),
we easily confirm that [12]

WR(t) =
εω0

h̄ f (t)
WI(t) = −

ε ḟ (t)
2h̄ f (t)

, (11)

where

f (t) = A sin2 ϕ̃0(t) + B cos2 ϕ̃0(t) + C sin[2ϕ̃0(t)], (12)

ϕ̃0(t) = ω0(t− t0) + ϕ0, (13)
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while A, B, and C are real constants which obey AB − C2 = 1 with AB ≥ 1, ϕ0 is an
arbitrary phase, and t0 is a fixed time.

The temporal nonstatic behaviors of the probability density and relevant physical
quantities for this wave have been illustrated in Figure 4. Figure 4A shows periodic collapse
and expansion of the wave, while Figure 4B is the time behavior of D(t). We see from these
two figure panels that the wave collapses when D(t) is positive, whereas it expands when
D(t) is negative. Notice that the mechanism of this periodic temporal behavior exactly
coincides with the analyses of the previous subsection that have been carried out with the
damped wave and the amplified one. Because the probability density exhibits a node in
the figure whenever it is maximally collapsed and a belly whenever its expansion is largest,
the wave graphic exhibits a node and a belly in turn successively. If we regard the result of
the previous analysis for the dissipative wave based on the Wigner distribution function,
we can confirm that a regular time-varying squeezing of the Fock state takes place along
this consequence, i.e., a node accompanies the squeezing in q quadrature whereas a belly
the squeezing in p quadrature.

Figure 4C is quantum energy with its electric and magnetic components, which are
drawn using their exact formulae shown in Ref. [12]. Quantum electric (magnetic) energy
is maximum at nodes (bellies) and minimum at bellies (nodes). However, the total optical
energy does not vary over time according to the energy conservation law.

Figure 4. Contour plot of the probability density |〈q|ψn〉GS|2 (A) as a function of q and t for the
quantum wave given in Equation (32), where we have chosen A = B = 3.0; the corresponding
temporal evolutions of the ratio D(t) (B) and the quantum energy En(t) (C) for several different
values of A and B. a and b in (B) are examples of time intervals of wave expansion and collapse,
respectively. The extra curves in (C), i.e., the dash-dot curve and the dotted curve are quantum
electric energy Tn(t) and the magnetic energy Vn(t), respectively, for the case of A = B = 3.0.
Whereas the taken values of A and B are designated in the legends, C is taken to be C =

√
AB− 1:

this convention will also be used throughout the subsequent figures. We have used n = 5, ω0 = 1,
h̄ = 1, ε = 1, t0 = 0, and ϕ0 = 0. We see from this figure that successive changes of the sign of D(t)
induce periodical wave collapse and amplification.
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The quantitative measure of nonstaticity for this wave is given by [12]

DGS =

√
(A + B)2 − 4

2
√

2
. (14)

This formula shows that the nonstatic characteristics of the wave are prominent when the
values of A and B are large.

So long as the environment neither explicitly vary over time nor respond to a light
wave in which propagates, the wave may be described by time-independent Hamiltonian
given in Equation (10). By the way, if the intensity of a light wave in a medium is too
strong, the atoms in the medium may respond nontrivially to the wave. Then, the medium
is no longer static and the Hamiltonian for describing the light wave in it becomes a
time-dependent one instead of Equation (10). As an example, if a medium consisting of
two-level atoms is strongly driven by a resonant plane-wave, atoms which constitute the
environment will emit light with the Mollow’s triplet spectrum [30]. This brings about a
modification in the overall wave field in the medium. The analysis of nonstatic quantum
light waves in such a situation may be worthwhile as a further research topic in the future.

It may be interesting to investigate the waves that undergo both the dissipation (or
expansion) and the periodical behavior of collapse and expansion which has been managed
now. These generalized nonstatic waves will be considered in the subsequent subsection.

2.3. Analysis of Generalized Nonstatic Waves

Quantum description of light waves that we have managed in the previous subsection
can be generalized to the cases of more complicated light wave phenomena associated
with the wave nonstaticity. As such generalization, we first consider dissipative waves
of which quantum behaviors are unified with the periodical collapse and expansion. The
characteristic of these waves is nontrivial and may be interesting. In this case, the classical
equation of motion is the same as Equation (2) that we have already used for the analysis of
the damped light waves. From the Schrödinger equation, we can extend the wave functions
given in Equation (32) so that they involve the effect of dissipation, such that

〈q|ψn(t)〉GD =

(
εωD

πh̄f(t)

)1/4 1√
2nn!

Hn

(√
εωD

h̄f(t)
q
)

× exp
[
− ε

2h̄f(t)

(
ωD −

i
2

eβt ḟ(t)
)

q2
]

exp[iΘ̄n(t)], (15)

where Θ̄n(t) = −ωD(n + 1/2)
∫ t

t0
e−βt′f−1(t′)dt′ + Θ̄n(t0), and

f(t) = e−βt{A sin2 ϕ̃(t) + B cos2 ϕ̃(t) + C sin[2ϕ̃(t)]}, (16)

with ϕ̃(t) = ωD(t− t0) + ϕ, while ϕ is a phase. This is the generalization of the damped-
harmonic-oscillator description of the light waves that we have already managed. The sub-
script GD in Equation (15) means the Generalized Damped-harmonic-oscillator wave functions.

The ratio D(t) in this case is given by

D(t) = − eβt ḟ(t)
2ωD

. (17)

A minor evaluation using Equation (16) results in

D(t) = 1
4ωD
{(A + B)β− 2ω0

√
(A + B)2 − 4 cos[2ϕ̃(t) + δ]}, (18)

where
δ = atan(4CωD − (B− A)β, 2(B− A)ωD + 2Cβ). (19)
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Here, φ ≡ atan(x, y) is the two-variable inverse function of tan φ = y/x, where this
function is defined in the range 0 ≤ φ < 2π. Thus, from the RMS value of Equation (18),
we have the measure of nonstaticity as

DGD =
1

4ωD
[(A + B)2(β2 + 2ω2

0)− 8ω2
0 ]

1/2. (20)

For A = B = 1, this reduces to DD = β/(2ωD), which is the same as Equation (4). On the
other hand, for β = 0, this results in DGS = [(A + B)2 − 4]1/2/(2

√
2), which corresponds

to Equation (14).
Now let us see the quantum energies of the system. For a dissipative quantum system,

the energy operator is different from the Hamiltonian of the system and the relation between
them can be represented in our case as Ê = e−βtĤ [9,31,32]. Hence, the quantum electric
energies and the magnetic energies are given by Tn = e−2βt〈 p̂2〉/(2ε) and Vn = εω2

0〈q̂2〉/2,
respectively, where 〈· · · 〉 = GD〈ψn| · · · |ψn〉GD. We can easily derive the expectation values
〈 p̂2〉 and 〈q̂2〉 using the wave functions given in Equation (15). Through this, we have

Tn =
h̄

2ωDf(t)
e−2βt

(
[ḟ(t)]2

4
e2βt + ω2

D

)
(n + 1/2), (21)

Vn =
h̄f(t)ω2

0
2ωD

(n + 1/2). (22)

Figure 5 shows the evolution of the probability density for the corresponding nonstatic
wave together with the value of D(t) and the quantum energy. We see from Figure 5A that
the wave exhibits an intricate effect; it periodically changes between collapse and expansion
where the amplitude of such a variation gradually dissipates as expected. When β is large,
the positive value ofD(t) is dominant (see, especially, Figure 5B with β = 1.5). This implies
that the rate of dissipation grows as β increases, which agrees with our intuition.

Whenever the wave has an instantaneous maximum electric energy, the differentiation
of Tn with respect to time results in zero: dTn/dt = 0. Hence, from the direct time derivative
of Equation (21), we can have the instants of time that the wave takes an instantaneous
maximum electric energy. For instance, for the case of Figure 5C with β = 0.2, such instants
are given by

t = 2.16, 5.32, 8.48, 11.64, · · · . (23)

The wave energy highly dissipates when the electric energy is large in general. You can
confirm from Figure 5C that the rate of the energy dissipation is instantaneously maximum
at the instants of time given above. Such instants are near the instants where the wave
composes nodes, but not exactly coincide with that instants.

We can also investigate the quantum behavior of the nonstatic light waves which
periodically collapse and expand where the amplitudes of such variations are gradually
amplified. In this case, the wave functions, 〈q|ψn(t)〉GA, can be easily obtained by replacing
β→ −γ and ωD → ωA from Equation (15) with Equation (16) (The subscript GA means
the Generalized Amplified-harmonic-oscillator wave functions). All other outcomes corre-
sponding to those of the lastly treated nonstatic waves can also be obtained by the same
replacements from the subsequent equations, Equations (17)–(22).

The time evolution of the probability density |〈q|ψn(t)〉GA|2 with D(t) and En(t) for
this wave has been depicted in Figure 6. We see that the envelope of the probability density
gradually expands with time. Figure 6B shows that negative value of D(t) is dominant
through the considered time in the graphic than the positive, especially when γ is large
(in particular, see the case of γ = 1.5). Hence, the wave amplification becomes prominent
as γ grows. The quantum energy also increases highly when γ is great (see Figure 6C).
The rate of the energy increase is instantaneously largest whenever the wave attains an
instantaneous maximum electric energy.
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Figure 5. Contour plot of the probability density |〈q|ψn〉GD|2 (A) as a function of q and t for the
quantum wave given in Equation (15), where we have chosen β = 0.2; the corresponding temporal
evolutions of the ratio D(t) (B) and the quantum energy En(t) (C) for several different values of β. a
and b (a′ and b′) in (B) are examples of time intervals of wave expansion and collapse, respectively,
for β = 0.2 (β = 1.5). The extra curves in (C), i.e., the dash-dot curve and the dotted curve are
quantum electric energy Tn(t) and the magnetic energy Vn(t), respectively, for the case of β = 0.2.
We have used A = B = 3, n = 5, ω0 = 1, h̄ = 1, ε = 1, t0 = 0, and ϕ = 0. This figure shows novel
features of the general nonstatic waves, i.e., periodical behavior of wave collapse and expansion
combined with the gradual dissipation.

Figure 6. Contour plot of the probability density |〈q|ψn〉GA|2 (A) as a function of q and t, where we
have chosen γ = 0.2; the corresponding temporal evolutions of the ratio D(t) (B) and the quantum
energy En(t) (C) for several different values of γ. a and b (a′ and b′) in (B) are examples of time
intervals of wave expansion and collapse, respectively, for γ = 0.2 (γ = 1.5). The extra curves in (C),
i.e., the dash-dot curve and the dotted curve are quantum electric energy Tn(t) and the magnetic
energy Vn(t), respectively, for the case of γ = 0.2. We have used A = B = 2, n = 5, ω0 = 1, h̄ = 1,
ε = 1, t0 = 0, and ϕ = 0. This figure corresponds to complicated general nonstatic waves which
exhibit periodical wave collapse and expansion unified with the gradual expansion.
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3. Conclusions

We have investigated the properties of nonstatic quantum light waves. The wave func-
tions for such waves are described in terms of the complex time function W(t). Although
nonstatic characteristics do not appear in light waves when W(t) is real (W(t) = WR(t)), its
imaginary part WI(t) always appears when the waves exhibit nonstatic properties. Hence,
the nonzero value of WI(t) is responsible for the emergence of nonstatic characters in the
waves. More clearly speaking, the temporal nonstatic behavior of the waves is determined
by D(t) which is the ratio WI(t)/WR(t).

For the damped light waves described in the usual manner, D is positive and the wave
functions gradually shrink towards the origin of the quadrature q over time, while the
corresponding energies dissipate in the same situation. On the other hand, D is negative
for the waves that exhibit amplification. From these, we can deduce a simple universal
consequence that the wave functions for a quantum light undergo contraction when D(t)
is positive, whereas they are amplified when D(t) is negative. Alternatively speaking, the
behavior of the nonstatic wave is governed by the quadratic exponent of the exponential
function which appears in the wave eigenfunction; because WR(t) is always positive for
a wave confined in a finite region, the wave expands when the imaginary part of the
coefficient of the quadratic exponent is positive, whereas the wave collapses when the
imaginary part negative. The illustration of this outcome and its applications in elucidating
the characteristics of general nonstatic quantum waves were the main subject of this work.

We have used the rule for wave contraction and expansion that has been mentioned
above in interpreting the specific property of nonstaticity of the waves described by the SHO
Hamiltonian. According to periodical change of D(t) for these waves, the corresponding
wave functions collapse when D(t) is positive while they stretch when D(t) is negative.
Along this consequence, the maximally collapsed waves constitute a node in the wave
graphic, whereas a belly takes place when the extension of the waves is highest. This is the
reason the waves exhibit an interesting time behavior which is that they form a node and a
belly in turn successively.

We have applied this periodical wave evolution in describing a generalized quantum
behavior of the damped nonstatic light waves. Although the waves, in this case, exhibit a
periodical behavior which is that they form nodes and bellies, the envelope of the waves
shrinks by degrees according to the dissipation of the quantum wave energy. Such a
gradual contraction in envelope was explained from the dominance of the positive value
of D than the negative through the given time in the graphic. The rate of dissipation of
the quantum energy is instantaneously greatest whenever its electric component reaches a
maximum value.

We have also investigated the quantum nonstatic characteristics of the waves which
exhibit periodical collapse and expansion, where the wave envelope is amplifying as time
goes by. We have confirmed that negative value ofD is dominant over time than positive in
this case. The rate of the quantum-energy amplification is instantaneously largest whenever
the wave attains an instantaneous greatest electric energy.

4. Methods
4.1. Methods Summary

The wave functions of the nonstatic light waves are described in terms of exp[−W(t)q2/2],
where W(t) is a complex time function. If we defineD(t) = WI(t)/WR(t) where WR(t) and
WI(t) are real and imaginary parts of W(t), respectively, the time behavior of the nonstatic
light waves is governed by the value of D(t). When D(t) is positive, the wave functions
gradually shrink over time, whereas they expand whenD(t) is negative. For the case of the
nonstatic quantum light waves described by the simple harmonic oscillator, they collapse
and expand in turn depending on the periodical change of the sign of D(t). We can also
conveniently use the variation of the sign of D(t) for analyzing more complicated nonstatic
time behaviors of light waves illustrated in Figures 5 and 6.
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4.2. Standard Quantum Description of the Damped Waves

We briefly survey the quantum characteristics of the damped waves that have been
described in Refs. [31–35]. If we assume underdamping in this case, the wave functions are
of the form [32–34]

〈q|ψn(t)〉D = 4

√
εωD

h̄π

1√
2nn!

Hn

(√
εωD

h̄
eβt/2q

)
× exp

[
β

4
t− ε

2h̄

(
ωD +

iβ
2

)
eβtq2

]
eiθn(t), (24)

where ωD is defined in the text, and

θn(t) = −ωD(t− t0)

(
n +

1
2

)
+ θn(t0). (25)

The subscript D in the left-hand side of Equation (24) means the Damped-harmonic-
oscillator wave functions. If we take the limit β→ 0, Equation (24) reduces to the familiar
standard wave functions, 〈q|ψn(t)〉S, of the quantum light described by the SHO Hamilto-
nian (The subscript S means the Simple-harmonic-oscillator wave functions). Quantum
electric energies Tn and the magnetic energies Vn of the system are given by [9]

Tn = Vn = h̄[ω2
0/(2ωD)]e−βt(n + 1/2). (26)

Because Tn and Vn are equal each other, the quantum energies are twice of Tn (or Vn) [32]:

En = h̄(ω2
0/ωD)e−βt(n + 1/2). (27)

We confirm that these exponentially decay as time goes by.

4.3. Standard Quantum Waves That Undergo Amplification

The waves that exhibit amplification can be described by replacing β→ −γ from the
description of the damped waves, where γ is the amplification constant. Thus, from such a
replacement from Equation (24), we have the wave functions of the amplification waves
as [32]

〈q|ψn(t)〉A = 4

√
εωA

h̄π

1√
2nn!

Hn

(√
εωA

h̄
e−γt/2q

)
× exp

[
−γ

4
t− ε

2h̄

(
ωA −

iγ
2

)
e−γtq2

]
eiϑn(t), (28)

where ωA is defined in the text, and

ϑn(t) = −ωA(t− t0)

(
n +

1
2

)
+ ϑn(t0). (29)

The subscript A in left-hand side of Equation (28) means the Amplified-harmonic-oscillator
wave functions.

The corresponding quantum electric energies, the magnetic energies, and the total
quantum energies are given by [32]

Tn = Vn = h̄[ω2
0/(2ωA)]eγt(n + 1/2), (30)

En = h̄(ω2
0/ωA)eγt(n + 1/2). (31)

Hence, the quantum energies undergo exponential increase in this case.
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4.4. Quantum Waves That Exhibit Periodical Collapse and Expansion

The wave functions for a nonstatic wave that is described by the SHO Hamiltonian
given in Equation (10) are represented as [12]

〈q|ψn(t)〉GS =

(
εω0

πh̄ f (t)

)1/4 1√
2nn!

Hn

(√
εω0

h̄ f (t)
q
)

× exp
[
− ε

2h̄ f (t)
(
ω0 − i ḟ (t)/2

)
q2
]

exp[iΘn(t)], (32)

where f (t) is given in Equation (12) in the text, and Θn(t) = −ω0(n + 1/2)
∫ t

t0
f−1(t′)dt′ +

Θn(t0). These are the generalization of the well-known standard wave functions, 〈q|ψn(t)〉S,
of the quantum light that is described by SHO. The subscript GS in Equation (32) means the
Generalized Simple-harmonic-oscillator wave functions. The probability densities associ-
ated with these waves exhibit periodical collapse and expansion with time (see Figure 4A).
If we take the limit A = B → 1 and C → 0 from f (t) given in Equation (12), the wave
functions in Equation (32) reduce to 〈q|ψn(t)〉S.
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Abbreviations
The following abbreviations are used in this manuscript:

RMS Root-Mean-Square
SHO Simple Harmonic Oscillator
S (subscript) Simple-harmonic-oscillator wave functions (〈q|ψn(t)〉S)

measure of nonstaticity for Simple-harmonic-oscillator wave functions (DS)
D (subscript) Damped-harmonic-oscillator wave functions (〈q|ψn(t)〉D)

modified angular frequency of the Damped harmonic oscillator (ωD)
measure of nonstaticity for Damped-harmonic-oscillator wave functions (DD)

A (subscript) Amplified-harmonic-oscillator wave functions (〈q|ψn(t)〉A)
modified angular frequency of the Amplified harmonic oscillator (ωA)
measure of nonstaticity for Amplified-harmonic-oscillator wave functions (DA)

GS (subscript) Generalized Simple-harmonic-oscillator wave functions (〈q|ψn(t)〉GS)
measure of nonstaticity for Generalized Simple-harmonic-oscillator wave
functions (DGS)

GD (subscript) Generalized Damped-harmonic-oscillator wave functions (〈q|ψn(t)〉GD)
measure of nonstaticity for Generalized Damped-harmonic-oscillator wave
functions (DGD)

GA (subscript) Generalized Amplified-harmonic-oscillator wave functions (〈q|ψn(t)〉GA)
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