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Abstract: This study presented the effects of carrier-transporting layer (CTL) on electrolumines-
cence (EL) performance of a blue phosphorescent organic light-emitting diodes (PHOLEDs) with
electron transporting host based on three kinds of electron-transporting layers (ETLs) includ-
ing 3-(4-biphenyl-yl)-4-phenyl-5-(4-tert-butylphenyl)-1,2,4-triazole (TAZ), diphenyl-bis[4-(pyridin-
3-yl)phenyl]silane (DPPS) and 1,3,5-tri(m-pyrid-3-yl-phenyl)benzene (TmPyPB) and two kinds of
hole-transporting layers (HTLs) such as 4,4′-bis[N-1-naphthyl-N-phenyl-amino]biphenyl (NPB), 1,1-
bis[(di-4-tolylamino)phenyl]cyclohexane (TAPC). The carrier recombination and exciton formation
zones in blue PHOLEDs strongly depend on the carrier mobility of CTLs and the layer thickness,
especially the carrier mobility. Between ETLs and HTLs, the high electron mobility of ETL results in
a lower driving voltage in blue PHOLEDs than the high hole mobility of HTL did. In addition, layer
thickness modulation is an effective approach to precisely control carriers and restrict carriers within
the EML and avoid a leakage emission of CTL. For CTL pairs in OLEDs using the electron transport-
ing host system, ETLs with low mobility and also HTLs with high hole mobility are key points to
confine the charge in EML for efficient photon emission. These findings show that appropriate CTL
pairs and good layer thickness are essential for efficient OLEDs.

Keywords: phosphorescent organic light-emitting diodes; electron transporting; hole transporting

1. Introduction

Organic light-emitting diodes (OLEDs) consist of several organic stacks, such as hole-
transporting layer (HTL), emitting layer (EML), and electron-transporting layer (ETL),
which are sandwiched by electrodes [1–5]. At present, OLEDs are widely employed in flat
panel and mobile phone as a screen since its attractive features such as light weight, thin
size, high contrast ratio, fast response time, wide viewing angle, flexible, and more. Thanks
to numerous efforts that have been invested in the development of material synthesis
and device architectures in the past decade, the electroluminescence (EL) performance
of OLEDs currently have achieved high efficiency and superior device stability for the
requirement in commercialization, and the charge balance is considered as a crucial factor
to determine the device performance [6–8]. ETLs and HTLs act important roles in charge
of carrier injection, carrier transport, carrier and/or exciton confinement within EML for
charge balance in OLEDs [9,10], which strongly depend on the charge transporting layer’s
(CTL’s) photoelectric property including carrier mobility, energy band level (i.e., highest
occupied molecular orbital (HOMO), lowest unoccupied molecular orbital (LUMO)) and
the energy of singlet and triplet [11]. Although numerous efforts have been invested
on the effects of ETLs and HTLs on device characteristics, such as device efficiency and
operational lifetime, these papers reported the individual effect from either ETLs or HTLs.
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For instance, Giebeler et al. investigated the effects of various HTLs on the device emissive
characteristics [12]. In addition, Liu et al. reported the impact of ETLs on device stability
under high current stressing [13], and indicated LUMO level and electron mobility as two
other factors accounting for the degradation rate of a device. Most previous papers stressed
on the study of the bipolar host system. However, some scarce papers stressed on electron
transporting host system as well as investigated both the HTLs and ETLs simultaneously,
and compared their effects on device characteristics to figure out the crucial parameters of
them to determine a high-efficiency OLED device with a low driving voltage.

Here, the influence of CTLs on EL performance of a blue phosphorescent OLED
(PHOLED) based on 3-(4-biphenyl-yl)-4-phenyl-5-(4-tert-butylphenyl)-1,2,4-triazole
(TAZ) [14–17] doped bis[2-(4,6-difluorophenyl) pyridinato-C2, N] (picolinato)iridium(III)
(FIrpic) as EML was investigated. Two HTLs, N, N-bis-(1-naphthyl)-N, N’-diphenyl-
1,1′-biphenyl-4,4′diamine (NPB) [18,19], 1,1-Bis[(di-4-tolylamino) phenyl] cyclohexane
(TAPC) [20,21] and three ETLs, TAZ, diphenyl-bis[4-(pyridin-3-yl)phenyl]silane
(DPPS) [22–24]; and 1,3,5-tri(m -pyrid-3-yl-phenyl)benzene (TmPyPB) [25–28] were studied
in this work. This is respective of TAZ, DPPS, and TmPyPB, whose electron mobility are ap-
proximately ~10−5 (cm2/Vs) [29], ~<10−6 (cm2/V s) [22], and ~1× 10−3 (cm2/Vs) [25]. Fur-
thermore, hole mobility for NPB and TAPC are 5 × 10−4 and 9.4 × 10−3 (cm2/Vs) [30,31],
respectively. Various carrier mobility was applied to modify the carrier injection and carrier
transport for observing their effects on the driving voltage, the efficiency, and the emissive
spectrum of devices. In addition to the carrier mobility, the layer thickness of device
structure acts an important role in charge of carrier transportation as well. Therefore, CTL
thickness modulate is investigated.

2. Experiment
OLED Fabrication and Measurement

An indium-tin-oxide (ITO) coated glass substrate was used as anode and cleaned
by detergent water, acetone and isopropyl alcohol (IPA) in sequence. Oxygen plasma
treatment was used to raise the work function of ITO prior to thermal evaporation of
organic thin-film stacks. After oxygen plasma treatment, a series of organic layers was
deposited on ITO under a high vacuum condition of ~10−6 torr, and then a 1.2 nm-thick
lithium fluoride and a 100 nm-thick metallic cathode were deposited on organic stacks
under a vacuum condition of ~10−5 torr. For encapsulation, a glass with ultra-violet (UV)
glue cover on the substrate under UV illumination for 12 min in a glove box. For device
characterization, the luminance–current density–voltage (L–J–V) characteristics and EL
spectrum were carried out using a source meter (Keithley 2400) and a spectrometer (Konica
Minota CS-1000).

3. Results
3.1. Electron Transporting Layer

Figure 1 presents the schematic device structure of blue PHOLEDs and energy band
diagram of materials as well as the chemical structure, where the values of HOMO and
LUMO refer to the literature [20,30,32,33]. Table 1 shows the detailed device structure on
the thickness of each organic layer and doping concentration of FIrpic in this work.
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Figure 1. (a) Schematic device structure of blue phosphorescent organic light-emitting diodes (PHOLEDs) and energy
band diagram of organic compounds of FIrpic, 3-(4-biphenyl-yl)-4-phenyl-5-(4-tert-butylphenyl)-1,2,4-triazole (TAZ),
diphenyl-bis[4-(pyridin-3-yl)phenyl]silane (DPPS), diphenyl-bis[4-(pyridin-3-yl)phenyl]silane (DPPS) and 1,3,5-tri(m-pyrid-
3-yl-phenyl)benzene (TmPyPB), mCP, 4,4′-bis[N-1-naphthyl-N-phenyl-amino]biphenyl (NPB) and 4,4′-bis[N-1-naphthyl-
N-phenyl-amino]biphenyl (NPB), 1,1-bis[(di-4-tolylamino)phenyl]cyclohexane (TAPC), used in the blue PHOLEDs; (b)
chemical structure of the organic compounds.

Table 1. Device structures for blue PHOLEDs with various electron-transporting layers (ETLs) and
hole-transporting layers (HTLs).

Device HTL EBL EML ETL

A

NPB (50 nm) mCP (10 nm) TAZ: 15% Firpic (40 nm)

TAZ (45 nm)
B TmPyPB (45 nm)
C DPPS (45 nm)
D TAZ (40 nm)
E TAZ (50 nm)
F TAPC (50 nm) TAZ 45 nm

Figure 2a shows the L–J–V characteristics of OLEDs with various ETLs. Three de-
vices with the following structure: ITO/NPB (50 nm)/mCP (10 nm)/TAZ:FIpic (15%
in volume) (40 nm)/TAZ (45 nm)/LiF (1.2 nm)/Al (100 nm), ITO/NPB (50 nm)/mCP
(10 nm)/TAZ:FIpic (15% in volume) (40 nm)/TmPyPb (45 nm)/LiF (1.2 nm)/Al (100 nm)
and ITO/NPB (50 nm)/mCP (10 nm)/TAZ:FIpic (15% in volume) (40 nm)/DPPS (45 nm)/LiF
(1.2 nm)/Al (100 nm), were fabricated and they were denoted as device A, device B, device
C. Since TAZ is known as an electron transporting host, the main carrier recombination
zone (RZ) might be located at a position near to the HTL side in the EML. Here, NPB acts
as HTL, which exhibited lower triplet energy of 2.3 eV than that of FIrpic, resulting in
exciton quenching. mCP exhibiting T1 = 2.9 eV is therefore inserted at HTL/EML interface
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as an exciton-blocking layer (EBL) to avoid exciton quenching by NPB [34]. In addition, the
electron injection barrier between EML and its adjacent ETL is small, which ranges only
from 0 to 0.2 eV, and the difference of device characteristics mainly comes from the electron
mobility. In Figure 2a, device B showed a more superior J–V characteristic than device A
and C did. Compared with device A and C, device B exhibited the lowest driving voltage
of 8.61 V at J = 20 mA/cm2, which was due to the high electron mobility of TmPyPB (~1 ×
10−3 cm2/Vs). By contrast, since device A and device C have a low electron mobility of
ETL (TAZ~10−5 cm2/Vs, DPPS < 10−6 cm2/Vs), which exhibited the high driving voltage
of 10.59 and 10.44 V, respectively. Figure 2b shows the current efficiency (CE) and external
quantum efficiency (EQE) curves, where the maximum CE of device A, B and C are 45.93,
44.65 and 43.89 cd/A, respectively. Maximum EQE of Devices A, B, and C are 20.02%,
19.66% and 18.43%. Table 2 shows the summarized device performances. In addition,
Figure 2c shows the EL spectra of device A, B and C measured at driving voltage of 12 V,
and they correspond to CIE1931 coordinates of (0.188, 0.423), (0.214, 0.479), (0.196, 0.459),
respectively. One found was a leakage emission from mCP occurred at a wavelength range
of approximately 400–460 nm. For clarity, the inset of Figure 2c displays the EL spectra
at the wavelength range 400–460 nm. Device A and B showed mCP emission (~430 nm),
which significantly occurred in device B, due to the fact that the higher electron mobility
of TmPyPB led to an efficient and smooth electron transport across the ETL to EBL. With
respect to energy alignment to the corresponding ETL/EML, device A and B exhibited a
well-matched energy level to EML compared to device C. Therefore, the electrons migrated
difficulty across the ETL/EML interface, which retarded the electrons and avoided leaking
to the mCP layer. Furthermore, these devices showed a main EL peak and two shoulder
peaks of approximately 470 and 550 nm. The main EL peak was similar, but there was
a different intensity in the shoulder EL peak of 550 nm. Devices A and B exhibited less
shoulder emission than device C did, which was ascribed to the micro-cavity effect induced
by different electron mobility of ETL generating the different width of recombination zone
(RZ) [35,36]. A schematic model is illustrated in Figure 2d, where RZ is displayed with a
varied width created by TAZ, TmPyPB, DPPS. The wider RZ in devices A and B produced
a short optical length between RZ to ITO (Figure 2d) since the leakage electron expanded
RZ to EBL, and the weak shoulder emissions were therefore obtained. By contrast, device
C with DPPS showed narrow RZ and a strong shoulder emission due to the microcavity
effect with a long optical length. According to aforementioned results, the leakage emission
and the shoulder emission can clearly reflect the difference in electron mobility of ETLs.
However, the leakage of mCP emissions represents an energy loss in blue PHOLEDs, so
the ETL thickness modulation is a known way to control the electron migration. In the
following section, ETL thickness was varied for investigation.

Table 2. Summary of OLEDs performances including driving voltage, luminance, CE and EQE.

Device Voltage 1 (V) Luminance 2

(cd/m2)
CE (cd/A) EQE (%)

A 10.56 4441 45.93 2, 25.95 3 20.02 2, 10.98 3

B 8.61 5558 44.65 2, 26.44 3 19.66 2, 13.22 3

C 10.44 3393 43.89 2, 25.60 3 18.63 2, 10.62 3

D 9.72 5083 42.57 2, 25.12 3 17.41 2, 9.98 3

E 10.77 3952 45.66 2, 25.82 3 19.07 2, 10.52 3

F 10.34 4249 44.14 2, 25.14 3 17.77 2, 9.77 3

1 20 mA/cm2, 2 Maximum, 3 L = 1000 cd/m2.
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Figure 2. (a) L–J–V characteristics (b) current efficiency (CE) and external quantum efficiency (EQE) as a function of current
density (c) EL spectra and color coordinates measured at driving voltage of 12 V; inset is EL spectra at the wavelength range
380–460 nm. (d) Schematic model in blue PHOLEDs with ETLs of TAZ, TmPyPb and DPPS.

3.2. Thickness of ETL

To understand the influence of ETL thickness, the ETL of device A, showing the
highest performance of devices in Section 3.1, was thereby changed, decreased to 40 nm
for device D and increased to 50 nm for device E. Figure 3 shows the L–J–V characteristics,
CE and EQE as functions of current density and EL spectra of OLEDs with various TAZ
thickness, ranging from 40–50 nm. While decreasing the thickness, although the lower
driving voltage of 9.77 V was obtained in device D (Figure 3a), an efficiency drop also
occurred simultaneously. CE and EQE decreased to 42.57 cd/A and 17.41% as shown in
Figure 3b. In addition, as shown in Figure 3c, the leakage emission of mCP became obvious,
which arises from that the thin TAZ thickness facilitated the electron migrating across the
EML to mCP layer, and more electrons recombine with holes on mCP layer. This obvious
leakage emission can explain why device D showed poor performance. On the other hand,
device D with TAZ thickness of 50 nm exhibit similar EL performance as device A. As a
consequence, the increase of TAZ thickness shows an insignificant effect on the elimination
of mCP emission. Hence, another way to address this issue is employing an HTL exhibiting
fast hole mobility.
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3.3. Hole Transporting Layer

To realize the effects from HTL, TAPC with a hole mobility of 9.4× 10−3 (cm2/Vs) was
employed to fabricate device F. The HOMO level of TAPC and NPB is the same, so the effect
from the hole injection can be removed and the difference in device performance between
these two HTLs is thereby in the hole mobility. Figure 4 shows the L–J–V characteristics of
the OLEDs with various HTLs. Although hole mobility of TAPC is one order of magnitude
higher than that of NPB, the driving voltage only slightly decreased from 10.56 to 10.34 V,
and a small decrease of voltage was obtained, which indicated less driving voltage drop on
the HTL layer in blue OLEDs. However, a large amount of voltage reduction was obtained
in the ETL replacement, which indicated a higher voltage drop on ETLs in blue OLEDs. In
efficiency, the CE decreased from 45.93 to 44.14 cd/A (Figure 4b) which might have been
due to carrier unbalance (hole-rich). Figure 4c shows the spectra, where blue-shift in the
emission color was observed in device F. The shoulder peaks of 470 nm were obvious due
to RZ moving toward the cathode side. Similarly, this can be explained by the microcavity
effect due to TAPC facilitating a superior hole transport, resulting in a wider RZ, extending
to the TAZ layer, and a short optical length from RZ to the cathode as illustrated in Figure
4d [36]. Therefore, the mCP emission was eliminated by applying a faster HTL, but another
CTL emission from TAZ occurred as is shown in the inset of Figure 4c.
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Figure 4. (a) L–J–V charateristics (b) CE and EQE as a function of current density (c) EL spectra and color coordinates
measured at driving voltage of 12 V; inset is EL spectra at wavelangth range from 380 to 460 nm. (d) Schematic diagram of
blue PHOLEDs with HTLs using NPB or TAPC.

4. Conclusions

In summary, the effects of ETLs and HTLs on EL performance of a blue PHOLED
was conducted by materials, parameters and device architecture modulation including
various carrier mobilities and CTL thickness variations. Both carrier mobility and layer
thickness affect the driving voltage, especially the carrier mobility. Among ETLs and
HTLs, the electron mobility of ETL dominates the driving voltage since the most driving
voltage drop on ETL is in blue PHOLEDs. When applying CTLs exhibiting high carrier
mobility in blue OLEDs, a significant voltage reduction can be obtained, but a worse
carrier confinement and carrier balance in the EML and a leakage CTLs emission were also
observed simultaneously, which resulted in an efficiency drop in the device. In addition,
CTL thickness modulation can eliminate these issues for great efficiency performance.
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Eventually, a conclusion for fabricating a blue PHOLED with electron transporting host
was reached, which is that HTL and ETL pairs with high hole mobility and low electron
mobility, respectively, are the key points to appropriately lead the charge confinement in
EML for efficient photon emission. We believe that these findings offer design rules for a
high-performance device.
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