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Abstract: The two-point counterparts of the traditional Stokes parameters, which are called the
coherence Stokes parameters, have recently been extensively used for assessing the coherence
properties of random electromagnetic light beams. In this work, we highlight their importance by
emphasizing two features associated with them. First, the role of polarization in electromagnetic
coherence is significantly elucidated when the coherence Stokes parameters are used. Second, the
normalized coherence Stokes parameters should be regarded as the true electromagnetic counterparts
of the normalized scalar-field correlation coefficient.
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1. Introduction

Electromagnetic description of light fields is playing an increasingly larger role in
modern photonics where optical near fields and other highly nonparaxial situations involv-
ing, e.g., optical microcavities, photonic crystal elements, plasmonic structures, evanescent
waves, and high-numerical-aperture arrangements are often encountered [1]. This trend
also reflects the development of optical coherence theory, whose formulation within the
electromagnetic domain has been active in recent years [2–5]. In the vectorial-field context,
the polarization properties are the focus, and their separation from two-point coherence,
which produces many interference effects, is not obvious. Insight into the connection
between polarization and coherence is provided by the coherence or two-point Stokes
parameters, originally introduced by Ellis and Dogariu [6] and later studied by others [7,8].
These parameters are the two-point versions of the customary polarization (one-point)
Stokes parameters and they have been recently successfully used, e.g., in spatial [9–13] and
temporal [14,15] interferometry, analysis of field propagation [16], nanoscattering [17,18],
as well as with quantized light fields [19].

In this work, we aimed to emphasize the role of coherence Stokes parameters in the
description of electromagnetic coherence. By considering two example situations in the
electromagnetic context, Young’s double-pinhole interference, and the van Cittert–Zernike
theorem, we demonstrate that the use of coherence (and polarization) Stokes parameters
greatly facilitates the treatment and makes the polarization-coherence connection highly
transparent. In the first case, the coherence Stokes parameters at the source plane determine
the polarization Stokes parameters of the far field, whereas the situation is the opposite
in the latter case. In addition, we propose that instead of the normalized coherence
matrix elements, the normalized coherence Stokes parameters should be regarded as the
electromagnetic counterparts of the normalized scalar-field correlation coefficient. This
argument is justified by the analogous appearance of the coherence Stokes parameters and
the scalar-light parameter.
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2. Definition of the Coherence Stokes Parameters

Consider a random, stationary, partially polarized, and partially spatially coherent
electromagnetic beam propagating along the z-axis in free space. A field realization at a
point r and at frequency ω is given by E(r, ω) = [Ex(r, ω), Ey(r, ω)]T, where T denotes the
transpose. The spatial coherence properties of the field at r1 and r2 are represented by the
cross-spectral density matrix [2,3],

W(r1, r2, ω) = 〈E∗(r1, ω)ET(r2, ω)〉, (1)

where the angle brackets and asterisk denote ensemble averaging and complex conjugation,
respectively. The elements of this matrix are given by

Wij(r1, r2, ω) = 〈E∗i (r1, ω)Ej(r2, ω)〉, (i, j) ∈ (x, y), (2)

and electromagnetic coherence could be described using these four functions. However, an
alternative and physically more transparent treatment regarding the role of polarization
in electromagnetic coherence is established by using the spectral coherence (two-point)
Stokes parameters [3,6–8]

S0(r1, r2, ω) = Wxx(r1, r2, ω) + Wyy(r1, r2, ω), (3a)

S1(r1, r2, ω) = Wxx(r1, r2, ω)−Wyy(r1, r2, ω), (3b)

S2(r1, r2, ω) = Wxy(r1, r2, ω) + Wyx(r1, r2, ω), (3c)

S3(r1, r2, ω) = i
[
Wyx(r1, r2, ω)−Wxy(r1, r2, ω)

]
. (3d)

These parameters appear as the coefficients when the cross-spectral density matrix is
expanded as

W(r1, r2, ω) =
1
2

3

∑
n=0
Sn(r1, r2, ω)σn, (4)

where σn, n ∈ (0 . . . 3) are the Pauli spin matrices [2].
Insight into the coherence Stokes parameters is obtained by writing them in terms

of the cross-spectral density functions related to specific polarization states. These are
invoked by projecting the field onto the polarization state in question, i.e.,

Wmm(r1, r2, ω) = ê†
mW(r1, r2, ω)êm, (5)

where † denotes the conjugate transpose. The subscript m ∈ (x, y, α, β, r, l) signifies x,
y, +45◦, and −45◦ (with respect to the x-axis), and the right-hand and left-hand circular
polarization states, respectively. The related (complex) unit vectors are written as êx =
[1, 0]T, êy = [0, 1]T, êα = [1, 1]T/

√
2, êβ = [−1, 1]T/

√
2, êr = [1,−i]T/

√
2, and êl =

[1, i]T/
√

2. Employing the correlation functions in Equation (5) the coherence Stokes
parameters become [8]

S0(r1, r2, ω) = Wxx(r1, r2, ω) + Wyy(r1, r2, ω), (6a)

S1(r1, r2, ω) = Wxx(r1, r2, ω)−Wyy(r1, r2, ω), (6b)

S2(r1, r2, ω) = Wαα(r1, r2, ω)−Wββ(r1, r2, ω), (6c)

S3(r1, r2, ω) = Wrr(r1, r2, ω)−Wll(r1, r2, ω). (6d)

Therefore, six different correlation functions, each related to a different polarization
state, can be used to express the coherence Stokes parameters appearing in Equation (3).
The above forms have practical significance as they provide a method to measure the
coherence Stokes parameters by extracting the various polarization components (with a
polarizer and a waveplate) and determining the ensuing correlation function [17,18].
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For r1 = r2, the coherence Stokes parameters reduce to the traditional polarization
(one-point) Stokes parameters, i.e.,

Sn(r, ω) = Sn(r, r, ω), n ∈ (0, . . . , 3). (7)

Thus, S0(r, ω) is the total intensity, while the other polarization Stokes parameters evidently
manifest the spectral density differences of the various polarization components.

Particularly important quantities are the intensity normalized coherence Stokes pa-
rameters, defined by

µn(r1, r2, ω) =
Sn(r1, r2, ω)

[S0(r1, ω)S0(r2, ω)]1/2 , n ∈ (0, . . . , 3). (8)

As we will soon see, these functions appear in various situations involving the diffraction
and propagation of random electromagnetic beams. Especially, they often play a role anal-
ogous to the scalar-field correlation coefficient, and consequently deserve to be considered
its electromagnetic counterparts. In addition, the normalized coherence Stokes parameters
enable writing the electromagnetic degree of coherence [5] as

µ2(r1, r2, ω) =
1
2

3

∑
n=0
|µn(r1, r2, ω)|2, (9)

whose value is bounded within 0 ≤ µ(r1, r2, ω) ≤ 1. The lower and upper limits corre-
spond to complete incoherence and full coherence, respectively, at the two points and at
frequency ω.

3. Intensity and Polarization Modulations in Young’s Two-Pinhole Interference

Assume a well-collimated random beam incident orthogonally on an opaque screen
A, as shown in Figure 1. The screen contains two pinholes whose centers are at r1 and r2.
The pinholes are assumed to be so large that the effects due to boundaries can be omitted
and that the diffraction from the holes is paraxial. However, they are taken to be so small
that the fields within them can be considered uniform. The interference pattern of the fields
diffracted from the pinholes is analyzed near the optical axis on another screen B located
several wavelengths away from the first screen.

Figure 1. Illustration of Young’s two-pinhole interference.

The interference field realization on the screen B, at point r and at frequency ω, can be
written as a superposition of the spherical waves diverging from the apertures in the form

E(r, ω) = K1E(r1, ω)
exp (ikR1)

R1
+ K2E(r2, ω)

exp (ikR2)

R2
, (10)

where E(r1, ω) and E(r2, ω) are the field realizations in the pinholes, k is the wave number,
and Rm with m = (1, 2) being the distance of the point r from the pinhole at rm. The
parameters K1 and K2 are pure imaginary numbers of the form Km = −(i/λ)dAm [2],
where λ is the wavelength and dAm is the area of the pinhole located at rm, m ∈ (1, 2).
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The polarization Stokes parameters of Equation (7) at B can straightforwardly be
written in the form

Sn(r, ω) = S(1)
n (r, ω) + S(2)

n (r, ω) + 2
√

S(1)
0 (r, ω)S(2)

0 (r, ω)

× |µn(r1, r2, ω)| cos{arg [µn(r1, r2, ω)]− k(R1 − R2)}, n ∈ (0 . . . 3), (11)

where S(1)
n (r, ω) and S(2)

n (r, ω) denote the Stokes parameters when the pinhole at r2 or r1,
respectively, is closed. In addition, arg(α) denotes the phase of complex number α. Since the
observation plane B is far from the plane A, the field around the optical axis is essentially
a plane wave, implying that the Stokes parameters there due to individual apertures are
spatially slowly varying functions. Thus, the Stokes parameters vary sinusoidally with
position owing to the term k(R1 − R2). If the intensities at the pinholes are the same, the
visibilities of the Stokes parameter modulations are given by

Vn(r, ω) =
max[Sn(r, ω)]−min[Sn(r, ω)]

max[S0(r, ω)] + min[S0(r, ω)]
= |µn(r1, r2, ω)|, n ∈ (0 . . . 3), (12)

where max and min denote the maximum and minimum values of the argument function
in the neighborhood of r, respectively.

We then arrive at an important conclusion: the modulation of the polarization Stokes
parameter Sm(r, ω) in the diffracted far field is specified by the related coherence Stokes pa-
rameter Sm(r1, r2, ω) at the apertures m ∈ (0, . . . , 3). More precisely, the magnitude of the
normalized coherence parameter determines the modulation visibility and the phase affects
the location of the modulation fringe pattern. Young’s interferometer therefore serves as an
important example of a situation where the polarization Stokes parameters at the output are
effectively specified by the coherence Stokes parameters at the input. An analogous result
is also found for temporal interference in Michelson’s interferometer [14,15]. In addition,
Equation (11) shows that the normalized coherence Stokes parameters play roles similar to
the normalized scalar field correlation coefficient in the scalar version of Young’s interfer-
ence [2]. Therefore, instead of the normalized cross-spectral density matrix elements, these
electromagnetic coherence parameters should be regarded as electromagnetic counterparts
of the scalar field correlation coefficient.

4. Far-Zone Form of the Van Cittert–Zernike Theorem with Stokes Parameters

The van Cittert–Zernike theorem governing the radiation from a spatially incoherent
planar source is a key result of optical coherence theory [2]. Originally, it was formulated for
scalar fields, showing that the source intensity determines the spatial coherence properties
of the emitted field. In particular, the far-zone degree of coherence (normalized correla-
tion coefficient) is proportional to the Fourier transform of the source intensity, a result
with significant practical value. The vector-field formulation of the van Cittert–Zernike
theorem was considered long ago [20] but, recently, it has attracted renewed interest by
several groups [21–25]. Despite these significant contributions, the polarization–coherence
connection included in the van Cittert–Zernike theorem is not highly transparent, since the
polarization and coherence Stokes parameters are not employed. Such a formulation was
given in [16], whose main findings we summarize below.

Consider a planar, partially polarized, and spatially incoherent (δ-correlated) source
denoted by σ in the z = 0 plane (Figure 2). We are interested in the far field in the paraxial
regime where we can analyze the field in terms of the 2× 2 cross-spectral density matrix
associated with the transverse x and y field components. The far field is obtained using
Rayleigh’s first diffraction formula [2] and invoking the standard far-zone approximation.
Employing such a procedure, the normalized coherence Stokes parameters in the far-zone
points r1 and r2 take the forms [16]

µn(r1, r2, ω) = exp[ik(r2 − r1)]
∫

σ
sn(ρ

′, ω) exp(−ik∆û · ρ′)d2ρ′, n ∈ (0, . . . , 3), (13)
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where sn(ρ′, ω) = Sn(ρ′, ω)/
∫

σ S0(ρ
′, ω)d2ρ′ is the polarization Stokes parameter n

normalized by the total intensity of the source. Furthermore, r1 = |r1|, r2 = |r2|, and
∆û = û2 − û1, where û1 and û2 are the unit vectors expressing the far-field directions. The
equation above shows that the normalized coherence Stokes parameters of the far field
generated by a spatially incoherent planar source are Fourier transforms of the correspond-
ing polarization Stokes parameters of the source. This elegant and compact relationship
shows how the different polarization components of the source contribute to the structure
of electromagnetic coherence of the field. Notice that in Young’s interference arrangement
discussed in Section 3 the coherence parameters at the input determine the polarization
parameters at the output, but here, the situation is the opposite.

Figure 2. Geometry and notations related to the van Cittert–Zernike theorem.

The electromagnetic-field result of Equation (13) should be compared with the corre-
sponding scalar-field formula written as

µ(r1, r2, ω) = exp[ik(r2 − r1)]
∫

σ
s(ρ′) exp(−ik∆û · ρ′)d2ρ′, (14)

where µ(r1, r2, ω) is the normalized correlation coefficient of the scalar far field and
s(ρ′, ω) = S(ρ′, ω)/

∫
σ S(ρ′, ω)d2ρ′ is the spectral density S(ρ′, ω) of the source normal-

ized with its source-integrated value. As in the context of spatial interference, we therefore
conclude that the normalized coherence Stokes parameters, instead of the normalized
coherence matrix elements, are the true electromagnetic counterparts of the scalar-field
correlation coefficient.

5. Conclusions

In this work, we highlighted the role of the coherence Stokes parameters in the descrip-
tion of electromagnetic coherence. The formulation of problems involving propagation,
diffraction, and interference of random vectorial light greatly benefits from the use of the
coherence Stokes parameters since the effect of polarization becomes more transparent.
In addition, the normalized coherence Stokes parameters often appear in places analo-
gous to the scalar-field correlation coefficient and hence they should be considered as
electromagnetic counterparts of the scalar-field concept.
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