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Abstract: Transmission of electromagnetic fields through (dielectric/metallic)n superlattices, for
frequencies below the plasma frequency ωp, is a subtle and important topic that is reviewed and
further developed here. Recently, an approach for metallic superlattices based on the theory of finite
periodic systems was published. Unlike most, if not all, of the published approaches that are valid
in the n → ∞ limit, the finite periodic systems approach is valid for any value of n, allows one to
determine analytical expressions for scattering amplitudes and dispersion relations. It was shown
that, for frequencies below ωp, large metallic-layer thickness, and electromagnetic fields moving
along the so-called “true” angle, anomalous results with an apparent parity effect appear. We show
here that these results are related to the lack of unitarity and the underlying phenomena of absorption
and loss of energy. To solve this problem we present two compatible approaches, both based on
the theory of finite periodic systems, which is not only more accurate, but has also the ability to
reveal and predict the intra-subband resonances. In the first approach we show that by keeping
complex angles, above and below ωp, the principle of flux conservation is fully satisfied. The results
above ωp remain the same as in Pereyra (2020). This approach, free of assumptions, where all the
information of the scattering process is preserved, gives us insight to improve the formalism where
the assumption of electromagnetic fields moving along the real angles is made. In fact, we show that
by taking into account the induced currents and the requirement of flux conservation, we end up with
an improved approach, with new Fresnel and transmission coefficients, fully compatible with those
of the complex-angle approach. The improved approach also allows one to evaluate the magnitude
of the induced currents and the absorbed energy, as functions of the frequency and the superlattice
parameters. We show that the resonant frequencies of intra-subband plasmons, which may be of
interest for applications, in particular for biosensors, can be accurately determined. We also apply
the approach for the transmission of electromagnetic wave packets, defined in the optical domain,
and show that the predicted space-time positions agree extremely well with the actual positions of
the wave packet centroids.

Keywords: transmittance of electromagnetic fields; metallic superlattices; the true refraction angle
in metals; plasmon resonances in optical regime; induced currents and absorption; phase time in
metallic superlattices; biosensors

1. Introduction

Interest in the response of metallic structures to electromagnetic fields (EMFs) has
grown as the possibilities of application of their properties increase. The research activity
evolved along different trails, determined by the dimension, shape, size, and order of the
metallic structure. The scattering of light by small metallic particles, or cylindrical and
rectangular rods, requires different approaches than the scattering by layered metallic
structures. The geometrical differences of the scatterer systems imply, naturally, the use
of different mathematical tools, for example, scattering matrices S, in lower-dimensional
cases, and transfer matrices M, for layered systems. Here, we are interested in layered
structures, specifically (dielectric/metallic)n superlattices with n finite. As shown in ref. [1],
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and outlined in Section 3, our theoretical approach has fundamental differences with the
overwhelming number of papers in refs. [2–25] based on Floquet’s theorem (valid only for
n = ∞) where the reflection and transmission coefficients become ill defined concepts.

Our interest is to further develop our approach in ref. [1] for the optical domain, where
most of the enigmatic phenomena in nature reach our senses, and to extend the diversity of
metallic structure beyond the existing theories for the scattering of light by metallic spheres,
developed in the 19th century, with strikingly elegant and rigorous theories published in
seminal and influential articles by Lorenz, Rayleigh, Mie, and Debye, on the scattering of
light by small particles [26–30]. The interest in the scattering of light by small particles grew
rapidly after World War II, when applied science and engineering began to produce small
particles with various shapes for different purposes, usually through chemical methods. To
characterize and to understand the optical properties of these systems with more realistic
shaped particles, extensive numerical methods were applied, and the Lorenz–Mie theory
for ideal spherical particles became not only an insightful reference, but also a starting first-
order approximation in rather involved calculations. Most of the theoretical descriptions
are based on numerical calculations, and countless articles have been published dealing
with non-spherical particles [31–46]. As in other fields of science, the experimental and
applied research on plasmonic phenomena in metallic structures is ahead of, and move
faster than, the theoretical understanding and accurate calculations, in particular when
systems contain many non-spherical particles, multiple scattering processes, shape and
size dispersion, and, perhaps, also the presence of random variables.

In the last thirty years, as the ability to produce low-dimensional structures grew,
interest in periodic arrangements of spherical particles, cylindrical and rectangular rods,
and even layered metal structures led to the profuse field of photonic crystals. Not only
does the periodicity entail the possibility for simpler systems to analytically solve the light
scattering problem for systems with a large number of scatterers, but it also introduces one
of the most important known properties of periodic quantum systems: the phase coherence
that is behind the band and gap structures. An important amount of properties and physics
of photonic crystals, containing metallic inclusions with spherical and cylindrical sym-
metries have been reasonably explained [18,22,23,47–51], although accurate calculations
are difficult to perform because of the complexity of the actual systems and their intricate
response to electromagnetic fields. Nevertheless, more accurate and appropriate theoretical
descriptions are possible for layered metallic structures, as was shown in [1] and is further
developed here.

An important class of systems with properties similar to those of the widely studied
systems in the photonic crystals field, but more feasible to produce, are the flat layered
dielectric/metal structures, in particular periodic arrays (dielectric/metal)n where n is
finite and the layers thicknesses are chosen at will. In an attempt to study the physical
properties of these structures, here called metallic superlattices (MSLs), many theoretical
works were published, as early as 70 years ago. The common characteristic in all of these
works is that the authors end up assuming infinite or semi-infinite superlattices [2–25], In
some cases, some concern was expressed because real systems are finite [14]. However, it
was not clear how to deal with real systems with, say, 50 unit cells. From the very beginning
it appeared natural to impose the Floquet theorem to Maxwell solutions; Levin [2], Tamm
and Ginsburg [3], and Rikov [4] first, and later P. Yeh et al., [5], following an argument
similar to Kramers [52] in 1935 who imposed the Floquet theorem and derived dispersion
relations (which in the limit of infinite systems become continuous dispersion relations). On
the other side, almost simultaneously, transfer matrices appeared as a natural tool to study
quantum and electromagnetic periodic systems [53–56]. There was some reservation with
the transfer matrix method (TMM) because the numerical errors grew with the number of
unit cells n of the superlattice (SL), when the transfer matrix Mn is written as Mn, being M
the unit-cell transfer matrix. Abelès first derived an important analytical expression for Mn,
which gave an alternative approach [57–66] to the infinite periodic systems theories. Note
that many of the authors that impose Floquet’s theorem, which implies infinite systems,
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were also forced to grapple with a kind of syncretic approach using Abelès finite periodic
transfer matrix, in order to calculate the transmission coefficients. Unlike these approaches,
the theory of finite periodic system (TFPS) was able to determine the dispersion relation
keeping the number of unit cells as an essential condition. This advance resulted in discrete
dispersion relations and the ability to calculate transport properties, free of Floquet–Bloch
parameters.

In Ref. [1], the TFPS was applied to study in a comprehensive way the transmission
of electromagnetic fields through conducting layers by taking into account properties
known for electromagnetic fields inside conductors [67]. Among those properties, the
complex nature of the wave vector kc and the refraction angle θc; as a consequence, the
constant-amplitude (pz = const) and constant-phase (kcxx + qz = const) planes are distinct,
and it is assumed that the EMFs propagate along the so-called real or “true” angle ψ =
tan−1(−kcx/q), with q and p wave numbers defined in Equation (9) below. In the theoretical
approach of the work in [1], it is also assumed that the electromagnetic fields inside
metals move along the true angle ψ. The transmittance as well as the plasmons’ resonant
frequencies were determined for almost any set of superlattice parameters, any number
of unit cells, and for frequencies above and below the screened plasma frequency ωp [68].
However, anomalous results were noticed for frequencies below ωp, and further research
was offered. In this paper, we exhibit and solve the problem, and show that it is essentially
related to the loss of flux due to neglected currents at the surfaces of the metallic layers.

When the transfer matrix that propagates EMFs across a metallic layer of thickness dc
factorizes into an attenuation factor e−pdc and a matrix that accounts for the gained phases
±iqdc, the matrix becomes subunitary and the flux conservation principle breaks. The
factorization compelled by the requirement of finiteness needs to include the surface current
in order to restore the unimodularity of the transfer matrix. In this paper, we face this
problem and present two fully compatible approaches for the calculation of transmission
coefficients of EMFs through metallic layers, and frequencies below and above ωp. In the
first approach, we keep the complex angle and complex wave vector, and assume that
the phases gained in the metallic layers, given by ±ikc · dc, are independent of whether
kc is real or complex. In this approach, the unimodular nature of the transfer matrices,
that is a sign of the principle of flux conservation, is rigorously preserved. In the second
approach, we consider again the real-angle approach but now include the induced currents
at the metallic layers and impose the conservation of flux requirement. This allows us
to determine the magnitude of the induced currents and to define an absorption factor a.
The calculation of the transmittance shows that the predictions of both approaches agree
completely. An advantage of the second approach is that it allows us to obtain an insight
on the induced currents and the absorption factor.

In Section 2, we review the boundary conditions and show the origin of the lack of
unitarity in the transfer matrices. We show that, for frequencies below the plasma frequency
ωp, the assumption of electromagnetic fields moving along the true angle and, at the same
time, neglecting the induced currents, leads to a lack of unitarity. In Section 4, we present
the complex angle approach (CAA), and in Section 5 we turn into the true angle approach,
taking into account the currents induced by the electric polarization of the right and left
moving fields and the flux conservation requirement. This approach leads us to determine
the magnitude and phase of the effective induced currents. The explicit transmittance
calculations show that, in the low-frequency (ω < ωp) domain, this approach agrees with
the complex angle approach predictions. In the high-frequency (ω > ωp) domain, both
approaches—the complex-angle and flux-conserving true-angle approaches—coincide with
the predictions of the previous approach in ref. [1].

We will see for frequencies ω < ωp, and large reflection coefficients that, a photonic
band structure emerges when the dielectric widths da increase. We will see also that low
frequency resonances describe highly localized polarons with large mean-life time. As in
ref. [1], qualitative and quantitative differences in the transmittance features are observed,
above and below ωp, with strong dependence on the incidence angle and the superlattice



Photonics 2021, 8, 86 4 of 26

parameters. We will see that the resonant dispersion relation, derived in the TFPS, predicts,
as expected, band widths and the frequencies of the plasmonic resonances.

At the end, we present also results of reflected, transmitted, and tunneling times
of Gaussian electromagnetic wave packets by metallic superlattices (MSLs). A detailed
analysis of the space-time evolution of Gaussian wave packets will be publish elsewhere.

2. Unitarity Deficit in the Constant-Phase Direction

In this section, we will show that the assumption of EMFs moving along the true angle
ψ and the requirement of finite EMFs lead to a break of the principle of flux conservation
for frequencies below the plasma frequency ωp. To exhibit this effect, let us assume an
electromagnetic field with, say, parallel polarization and incidence angle θj, moving across
a superlattice (D1/M2/D3)

n, where n is the number of unit cells. The unit cell D1/M2/D3
comprises two dielectric (Dj) layers characterized by electric permittivities εj and magnetic
permeabilities µj, and a metal (M2) layer, with dielectric function written as [69]

ε2(ω) = ε∞ −
E2

p

h̄2ω2
+ i

σ

ω
, (1)

For specific calculations we will consider silver parameters: ε∞ = 5.7 and Ep = 9 eV,
with plasma frequency [68,70] ωp = Ep/(h̄

√
ε∞) ' 5.729× 1015s−1. We will assume also

that µ1 = µ3 = µ2 = 1. Regardless of whether the electric parameters are real or complex,
the electric and magnetic fields in layer j, see Figure 1, can be written as

Ej(r, t) = Erj + El j = Erjerje
i(krj ·r−ωt) + El jel je

−i(kl j ·r+ωt) for j = 1, 2, 3

Hj(r, t) = Hrj + Hl j =
krj × erj

ωµj
Erje

i(krj ·r−ωt) +
kl j × el j

ωµj
El je
−i(kl j ·r+ωt) (2)

where erj and el j are the polarization vectors of the right and left moving fields as

erj = (cos θj, 0, sin θj) and el j = (cos θj, 0,− sin θj). (3)

Figure 1. Right and left moving electromagnetic waves in the superlattice layers.

The corresponding wave vectors are

krj = k jurj = ω
√

µjεj(− sin θj, 0, cos θj) and kl j = k jul j = ω
√

µjεj(− sin θj, 0,− cos θj). (4)

For a simplified notation, we define the field phases

φrj = krjxx + krjzz−ωt = −k jx sin θj + k jz cos θj −ωt
φl j = kl jxx− kl jzz−ωt = −k jx sin θj − k jz cos θj −ωt. (5)



Photonics 2021, 8, 86 5 of 26

Thus, the field components in the j-th layer of the superlattice are

Ejx = (Erje
iφrj + El je

iφl j) cos θj

Ejz = (Erje
iφrj − El je

iφl j) sin θj

Hjy =
k j

ωµj
(Erje

iφrj − El je
iφl j). (6)

Applying the boundary condition for the electric fields at the interface 1|2, we obtain
the the well-known Snell’s law

k2 sin θ2 = k1 sin θ1, (7)

with k2 and sin θ2 complex. Because of the complex nature of these quantities, it has been
common to represent the electromagnetic field phases in the conductor as [67]

φr2 = (k2R + ik2I)(−x sin θ2 + z cos θ2)−ωt = a2x + qz + i(b2x + pz)−ωt
φl2 = (k2R + ik2I)(−x sin θ2 − z cos θ2)−ωt = a2x− qz + i(b2x− pz)−ωt. (8)

Here, k2x = a2 + ib2 = −k1 sin θ1, and k2z = q + ip, with

q = ρ
(

k2R cos
χ

2
− k2I sin

χ

2

)
and p = ρ

(
k2I cos

χ

2
+ k2R sin

χ

2

)
, (9)

and

ρ =

(
1 +

2k2
1(k

2
2I − k2

2R) sin2 θ1 + k4
1 sin4 θ1

k2
2

)
and χ = tan−1

(
2k2

1k2Ik2R sin2 θ1

k2
2 + 2k2

1(k
2
2I − k2

2R) sin2 θ1

)
. (10)

It has been also common to distinguish, in the propagation of the electromagnetic
waves inside conductors, directions of constant-phase and constant-amplitude, as sketched
in Figure 2. The constant-phase and constant-amplitude planes, defined by

a2x± qz = constant and b2x± pz = constant, (11)

respectively, propagate along the normals to these planes that make the angles ψ and ψ′

with the z-axis. These angles are defined by

tan ψ = − a2

q
and tan ψ′ = − b2

p
. (12)

An important and well-known consequence of the complex phases is the attenuation
of the electromagnetic fields, with the ensuing loss of energy through the longitudinal and
transverse currents induced by the electric fields. The rather common assumption made
previously that the electromagnetic fields move along the direction determined by the
true or real angle ψ [21], neglecting the longitudinal and transverse currents, supposedly
concentrated only at the surfaces, led one to write the transfer matrix that connects field
vectors at the left and right of the conductor as

M′c =
1

2κµ1 cos ψ + 2ξ

(
αl βl
β∗l α∗l

)(
ei(q+ip)dc 0

0 e−i(q−ip)dc

)
1

2k1µ2 cos θ1

(
α∗l −βl
−β∗l αl

)
, (13)

p and q are as defined before, κ =
(
q2 + k2

1 sin2 θi
)1/2, ξ = k1µ1 sec θ1 tan ψ and

αl = k1µ2 sec θ1 + κµ1 cos ψ + ξ + i pµ1
βl = k1µ2 sec θ1 − κµ1 cos ψ− ξ + i pµ1. (14)
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Figure 2. Constant-phase and constant-amplitude planes for the electromagnetic fields propagat-
ing conductors.

Note that, to keep the physical quantities finite, one of the important matrices in (13),
the transfer matrix that connects the fields at the beginning and the end of the metallic
layer, was written as

Mm =

(
ei(q+ip)dc 0

0 e−i(q−ip)dc

)
, (15)

with a phase −i(q− ip)dc instead of −i(q + ip)dc for the left moving EMF.
A simple way to have a measure of the lack of flux is the unimodularity of the transfer

matrix. In Figure 3a, we plot the determinant of the unit-cell transfer matrix M′, shown
in Equation (13) and used in [1], as a function of frequency ω, and for different values of
the conducting layer width dc. It is clear in this figure that, for frequencies below ωp, the
determinant of M′ is less than 1 and decreases as the layer width dc increases. Another
quantity whose behavior needs to be clarified is the real or true angle ψ that defines the
direction of constant-phase planes. It is generally assumed that its values, measured from
the normal to the interface, are small. That is true for frequencies above ωp. However, it is
not true for ω < ωp, as shown in Figure 3b. Except for θi = 0, where tan ψ is rigorously
zero, ψ is close to π/2 for θi 6= 0 and ω < ωp, as shown in the inset of the figure. This
means that when the electric field has a large component parallel to the interface, the planes
of constant-phase tend to propagate parallel to the interface, for small frequencies and
finite conductivity.

Figure 3. Determinant of the transfer matrix M′c in (13), and the real angle as functions of frequency, conductor layer width,
and incidence angle. (a) The determinant of the unit-cell transfer matrix, det M′c, decreases as the conductor layer width
dc increases. (b) The cosine of the real angle ψ: We show here that even though that for ω > ωp it is close to 1 (as is well
known), for ω < ωp it is close to zero, except for θi = 0.

In the next section, we will emphasize basic and specific differences between infinite
and finite superlattice approaches. Then, in Sections 4 and 5, we will address the lack
of unitarity issue. We will present two approaches, with compatible results. We shall
first consider a complex-angle approach, and in Section 5, we will present an improved
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real-angle approach, where (besides the true angle assumption) we will take into account
explicitly the induced currents. In the complex-angle approach, we keep the complex angle
and the complex wave number at the conducting layers. In this case, the unit-cell transfer
matrix is automatically unimodular. In the improved real-angle approach, the induced
currents account for the absorption factor and restore the flux-conservation principle.

3. Criticism and Differences with Infinite Superlattices Approaches

Given that most of the published works on metallic superlattices deal (as Yeh et al.)
with a heterogeneous approach based on the Floquet theorem and the transfer matrix
method, we will outline the main arguments of Yeh et al. [5,71], and we will show the
implications and main differences with our approach. To frame our analysis, we will recall
some properties of transfer matrices and the Bargmann representation [72].

As mentioned many times, assuming the Floquet theorem is like assuming infinite
systems. One of the consequences is that it leads to dispersion relations which predict
continuous subbands. Another drawback is that important physical quantities, such as the
reflection and transmission coefficients, are meaningless in systems with no beginning and
no end. As reflection and transmission are properties inherent to transport of electromag-
netic fields, it is clear that theories built under the assumption of infinite systems have at
least conceptual problems calculating these quantities, and frequently turn back to transfer
matrices for finite systems.

There is abundant literature on transfer matrices as tools for connecting the physical
solutions with the scattering amplitudes, as well as for determining solutions of larger
systems, given the single-cell solutions and the single-cell transfer matrix. There are many
publications where the resonant wave functions in open superlattices have been obtained
using transfer matrices of finite systems, and the important feature of these functions is that
they do not fulfill the Floquet theorem. In Figure 4, we have examples of resonant functions
for electrons and holes in an open GaN(GaAlN/GaN)n semiconductor SL. See also the
eigenfunctions in Figure 5b for a bounded SL. These are exact solutions for the Schrödinger
equation with piecewise constant periodic potential. To obtain these functions we use
transfer matrices Mn like the one in (20), and none of these functions satisfies Floquet’s
theorem. It is worth emphasizing that the single-cell transfer matrix and the n-cells transfer
matrices contain no more information than the solutions of the Maxwell or the Schrödinger
equation. The correctness of the model and the accuracy of the solutions are independent
of the TMM. Once the single cell transfer matrix is obtained, the next step is to use the
TMM to obtain solutions for a larger system.

Figure 4. Resonant wave functions in an open GaN(GaAlN/GaN)n superlattice with n = 10. (a) The absolute value of the
resonant function ϕ1,2, and (b) the absolute value of the resonant function ϕ1,3. These are exact solutions for the periodic
potential, shown in the figure (black curve), but none of these functions satisfy Floquet’s theorem.
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Figure 5. Dispersion relations and wave functions in finite and infinite periodic systems. (a) The continuous subbands
predicted by the continuous dispersion relation (25) (see red rectangle) and the discrete intra-subband energy levels predicted
by the discrete dispersion relation (refDDR)of the TFPS. Open systems are determined by the zeros of the Chebyshev
polynomials (see black dots) [63,65]. (b) A plot of the absolute value of a Bloch–Floquet periodic function (red curve) and
the eigenfunctions ϕ3,6 and ϕ3,7 (blue curves) for holes in a bounded GaAlN/(GaN/GaAlN)n superlattice (light black)
with n = 10.

The structure of the transfer matrices depend on the symmetries and principles present
in the physical systems. Time reversal invariance and flux conservation are important
properties that allow the 4N2 free real parameters, in a matrix of dimension 2N × 2N, to
reduce to 2N2 + N. In that case, the matrix belongs to the symplectic Sp(2N, R) group.
For the one-dimensional systems considered here and in other works, N = 1; thus, the
number of real free parameters is 3, and the transfer matrices belong to the Sp(2, R) group.
V. Bargann [72] has shown that the transfer matrices decompose as

M =

(
α β
β∗ α∗

)
=

(
eiϕ 0
0 e−iϕ

)(
cosh ζ sinh ζ
sinh ζ cosh ζ

)(
eiφ 0
0 e−iφ

)
(16)

with the range of the parameters ϕ, φ, and ζ, defined by the inequalities

0 ≤ ζ < ∞, −π < ϕ, φ < π. (17)

It has been shown also that the group of transfer matrices, factorizes as a product of a
compact and a non-compact subgroup [73]; therefore, the transfer matrices can be written
as

M =

(
α β
β∗ α∗

)
=

(
eiϕ 0
0 e−iϕ

)( √
1 + ξξ† ξ

ξ
√

1 + ξ†ξ

)
(18)

with −π < ϕ < π and ξ symmetric and complex. It has been also shown, without any
additional assumption, that given the unit-cell transfer matrix, for example,

M =

(
α β
β∗ α∗

)
(19)

the n cells transfer matrix Mn is given by

Mn =

(
Un(x)− α∗Un−1(x) βUn−1(x)

β∗Un−1(x) Un(x)− αUn−1(x)

)
, (20)

where Un is Chebyshev polynomial of the second kind, and x = (α + α∗)/2. This represen-
tation was, apparently, first derived by F. Abelès in 1950, and was re-derived many times in
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the history of the TFPS [1]. In this theory, the dispersion relation depends on the quantum
numbers µ and ν of the resonant frequencies [1,61,63,65,74] and is given by

cos
ν + (µ− 1)n

n
π =

α + α∗

2
. (21)

These are important quantities where the TFPS and the infinite periodic systems
approach (that we refer to here as the Yeh’s approach, as briefly outlined below) differ.

Yeh et al. follow a procedure introduced by Kramers [52] in 1935 to derive an eigen-
value equation. Assuming that the electromagnetic fields in a periodic system, with period
Λ, fulfill the Bloch–Floquet theorem, it is possible to obtain the requirement

M
(

an
bn

)
=

(
m11 m12
m21 m22

)(
an
bn

)
= λ

(
an
bn

)
, (22)

with M the unit-cell transfer matrix, and an and bn coefficients for the right and left moving
fields. From the eigenvalues equation one has

λ± =
m11 + m22

2
±

√(
m11 + m22

2

)2
− 1, (23)

This leads to a Kronig–Penney-like [75] dispersion relation. This is not, however,
the only logical outcome of this argument. The requirement (22) also has an important
implication on the transfer matrices. To fulfill the Floquet theorem and the requirement (22),
the transfer matrices of periodic structures must be written as

MF =

(
eiKΛ 0

0 e−iKΛ

)
, (24)

with KΛ given by the dispersion relation

cos KΛ =
m11 + m22

2
, (25)

when (m11 +m22)/2 < 1. This transfer matrix belongs to the compact subgroup mentioned
above. This is known also as the empty lattice approximation [25]. It is clear that the transfer
matrix that connects the field ψ(x), with the field ψ(x + nΛ) = eiKnΛψ(x), is

MFn = Mn
F =

(
einKΛ 0

0 e−inKΛ

)
. (26)

These are the transfer matrices that are compatible with Floquet’s theorem, and with
how some authors [4,6,7,25], who also invoke Floquet’s theorem, represent electromagnetic
fields in the n-th layer of infinite periodic systems. Others use, at the same time, the
dispersion relation (25) of infinite systems and the transfer matrix (20) of finite systems.

Apparently, the differences are small, but that is not really the case. The results can be
quantitatively and qualitatively different, and with profound and significant departures
(as those between classical and quantum theories). We will see some examples that exhibit
the differences.

In Figure 5a, we plot the function cos KΛ defined in (25) and show the subbands
defined by the domains (red rectangles) where this function takes values between −1
and 1. In the same figure, we have the intra-subband levels (black dots) determined
by the discrete dispersion relation (21) of the TFPS. In this case, we used data for the
dielectric/(aluminum/dielectric)n superlattice referred to below. For open systems, the
resonant frequencies are defined by the zeros of the Chebyshev polynomials Un(x). The
position and widths of the discrete subbands are the same as the position and widths
of the continuous subbands, and coincide in the limit n → ∞, as shown in Figure 6.



Photonics 2021, 8, 86 10 of 26

In Figure 5b, we show the absolute value of a Bloch–Floquet function, and the eigenfunc-
tions ϕ3,6 and ϕ3,7 in the valence band of a GaN/AlGaN superlattice. It is important to
emphasize here that the eigenfunctions determined in the TFPS, based on the transfer
matrices Mn of Equation (20), do not satisfy the Bloch–Floquet theorem. Therefore, using
the n-cells transfer matrix Mn in (20) and assuming, at the same time, infinite systems is a
gross inconsistency.

In Figure 6, we show that as the number of unit-cells n tends to infinity, the density of
intra-subband levels tends to the continuous density of energy levels derived by Kronig
and Penney [75] for infinite systems.

Figure 6. The discrete and continuous energy-level densities. As the number of unit cells n tends to
∞, the discrete density of energy levels of the TFPS tends to the continuous density of levels derived
by Kronig and Penney.

In Figures 7 and 8, we compare, side by side, the predicted subbands both in the
standard approach and in the TFPS. Figure 7 is for semiconductor SLs, and Figure 8 is for
metallic SLs. In Figure 7, we reproduce a figure from in ref. [74] to show the subbands as
functions of the widths of the wells predicted by the Kronig–Penney theory (left) and the
TFPS (right), by using the same parameters for the SLs.
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Figure 7. Band structure for a semiconductor superlattice (GaAs/AlxGa1−x As)n with piecewise constant (rectangular)
potential. In the left, the subband structure was calculated with the Kronig–Penney dispersion relation in (25) and in the
dispersion relation in Section 4, the intraband energy levels calculated with the discrete dispersion relation in Equation (21).
This figure was first published by the author in Ann. Phys. 397, 159 (2018).
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Figure 8. Subbands predicted for aluminum/dielectric superlattices in the semi-infinite and infi-
nite superlattice approaches. In subfigure (a), the dispersion relations reported by Camley and
Mills [8], for different values of the Bloch parameter qL (KΛ). In subfigure (b), the subbands for the
dielectric/(aluminum/dielectric)n superlattice for the same parameters of the structure in (a), see
text. The graph in subfigure (a), wa published in Phys. Rev. B 29, 1695 (1984).

In Figure 8 we also have subbands, but now for a metallic superlattice. In Figure 8a
are the subbands reported by Camley and Mills [8] for a semi-infinite aluminum/dielectric
superlattice, also using the Bloch’s Theorem as a basic input. Their dispersion relation is es-
sentially as the Kronig–Penney-like relation in (25) with qL instead of KΛ. The various lines
at the edges of the subband correspond to different values of qL, and should not be confused
with intraband levels. In Figure 8b, we plot the subbands predicted by Equation (38) of the
TFPS, for the finite SL dielectric/(aluminum/dielectric)n, using the same parameters as in
ref. [8]. In order to fit the screened plasma frequency of 10.6 eV in (a), we used ε∞ = 2.002,
instead of ε∞ = 1 mentioned by Camley and Mills. We also consider the metal-layer width
dc twice the width of the dielectric layer da and plot the subbands as function of these
widths. The most visible difference is in the evolution of the subband for frequencies below
ωp. We believe that the correct evolution should be downwards as in Figure 8b. The reason
is simple to understand. We know from quantum theory and quantum SLs that as the
widths of the wells increase, the energy eigenvalues move down in energy, as shown in
Figure 7a,b. In Figure 8a,b, dc = 2da. It is clear that as dc and da grow, the bands should
move downward. We also know from quantum theory that as the widths of the barriers
(which correspond to conductors widths) increase, the splitting of the energy levels and
the bands themselves tend to disappear.

Other evolutions of the resonant frequencies are possible to obtain by choosing other
relationships for the metallic superlattice parameters. In Figure 9, we consider three
different relationships for the dielectric da and conductor dc widths. In Figure 9a, both da
and dc grow, with da always twice larger than dc; Figure 9b, da is fixed and equal to 100 nm,
and dc is smaller varying from 0.01 to 100 nm. In Figure 9c, da is kept fixed and equal to
30 nm, and dc smaller and larger than da, varies between 0.01 nm and 100 nm. Notice a
Fano-like behavior at ω = ωp.
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Figure 9. Subbands of a dielectric/(aluminum/dielectric)n superlattice and different relationships for the dielectric and
conductor widths. In subfigure (a), both widths, da and dc, grow but da is always twice larger than dc; in subfigure (b), da is
kept fixed equal to 100 nm and dc < da is smaller varying from 0.01 to 100 nm. In subfigure (c), da is kept fixed equal to
30 nm, dc smaller and larger than da, varies between 0.01 nm and 100 nm. Fano-like resonances occur at ω = ωp, see the
arrow.

In this section, we have shown the consequences that imposing the Bloch Theorem
has on the TMM and on the dispersion relations. This assumption is present in practically
all the published works on infinite and semi-infinite metallic superlattices, even in quite
recent publications, for example, Markos and Soukoulis’ book [76] and in the numerous
papers published by Iakushev et al. [77], all of them rely on the approach of Yeh et al. We
have shown that the most transcendental effects related to finiteness are, on one side, the
possibility or not of defining quantities as the transmission and reflection coefficients and,
on the other, very important from the point of view of plasmonic resonance applications,
the ability or not to determine intra-subband frequency resonances. These are essential
differences and at variance with our approach.

4. Complex-Angle Approach

Even though the recognition of constant-phase and constant-amplitude planes for
EMFs inside conductors helps one to understand important properties of these fields in
this kind of media, there is no need, in principle, in the transfer matrix approach to assume
that the EMWs move along the real or true angle. In fact, we can equally well work with
the complex angle θ2 (to be compatible with the principle of flux conservation) and we
can determine the transmission and reflection coefficients of metallic superlattices for
frequencies below and above the plasma frequency ωp. In this section, we will present this
complex-angle approach and obtain some results.

Te boundary conditions at the interface 1|2, at z = zl , are expressed by the follow-
ing relation,(

Er2x
El2x

)
z+l

=

(
Er2eiφr2 cos θ2
El2eiφl2 cos θ2

)
z+l

=
1
2

(
1 + Bl 1− Bl
1− Bl 1 + Bl

)(
Er1eiφr1 cos θ1
El1eiφr1 cos θ1

)
z−l

= Ml(z+l , z−l )
(

Er1x
El1x

)
z−l

(27)
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where the subindices z−l and z+l mean evaluation at zl − ε and zl + ε, in the lim ε→ 0. The
parameters Bl and cosθ2 are

Bl =
k1µ2 cos θ2

k2µ1 cos θ1
and cos θ2 = ρei χ/2 (28)

Similarly, the boundary conditions at the interface 2|3, where z = zr, lead to(
Er3x
El3x

)
z+r

=
1
2

(
1 + Br 1− Br
1− Br 1 + Br

)(
Er2x
El2x

)
z−r

= Mr(z+r , z−r )
(

Er2x
El2x

)
z−r

. (29)

Here,

Br =
k2µ1 cos θ1

k1µ2 cos θ2
. (30)

The matrices Ml and Mr are formally similar to the well-known matrices of Fresnel
amplitudes. In [1], we had ψ instead of θ2. In the following, we will omit the subindices
z±x for the matrices. The relation between the electromagnetic fields at the left and right
hand side of the conducting layer is(

Er3x
El3x

)
=

1
2

(
1 + Br 1− Br
1− Br 1 + Br

)(
ei ϕc 0

0 ei ϕc

)
1
2

(
1 + Bl 1− Bl
1− Bl 1 + Bl

)(
Er1x
El1x

)
= Mc

(
Er1x
El1x

)
, (31)

where ϕc = k2dc cos θ2, when the conducting layer width is dc. Multiplying the matrices
we obtain the transfer matrix for a conductor layer

Mc =

(
αc βc
γc δc

)
, (32)

with

αc = cos ϕc + i
k2

1 cos2 θ2 + k2
2 cos2 θ1

2k1k2 cos θ1 cos θ2
sin ϕc βc = i

k2
2 cos2 θ1 − k2

1 cos2 θ2

2k1k2 cos θ1 cos θ2
sin ϕc

δc = cos ϕc − i
k2

1 cos2 θ2 + k2
2 cos2 θ1

2k1k2 cos θ1 cos θ2
sin ϕc γc = −i

k2
2 cos2 θ1 − k2

1 cos2 θ2

2k1k2 cos θ1 cos θ2
sin ϕc. (33)

Therefore, the transfer matrix of the unit cell D1/M2/D3, whose layer widths are
da/2, dc, and da/2, is

M =

(
ei θa/2 0

0 e−i θa/2

)(
αc βc
γc δc

)(
ei θa/2 0

0 e−i θa/2

)
=

(
α β
β∗ α∗

)
(34)

Here,
θa = dak1 cos θ1. (35)

Note that in this representation, both flux and time reversal invariance are preserved.
This is because by keeping the complex angle, all the components of the electromagnetic
field, i.e., the transmitted, reflected, and absorbed components, are fully taken into account.
As will be seen below, the transmission coefficients in the high frequency domain, for
ω > ωp are exactly the same as in the real-angle approach. However, in the optical regime,
where ω < ωp, some properties remain, but others like the apparent parity effect and
transparency, disappear.

As was pointed out in ref. [1], to determine the scattering properties of the electromag-
netic fields through metallic superlattices, using the theory of finite periodic
systems [61,63,65,78,79] outlined there, it is essential to know the unit-cell transfer matrix,
and by applying the general formulas of the TFPS one can straightforwardly obtain the
transmittance and reflectance through metallic superlattices, as well as to determine the
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resonant band structure of the surface plasmon polaritons. The transmission and reflection
coefficients of a superlattice with n unit cells are obtained from

Tn =
1
|αn|2

and Rn =
|βn|2
|αn|2

, (36)

where
αn = Un − α∗Un−1 and βn = β−1Un−1, (37)

and Un the Chebyshev polynomial of the second kind and order n, evaluated at the real
part of α. It is worth recalling here a statement in ref. [63], and others afterwards, “. . .the
polynomials Un comprise the whole information of the complicated phase interference
processes, originating in the multiple reflections along the periodic system, and of the
system’s size L (nlc in the growing direction) reflected in the order of the polynomial.”
The resonant frequencies and band widths are determined by the resonant dispersion
relation [1,63,65]

cos
ν + (µ− 1)n

n
π = (αR)µ,ν with µ = 1, 2, 3, . . . ν = 1, 2, . . . , n− 1. (38)

µ and ν are the quantum numbers of the resonant frequencies ωµ,ν, of the ν-th resonance of
the band µ. Generally µ =1, 2, 3, . . . and ν =1, 2, . . ., n− 1.

In terms of the physical quantities defined in this approach, the resonant dispersion
relation is

cos
ν+(µ−1)n

n
π= Re

[
(cos 2θa + i sin 2θa)

(
cos ϕc + i

k2
1 cos2 θ2 + k2

2 cos2 θ1

2k1k2 cos θ1 cos θ2
sin ϕc

)]
ωµ,ν

(39)

In Figures 10 and 11, we show the trends of the transmission coefficient as function of
the frequency and of the layer widths. The frequencies vary from 0 to 1.5× 1016 Hz, i.e.,
frequencies below and above ωp. In Figure 10, the transmission is plotted as a function of
the dielectric-layer width da, while in Figure 11 as a function of the conducting layer width
dc. For these examples and the others in this report, we consider air in the dielectric layers
and silver in the metallic ones.

For frequencies above ωp, which for silver are of the order of 5.72× 1015 Hz, the
transmission coefficients are, in all cases, exactly the same as those in the real-angle ap-
proach of ref. [1]; however, for frequencies below ωp, the results are different. Below the
plasma frequency, we have now narrower bands and thinner resonant states, implying
larger mean-life times for the resonant states and larger tunneling times for electromagnetic
waves whose frequencies are resonant. In electronic and electromagnetic field transport,
the transmission resonances result from a complex and coherent superposition of electro-
magnetic fields facilitated by the superlattice periodicity. These coherent superposition of
fields imply the participation of collective photon-driven electron oscillations, the so-called
plasmon polaritons. The long-standing resonances correspond to localized plasmon po-
laritons. From Figures 10 and 11, it is clear that the increase in da and the increase in dc
have opposite effects on the extent of the complete-reflection domain at low frequencies.
While increasing da the reflection domain diminishes, increasing dc the complete-reflection
domain grows.
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Figure 10. Transmission coefficient as a function of ω and da, for a metallic superlattice with n = 12, dc = 15 nm and
θi = π/3. In subfigure (a), the bands move to lower frequencies as da grows. In subfigure (b), we see more clearly
the resonant transmission for a fix value of the conductor layer width dc. In the upper part of subfigure (b), bands and
resonances predicted by the resonant dispersion relation (39).

Figure 11. Transmission coefficient as a function of ω and dc, for a metallic superlattice with n = 11, da = 150 nm and
θi = π/12. In subfigure (a), the band width diminishes as the conductor layer width dc increases. This effect is shown in
subfigure (b) for three values of dc, indicated with white arrow in subfigure (a).

In Figure 10a,b, we have the transmission coefficient as a function of ω and da, for a
metallic superlattice with n = 12, dc = 15 nm and θi = π/3. In Figure 10a, we see that
as da is increased, the bands move to lower frequencies, as in quantum systems when
quantum-well widths increase, and the band widths become narrower. To visualize the
resonant-band features better, we plot in Figure 10b the transmission coefficient evaluated
at da = 300 nm, indicated with the white arrow in Figure 10a. We also plot, in the upper part
of this graph, the resonant levels predicted by Equation (39). These resonances, that result
from complex coherent superpositions of multiple reflected and transmitted fields plus
collective electron oscillations are, in general, extended electromagnetic states, with large
mean-life time, nevertheless the collective electron oscillations occur mainly at the surfaces
of the metallic layers. These surface excitations correspond to the so-called localized surface
plasmon polaritons.
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In Figure 11a,b, we have the transmission coefficient as a function of ω and dc, for a
metallic superlattice with n = 11, da = 150 nm, and θi = π/12. In this example, we have
also a resonant transmission band for ω < ωp. In Figure 11a, we see that the band width
diminishes as the conductor layer increases. To visualize the resonant behavior better, we
plot in Figure 11b the transmission coefficients for dc = 15 nm, dc = 30 nm, and dc = 60 nm.
They correspond to those layers’ widths indicated with white arrows in Figure 11a. Here,
the resonant transmission bands are also within the visible light domain.

The resonances positions and band widths depend not only on the layers’ widths, but
also depend strongly on the incidence angle. In Figure 12a,b, we plot the transmission
coefficient as a function of ω and θi, for a metallic superlattice with n = 12, da = 150 nm,
and dc = 5 nm. In Figure 12b, we see the transmission coefficient for θi = 0, π/4, and
pi/2, which correspond to those values of θi indicated with white arrows in Figure 12a.
It is clear from these graphs the enormous qualitative and quantitative differences in the
transmission coefficient and the resonant features as functions of the incidence angle. As
was shown of ref. [1] the transmission resonances become delta type when the incidence
angle is equal or even close to π/2.

Figure 12. Transmission coefficient as a function of ω and θi, for a metallic superlattice with n = 12, da = 150 nm, and
dc = 5 nm. In subfigure (b) is the transmission coefficient for θi = 0, π/4, and pi/2. These graphs correspond to those in
subfigure (a) indicated with white arrows.

As Rn = 1− Tn, we generally omit the calculation of the reflection coefficient. Never-
theless, it may be helpful to visualize its behavior, in particular, the effect that the number
of layers may have in the optical regime. In Figure 13, we have the reflection coefficient
of a single silver layer (Figure 13a) and for a superlattice with n = 10. It is clear that the
superlattice not only imply resonances, but also well defined bands of complete reflection
and, for some configurations, of complete transmission.

The resonances of the transmission coefficients, or dips of the reflection coefficients,
many of which are unveiled in this approach, are generally identified as surface plasmon
resonances (SPRs). Knowing the frequencies of these resonances, it is useful for applications
such as biosensors [80,81], which are based on SPRs and their sensitivity to changes in
device parameters, such as the incidence angle. In Figure 14, we plot the transmission coef-
ficients for (dielectric/aluminum) and (dielectric/gold) superlattices when the incidence
angle is θi = π/3 (black curves). In Figure 14a the changes in the incidence angle ∆θi are
±0.005 θi (red/blue curves), while in Figure 14b the changes ∆θi are ±0.02 θi (red/blue
curves).
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Playing with the superlattice parameters, the incidence angle and the electromagnetic
field polarization, we can obtain an endless variety of optical responses for the electromag-
netic fields that fall upon the surface of a metallic superlattice.

Figure 13. The reflection coefficient Rn as a functions of the wavelength λ. In subfigure (a) for a single layer of silver.
In subfigure (b) for a metallic superlattice with n = 10. At the plasma wavelength λp, we see a characteristic Fano-like
resonance, due to the interference between propagating and evanescent modes.

Figure 14. Sensitivity of the transmission resonances to incidence angle variations. In subfigures (a,b) θi = π/3 (black
curve), dc = 20 nm and da = 400 nm. In subfigure (a) a (dielectric/aluminum)n superlattice with n = 8, and screened
plasma frequency ωp = 10.6 eV. In this case, ∆θi = ±0.005 θi for the (red/blue) curves, respectively. In subfigure (b), a
(dielectric/gold)n superlattice with n = 8, and screened plasma frequency ωp = 3.77 eV. In this case, ∆θi = ±0.02 θi for the
(red/blue) curves, respectively.

In the next section, we will return to the real angle approach and compare with the
results of this approach.

5. Improved Real-Angle Approach

As explained before, the lack of flux in the real-angle ψ approach indicates the need to
include the induced currents at the metallic layers. We will include the induced currents,
assume that inside the conductor the electromagnetic waves move along the real angle
(also called true angle) of the constant-phase planes, and finally impose the conservation
of flux. It is well known that the inclusion of currents, induced in the metallic layers and
responsible of the plasmonic resonances, is compatible with the Maxwell equation

∇× H = J + ε
∂E
∂t

(40)

which contemplates the possibility of induced currents; the plasmon oscillations, which
in perfect conductors are localized at the surface but in lossy conductors respond to the
local field. We will assume that in each layer j we have currents, induced be the right
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and left moving fields, whose magnitudes are proportional to the magnitude of the local
electric fields

Jrj(x, z) = sRErj(x, z) and Jl j(x, z) = sLEl j(x, z). (41)

Here, the amplitudes sL and sR are proportional to the conductivity σ and to an
attenuation factor determined below, that accounts for the loss of energy. Taking into
account the surface currents

Jrxl = sREr2(x, zl) cos ψ = sREr2x
∣∣
zl

, and Jlxl = sLEl2(x, zl) cos ψ = sLEl2x
∣∣
zl

, (42)

at z = zl , and

Jrxr = sREr2(x, zr) cos ψ = sREr2x
∣∣
zr

, and Jlxr = sLEl2(x, zr) cos ψ = sLEl2x
∣∣
zr

, (43)

at z = zr, for the boundary conditions. The transfer matrix of the conducting layer that
connects the field vectors at its left and right hand sides becomes

Mc =
1

2κµ1 cos ψ + 2ξ

(
αl − sR βl − sL
β∗l + sR α∗l + sL

)
Mm(z−r , z+l )

1
2k1µ2 cos θ1

(
α∗l − sL −βl − sL
−β∗l + sR αl + sR

)
, (44)

with p = ρ(εR sin γ + εI cos γ), κ =
(
q2 + k2

1 sin2 θi
)1/2, ξ = k1µ1 sec θ1 tan ψ. The matrix-

elements

αl = k1µ2 sec θ1 + κµ1 cos ψ + ξ + i pµ1
βl = k1µ2 sec θ1 − κµ1 cos ψ− ξ + i pµ1 (45)

and the transfer matrix Mm, which connects the electromagnetic fields at the far left (z+l )
and far right (z−r ) inside the metallic layer, is written as mentioned before as

Mm = e−pdc

(
eiqdc 0

0 e−iqdc

)
. (46)

The attenuation factor e−pdc depends on the attenuation constant p and the conducting
layer dc, and a transfer matrix that accounts for the phases qdc and −qdc that are gained by
the electromagnetic fields that propagate along the real angle ψ, with wave number q.

It is easy to verify that up to a phase ϕ, with negligible effects on the results as shown
below, the requirement of flux conservation implies that

sR =
κ tanh (pdc)

cos ψ
and sL =

κ tanh (pdc)

cos ψ
ei(π+ϕ). (47)

As sR ∝ σ, we can define an absorption or flux-loosing factor a such that sR = σa, thus
the attenuation factor

a =
κ tanh (pdc)

σ cos ψ
' κ tanh (dc/δc)

σ cos ψ
(48)

where δc is the skin depth that provides the magnitude of the induced currents and the
amount of flux lost exciting the plasmonic resonances. Given the transfer matrix Mc it is
easy to obtain the unit-cell transfer matrix

M =

(
ei θa/2 0

0 e−i θa/2

)(
αc β c
γc δc

)(
ei θa/2 0

0 e−i θa/2

)
=

(
α β 

β∗ α∗

)
(49)
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where θa = dak1 cos θ1 and αc, β c, . . . are the matrix elements of Mc. Having the unit-
cell transfer matrix, we can apply the theory of finite periodic systems [61,63,65]. The
transmission and reflection coefficients of a superlattice with n unit cells are obtained from

Tn =
1
|αn|2

and Rn =
|β n|2

|αn|2
, (50)

where
αn = Un − α∗ Un−1 and β n = β−1

 Un−1, (51)

with Un the Chebyshev polynomial of the second kind and order n, evaluated at the real
part of α.

In Figure 15a,b, we plot the transmission coefficients with the same parameters as
in those of Figures 10a and 12b. The agreement below and above the plasma frequency
is excellent. However, at and close to wp, the behavior is different. For the graphs in
Figure 15, we consider the phase ϕ = 0. This phase accounts for the effective phase
gain due to the multiple internal reflections. As shown in Figure 16, the effect of ϕ is
practically negligible and null for frequencies above ωp. Figure 16b is just a zoom of
Figure 16a.

Figure 15. Transmission coefficients as functions of da and θi plotted here to compare with those in Figures 10a and 12b.
The agreement is perfect.

Figure 16. The effect of phase ϕ in the transmission coefficients. The graph in subfigure (b) is a zoom of the graph in
subfigure (a). The effect of the phase ϕ is negligible, and null for frequencies above ωp.

For the purpose of calculating only transmission and reflection coefficients there is no
advantage in using this real-angle approach, compared with the more accurate complex-
angle approach. However, the improved real-angle approach does inform on the role that
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the induced currents play in the energy absorption phenomenon, for frequencies below ωp,
which implies the optical domain.

In Figure 17a, we plot the reflection coefficient of a single layer of silver for different
thicknesses, and in Figure 17b, the absorption factor a, which represents the strength of the
absorbed flux exciting the plasmon oscillations. These currents attenuate the transmission
and enhance the reflection coefficient. As shown in Figure 17b, the absorption factor a
grows when the conducting layer width increases. In Figure 18, we show the effect of the
incidence angle and conducting layer width on the absorption factor a and on the reflection
coefficient Rn for a superlattice with n = 12 and dielectric width da = 400 nm. As shown
by these results, the absorption factor is very sensitive to the incidence angle and, of course,
to the conducting layer width. We see that increasing the incidence angle from θi = π/6 to
θi = π/4 the absorption a, therefore the induced currents, grows by a factor of 2.

Figure 17. Reflection and absorption factor for a single layer when the incidence angle is θi = π/4. In subfigure (a), the
reflection coefficient as function of the frequency, for different thicknesses of the silver layer. In subfigure (b), the absorption
factor a grows as the layers’ thicknesses dc increase. The absorption factor vanishes at ω = 0 and ω = ωp, and its maximum
shifts to higher frequencies as dc grows.

Figure 18. Reflection and absorption factor for a superlattice with n =12, and two values of the incidence angle. The
incidence angle at the left is π/6, and π/4 at the right. The bandwidths and the absorption factor grow with the incidence
angle θi and the conducting layer thicknesses dc.

Before we conclude this section, let us see the resonant dispersion relation, and in
particular the dispersion relation predictions below the plasma frequency wp. As mentioned
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before, the resonant dispersion relation derived in the theory of finite periodic systems
is [1,63,65,74]

cos
ν + (µ− 1)n

n
π = (αR)µ,ν with µ = 1, 2, 3, . . . ν = 1, 2, . . . , n− 1. (52)

In terms of the physical quantities defined in this approach, this relation (for ϕ = 0)
becomes

cos
ν+(µ−1)n

n
π= (cosh pdc cos qdc cos θa − f1 cosh pdc sin qdc sin θa + f2 sinh pdc cos qdc sin θa)µ,ν (53)

with

f1 =
µ2 sin 2ψ

2µ1 sin 2θ1

(
1 +

p2µ2
1

k2
1µ2

2
cos2 θ1 +

µ2
1 sin2 2θ1

µ2
2 sin2 2ψ

)
f2 =

µ1 sin 2θ1

2µ2 sin 2ψ

(
tan qdc tanh pdc +

p
k1

sin 2ψ

sin θ1

)
(54)

A quantity that is also useful is the imaginary part of α, which can be written as

αI = cosh pdc cos qdc sin θa + f1 cosh pdc sin qdc cos θa − f2 sinh pdc cos qdc cos θa. (55)

In Figure 19, we plot the transmission and reflection coefficients, together with the
absorption factor and the resonances and bands predicted by the dispersion relation. These
graphs show not only the ability of this approach to calculate the essential quantities like
the transmission and reflection coefficients, and the accurate prediction of the resonance fre-
quencies spectrum, but also the appropriateness of this approach to determine (through the
absorption factor a) the strength of the absorbed energy consumed to excite the plasmonic
polaritons as response to the incident electromagnetic field. This information provides
additional insight in the physics of metallic superlattices.

Figure 19. Transmission and reflection coefficients for a superlattice with n = 8, da = 50 nm, dc = 10 nm, and incidence
angle θi = π/4. In the left, upper part, we show the predicted resonant frequencies from the dispersion relation. In the right
is the absorption factor.

In the applications based on the response of metallic structures to electromagnetic
fields, the response to electromagnetic pulses might be of interest. As the details of the
electromagnetic fields inside the metallic structure is a bit complex, we will present here
just a couple of results.
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6. Reflection and Transmission of Gaussian Pulses by Metallic Superlattices

As illustrative examples of use of the above mentioned results, we will present the
transmission and reflection of an electromagnetic pulse by a metallic superlattice. If the
electromagnetic pulses are Gaussian wave packets, they are defined by

ΨE(x, z, t, θi) =
∫ ∞

−∞
dke−γ(k−ko)2

ei(k·ro−!t)E(k, z, θi) =
∫ ∞

−∞
dke−γ(k−ko)2

E(k, z, θi, t) (56)

where ko defines the peak of the Gaussian pulse and ro its position at t = 0. For z < 0, the
z component of the electromagnetic field is written as

Ez(k, z, t, θi) = Eo

(
eik cos θi(z+zo−vgt) − β∗n

α∗n
e−ik cos θi(z−zo+vgt)

)
z < 0 (57)

where αn and βn are the matrix elements of the n-unit cells transfer matrix Mn. For
z > L = nlc, with lc the SL unit cell length, the electromagnetic field is written as

Ez(k, z, t, θi) = Eo

(
αn − βn

β∗n
α∗n

)
eik cos θi(z−L+zo−vgt) z > L (58)

The possibilities of total, partial, or zero reflection of an electromagnetic pulse by
metallic superlattices are important for applications and strongly determined by the trans-
mission or reflection coefficients of each component of the Gaussian packet, in particular by
the domain of frequencies where the wave packet is defined. Therefore, the transmission
coefficients for the Gaussian pulse components are different. This difference manifests also
in the shape of the reflected and transmitted pulses, as shown in the lower panels. In the
figure, we plot the z-components as functions of z only. We also assume that the fields are
in parallel polarization and the incidence angle is θi = π/4.

To visualize the effect of the metallic SL on a Gaussian pulse, we consider three cases
where the Gaussian packets are similar, but the characteristics of the domain of frequencies
where they are defined are different, and the number of unit cells in the metallic SLs is
different. The number of unit cells in (a–c), is 1, 2, and 10, respectively.

In Figure 20, the transmitted and reflected wave packets are shown at t = 2|zo|/c + τ,
assuming that the fields outside the SL move with velocity c, and the centroid with
wavenumber ko spends a time equal to the phase time τ inside the SL [82,83]. In the
lower panels, we also have the envelopes of the wave packets at t = 0, green, (in position
−zo) and at t = 2|zo|/c + τ, red. The green and red Gaussian curves define the positions
at which the reflected and transmitted packets should be found if τ is truly the tunneling
or reflecting time. In each case, the tunneling time τ of the packet peaks is indicated. The
prediction is correct, as was shown in other papers [78]. In case (b), and slightly in case (a),
the asymmetry of the tunneling times implies that the components of one tail (those with
smaller frequency) move faster than those in the other tail. For this reason, in order to plot
the whole transmitted and reflected packets in case (b), we increase the distance |zo|.

As the scattering process is different for each wave packet component E(k, z, θi),
the wave packets are, generally, distorted, unless the whole wave packet is defined in a
frequency domain such that almost all components have the same transmission coefficients.
This is the case in Figure 20c, where the wave packet is defined in a gap, with Tn '0, being
thus almost completely reflected. In Figure 20a,b, because of the frequency domains, the
wave packet in (a) is partially transmitted and partially reflected. The wave packet in (b),
defined at a resonance, is strongly distorted. The components close to the Gaussian peak
are transmitted while those in the tails are reflected.
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Figure 20. (a–f) Space time evolution of a Gaussian wave packet through metallic superlattices with n = 1, 2, and 10, in
the left, middle, and right, respectively. In the upper panels we show both the transmission coefficients and the Gaussian
wave packets at the frequencies at which they were defined at zo and t =0. In the lower panel, we have the reflected and
transmitted wave packets at t = 2|zo|/c + τ, where τ the tunneling time of the wave packet components of frequency ωo.
The green and red Gaussian curves, define the positions at which the reflected and transmitted packets should be if τ is
truly the tunneling and reflecting time. Notice that the reshaping of the transmitted and reflected packets are strongly
determined by the transmission coefficients in the frequencies domain where the packets are defined, at a resonance in the
middle and at a gap in the right.

7. Conclusions

We have shown that the anomalous results and apparent parity effects reported in [1],
are consequences of the common assumption that electromagnetic fields move along the
direction of propagation of the constant-phase planes, the finiteness requirement, and the
neglect of the induced currents. We have shown that these assumptions imply a lack of
unitarity related to the underlying phenomena of absorption and loss of energy. To cure
this problem, we introduced two approaches: On the one hand, we have shown that by
keeping the complex angles, the principle of flux conservation is fully satisfied, above and
below ωp. The complex-angle approach presented here preserves all the information of the
scattering process in the metallic superlattice, and sheds light to improve the formalism
when the real angle assumption is made. Thus, we considered that we must include
currents, induced by the right and left moving fields, whose magnitudes are proportional
to the magnitude of the local electric fields. We then fixed the proportionality constants
by imposing the flux conservation requirement on the transfer matrices, which were built
under the assumption that fields move along the real angle. In this way, the flux-loosing
factor was obtained, and the attenuation factor determined. We end up with an improved
approach, with new Fresnel and transmission coefficients, fully compatible with those
of the complex-angle approach. The improved approach also allows one to evaluate the
magnitude of the induced currents and the absorbed energy, as functions of frequency
and the superlattice parameters. We have shown that within this approach, intra-subband
plasmon resonance frequencies can be determined. This may be important in applications,
specifically for those applications in biosensors based on this type of resonance. We also
presented results of the response of metallic superlattices to electromagnetic pulses and
wave packets especially in the optical domain. We calculate the reflection and transmission
coefficients as well as the phase time τ(ω). We show that the predicted space-time positions
agree extremely well with the actual positions of the wave packet centroids.
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