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Abstract: In this paper, we present a method to independently control the field and irradiance
statistics of a partially coherent beam. Prior techniques focus on generating optical field realizations
whose ensemble-averaged autocorrelation matches a specified second-order field moment known
as the cross-spectral density (CSD) function. Since optical field realizations are assumed to obey
Gaussian statistics, these methods do not consider the irradiance moments, as they, by the Gaussian
moment theorem, are completely determined by the field’s first and second moments. Our work, by
including control over the irradiance statistics (in addition to the CSD function), expands existing
synthesis approaches and allows for the design, modeling, and simulation of new partially coherent
beams, whose underlying field realizations are not Gaussian distributed. We start with our model
for a random optical field realization and then derive expressions relating the ensemble moments
of our fields to those of the desired partially coherent beam. We describe in detail how to generate
random optical field realizations with the proper statistics. We lastly generate two example partially
coherent beams using our method and compare the simulated field and irradiance moments theory
to validate our technique.

Keywords: coherence; random sources; scintillation; speckle; statistical optics

1. Introduction

The design and physical realization of spatially partially coherent light is a highly
active area of beam-control research. One of the foundational papers on the subject is
“Designing genuine spatial correlations functions” by F. Gori and M. Santarsiero [1]. Cited
hundreds of times since publication, the paper presents a simple recipe for creating any
physically realizable partially coherent source. This recipe is expressed in the form of a
superposition integral, namely,

W(ρ1, ρ2) =
∫∫ ∞

−∞
p(v)H(ρ1, v)H∗(ρ2, v)d2v, (1)

where W is the source’s cross-spectral density (CSD) function [2,3], p is a positive, real
function, H is the kernel, and ρ = x̂x + ŷy. In Equation (1), the dependence of W, p, and H
on radian frequency ω is assumed and suppressed. Since p and H, for the most part, can
be arbitrarily chosen, Equation (1) has been used to create all manner of random optical
beams. More information on these sources can be found in the subject reviews and books
in References [4–9].

The superposition rule, as Equation (1) is now known, specifies the CSD function, or
second-order field moment, of a partially coherent source. It does not, however, stipulate
the fourth-order field moment, more specifically, the second-order moment of irradiance
or covariance of irradiance. With the exception of propagation through turbulent media,
where the primary goal has been to quantify how partial coherence reduces the variance of
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irradiance (captured in a moment called the scintillation index) [4,10–12], the covariance of
irradiance has been a secondary concern to designers of random sources [6,7,13–23].

The reason for this is because the underlying electric fields giving rise to the desired
partially coherent source are assumed (in most cases, with very good reason) to be Gaus-
sian distributed. According to the Gaussian moment theorem, all statistical moments
greater than second order simplify to sums and products of first- and second-order mo-
ments [3,4,24]. The result being that the covariance of irradiance is completely determined
by the CSD function, and the scintillation index is always equal to one. Physically, this
means that the stochastic field realizations comprising the partially coherent source are
fully developed speckle fields, where, in the case of uniformly correlated or Schell-model
sources, the average size of a speckle is given by the width of the normalized CSD function,
also known as the spatial coherence function [24].

In this paper, we present a method to independently control the field and irradiance
moments of a partially coherent source. This new technique creates stochastic field in-
stances with non-Gaussian statistics, and therefore allows for the modeling and simulation
of random beam scattering and propagation through turbulent media. In addition, this ap-
proach can be used to engineer new partially coherent sources with potentially interesting
and exploitable characteristics.

In the next section, we describe our random field model, which is the product of a
deterministic function corresponding to the beam shape and two statistically independent
random processes—one corresponding to the field’s phase and the other to its irradiance.
We then derive relationships between the phase and irradiance moments and the desired
source’s CSD function and covariance of irradiance. We end this section by presenting how
to generate phase and irradiance instances, with the proper statistics, to produce a random
field realization statistically consistent with the desired partially coherent source.

In Section 3, we present two examples where we apply our method to produce
partially coherent sources. For the first source, we generate a Gaussian Schell-model
(GSM) beam [2,4]. To validate our approach, we compare the resulting field and irradiance
sample moments to theory and those of another GSM beam generated using circular
complex Gaussian (CCG) random numbers [17,18,20]. In the second example, we create
a new partially coherent beam, where the CSD function has the form of a Lajunen and
Saastamoinen nonuniformly correlated (NUC) source [25], the irradiance is log-normally
distributed, and the covariance of irradiance takes a pseudo-Schell model form [26]. We
again compare the sample field and irradiance moments to theory to verify that we have
indeed produced the desired source. Lastly, we conclude with a summary of our work.

2. Materials and Methods
2.1. Stochastic Field Model

We begin this section with our model for a random optical field realization:

U(ρ) = τ(ρ)
√

i(ρ) exp[jS(ρ)], (2)

where τ is complex, deterministic, and physically represents the beam shape, i is a real,
positive random function corresponding to the irradiance, and S is a real random function
representing the phase.

Here, we assume that the random processes i and S are statistically independent. This
assumption, made ultimately out of mathematical necessity, is generally not accurate. Take,
for instance, the case of fully developed speckle fields. In Reference [24], Goodman shows
that while the field amplitude and phase are statistically independent at any one spatial
point, they are not jointly independent at two points. This means that in computing 〈U(ρ)〉,
we could separate the expectation involving i and S into the product of two expectations;
however, the same operation would be improper when computing 〈U(ρ1)U

∗(ρ2)〉. In this
paper, we are ultimately interested in generating partially developed speckle fields (non-
Gaussian-distributed fields), and unfortunately, the joint magnitude and phase statistics
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of such fields are generally not known. While i and S most certainly are not independent,
lacking additional information, it becomes nearly impossible to proceed without assuming
so. Not accounting for the correlation between i and S surely misses physical phenomena.

The important statistical moments of Equation (2) are the mean field, the CSD function,
the mean irradiance, and the covariance of irradiance. These moments, in order, are

〈U(ρ)〉 = τ(ρ)〈
√

i(ρ)〉〈exp[jS(ρ)]〉, (3)

W(ρ1, ρ2) = 〈U(ρ1)U
∗(ρ2)〉 = τ(ρ1)τ

∗(ρ2)〈
√

i(ρ1)i(ρ2)〉〈exp{j[S(ρ1)− S(ρ2)]}〉, (4)

〈I(ρ)〉 = 〈|U(ρ)|2〉 = |τ(ρ)|2〈i(ρ)〉, (5)

BI(ρ1, ρ2) =
〈I(ρ1)I(ρ2)〉 − 〈I(ρ1)〉〈I(ρ2)〉

〈I(ρ1)〉〈I(ρ2)〉
=
〈i(ρ1)i(ρ2)〉
〈i(ρ1)〉〈i(ρ2)〉

− 1. (6)

To simplify these expressions further, we let the single-position moments 〈i(ρ)〉 and
〈exp[jS(ρ)]〉 be constant. Initially, this might seem like a very restrictive stipulation. How-
ever, the function τ in the field model accounts for the effects of spatially varying 〈i〉 and
〈exp(jS)〉. Equations (3)–(6) then become

〈U(ρ)〉 = τ(ρ)〈
√

i(ρ)〉〈exp(jS)〉, (7)

W(ρ1, ρ2) = τ(ρ1)τ
∗(ρ2)〈

√
i(ρ1)i(ρ2)〉〈exp{j[S(ρ1)− S(ρ2)]}〉, (8)

〈I(ρ)〉 = |τ(ρ)|2µi, (9)

BI(ρ1, ρ2) =
〈i(ρ1)i(ρ2)〉

µ2
i

− 1, (10)

where µi is the mean of i.

2.2. CSD Function

We now focus on the CSD function given in Equation (8). The ensemble average
involving S is equivalent to the joint characteristic function (JCF) of the random variables
S(ρ1) and S(ρ2). In general, S could be drawn from any probability distribution. If S is a
delta-correlated random process, then computing the JCF is trivial. It is also unnecessary,
as a delta-correlated S, physically manifests as a spatially incoherent field, and thus,
〈exp{j[S(ρ1)− S(ρ2)]}〉 = δ(ρ1 − ρ2), where δ is the Dirac delta function. Clearly, this
case is of little interest.

For an arbitrarily correlated random process, the only closed-form JCF known to
the author is the Gaussian JCF [3,24]. If other-than-Gaussian JCFs exist, they can be
used in Equation (8). The analysis would proceed in the same manner as that presented
here, with the specifics dependent on the form of the JCF. We therefore assume that
S is Gaussian distributed, substitute the Gaussian JCF into Equation (8), and simplify,
ultimately producing

W(ρ1, ρ2) = τ(ρ1)τ
∗(ρ2)〈

√
i(ρ1)i(ρ2)〉 exp

{
−σ2

S [1− RS(ρ1, ρ2)]
}

, (11)

where σS is the standard deviation and RS is the normalized correlation function of the
phase S, respectively.

We now focus on the exponential in Equation (11), hereafter referred to as M. It
is clear that M plays a role in determining the coherence of the optical field—in fact, it
plays the dominant role. Its form is quite restrictive in that no matter what RS we choose
(subject to the constraints on autocorrelation functions), M will always be in the form of an
exponential function. Therefore, to proceed, we should choose a form for RS that allows us
to easily relate phase parameters, such as phase correlation length and σS, to those of the
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optical field we wish to generate. Generalizing the Gaussian forms, which are replete in
the literature [3,13,14,16,27–32], we let RS be

RS(ρ1, ρ2) = exp
{
−[χ(ρ1, ρ2)]

α}, (12)

where 0 < α ≤ 2 and χ is any real, positive function such that χ(ρ, ρ) = 0, χ(ρ1, ρ2) > 0,
and χ(ρ1, ρ2) = χ(ρ2, ρ1). The restrictions on χ ensure that RS is a genuine autocorrela-
tion function. While not yet evident, the limitation on α ensures that the function p in
Equation (1) is positive.

Substituting Equation (12) into Equation (11) does little to simplify M. However, we
can make further progress by assuming that the field has strong phase fluctuations, such
that σS ≥ 2π [3,13,14,16,27–32]. This large σS means that M has significant value only when
1− RS(ρ1, ρ2) ≈ 0, or equivalently, when RS(ρ1, ρ2) ≈ 1. Approximating Equation (12) as
RS ≈ 1− χα(ρ1, ρ2), substituting this into Equation (11), and simplifying yields

W(ρ1, ρ2) ≈ τ(ρ1)τ
∗(ρ2)〈

√
i(ρ1)i(ρ2)〉 exp

{
− [χ(ρ1, ρ2)]

α

1/σ2
S

}
. (13)

It is important to note that by assuming a field with strong phase fluctuations (large σS),
M [the exponential in Equation (13)] is a “fast function” compared to 〈

√
i(ρ1)i(ρ2)〉 and

ultimately determines the coherence of the field. It is therefore safe to further approximate
Equation (13) as

W(ρ1, ρ2) ≈ τ(ρ1)τ
∗(ρ2)µi exp

{
− [χ(ρ1, ρ2)]

α

1/σ2
S

}
. (14)

We now have achieved the desired correspondence between the autocorrelation func-
tion of the phase RS [Equation (12)] and that of the field.

Further examination of Equation (14) reveals that the CSD function, that is, the statis-
tics of the optical field, completely depend (with the exception of a constant) on the statistics
of the phase S. This, plus the fact that Equations (9) and (10) show that the irradiance
statistics depend solely on the moments of i, means that we have independent control
over the field U and irradiance I statistics by controlling S and i, respectively. Although
we can independently control U and I statistics, because S is Gaussian distributed and
the Gaussian JCF has the form given in Equation (11), we are limited to field correlation
functions of exponential type, like that in Equation (14).

Before proceeding to the irradiance moments, we briefly discuss the mean field,
Equation (7). With S being Gaussian distributed, 〈U(ρ)〉 simplifies to

〈U(ρ)〉 = τ(ρ)〈
√

i(ρ)〉 exp(jµS) exp
(
−1

2
σ2

S

)
, (15)

where µS is the mean of S. We stipulated above that σS ≥ 2π. This large value of σS
effectively makes 〈U(ρ)〉 ≈ 0. Since µS appears only in 〈U(ρ)〉, it is a free parameter. We
therefore let µS = 0.

2.3. Covariance of Irradiance

We now turn to the irradiance moments in Equations (9) and (10), starting with
BI . We first note that BI(ρ, ρ) = σ2

I (ρ), where σ2
I is called the scintillation index [4,12].

When dealing with speckle as opposed to irradiance fluctuations due to turbulence,
√

σ2
I

is commonly used and is referred to as the speckle contrast [24]. Introducing σ2
I into

Equation (10) and rearranging the terms yields

µ2
i

√
σ2

I (ρ1)σ
2
I (ρ2)bI(ρ1, ρ2) = 〈[i(ρ1)− µi][i(ρ2)− µi]〉, (16)
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where bI is the normalized covariance of irradiance, that is, bI(ρ, ρ) = 1. To simplify things
further, we define the zero-mean random process ζ(ρ) = i(ρ)− µi and substitute it into
Equation (16), viz.,

〈ζ(ρ1)ζ(ρ2)〉 = µ2
i σI(ρ1)σI(ρ2)bI(ρ1, ρ2). (17)

The expectation of i, that is, µi, appears only as a multiplicative constant in 〈I(ρ)〉
[Equation (9)], W in Equation (14), and here in Equation (17). Therefore, like µS, it is a free
parameter and can be arbitrarily chosen subject to the constraint µi > 0. We set µi = 1,
hereafter. This simplifies the mean irradiance in Equation (9) to

〈I(ρ)〉 = |τ(ρ)|2. (18)

Equation (17) states that any BI can be produced if we generate a sequence of zero-
mean random numbers ζ with σI(ρ1)σI(ρ2)bI(ρ1, ρ2) as its autocorrelation function. It is
easy to produce such a sequence using Gaussian random numbers. However, the difficulty
here is that ζ cannot be Gaussian distributed, because that would make i Gaussian dis-
tributed. Since normal random numbers can have negative values, the Gaussian probability
density function (PDF) cannot model irradiance fluctuations.

To overcome this difficulty, we use a method known by several different names in the
literature—the inverse CDF (cumulative distribution function) transform method [33,34],
translation [35–38], and NORTA (NORmal To Anything) [39,40]. The method starts with
a correlated Gaussian random number sequence and maps it, via a non-linear transform,
to a correlated non-Gaussian sequence called the target process [33–40]. If the number
of discrete points in the underlying Gaussian sequence is large, translation (NORTA,
etc.) yields a target realization with the desired PDF. The non-linear transform does
distort the target correlation function, and there are many techniques (mostly iterative)
to correct this [35–38]. Yura and Hanson [33,34] showed that target correlation function
distortion caused by translation was minor. As their results attest, translation (without
subsequent correction) yields highly accurate target realizations for many different PDFs
and correlation functions. Here, we use Yura and Hanson’s approach to generate i. The
details are provided in the following section.

2.4. Generating S and i

In this section, we discuss how to generate realizations of S and i with the proper
statistics. We start with phase S.

Recall that S is a zero-mean, real, Gaussian random process with an autocorrelation
function equal to

〈S(ρ1)S(ρ2)〉 = σ2
S exp

{
−[χ(ρ1, ρ2)]

α}, (19)

σS ≥ 2π, and 0 < α ≤ 2. In addition, χ is a real, positive function with χ(ρ, ρ) = 0,
χ(ρ1, ρ2) > 0, and χ(ρ1, ρ2) = χ(ρ2, ρ1). Since 〈S(ρ1)S(ρ2)〉 meets the requirements for
a genuine correlation function [1,2,4], we can use a variant of Equation (1) to generate
realizations of S. This method was first described in Reference [41] to synthesize Gaussian
distributed optical field realizations with arbitrary (genuine) correlation functions. Here,
we utilize this approach to produce arbitrarily correlated, real-valued S and ultimately i
realizations.

Following and modifying as necessary the analysis presented in Reference [41], an
instance of S can be synthesized by evaluating the integral

S(ρ) = Re
[∫∫ ∞

−∞
rS(v)

√
pS(v)HS(ρ, v)d2v

]
, (20)
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where “Re” denotes the real part and rS is a sample function drawn from a delta-correlated,
zero-mean, CCG random process. Taking the autocorrelation of Equation (20) yields a
superposition integral in the form of Equation (1), namely,

〈S(ρ1)S(ρ2)〉 = Re
[∫∫ ∞

−∞
pS(v)HS(ρ1, v)H∗S(ρ2, v)d2v

]
. (21)

Proof of this is shown in Appendix A. This is an important result as it proves that
Equation (20) generates an S with the proper statistics.

Since Equation (20) must ultimately be evaluated numerically, we express it in dis-
crete form:

S[ij] = Re
{

HS[ij, mn]
(

rS[mn]�
√

pS[mn]
)}√

∆vx∆vy, (22)

where � is the Hadamard product, ∆vx and ∆vy are the grid spacings in the vx and vy
directions, and ij and mn are discrete double indices corresponding to every combination
of (x, y) and

(
vx, vy

)
coordinates, respectively. Equation (22) is a matrix-vector product, in

which HS is a Nx Ny × Nvx Nvy matrix, where Nx, Ny, Nvx , and Nvy are the number of grid
points in the dimensions denoted in the subscripts; pS and rS are Nvx Nvy × 1 vectors; and
S is an Nx Ny × 1 vector. The output vector S must be reshaped to an Ny × Nx matrix in
order to physically represent the two-dimensional phase of the field.

With S now complete, we turn our attention to generating realizations of i. As
discussed at the end of the previous section, we use a process known as translation to
synthesize i realizations from correlated sequences of Gaussian random numbers. These
Gaussian sequences have the same first and second moments as ζ, namely,

〈ζ〉 = µζ = 0

〈ζ(ρ1)ζ(ρ2)〉 = σI(ρ1)σI(ρ2)bI(ρ1, ρ2)
. (23)

For this reason, we refer to them as ζG for the remainder of the paper.
Like the phase S, the autocorrelation function of ζG is genuine, and therefore, a ζG

realization can be produced by evaluating

ζG(ρ) = Re
[∫∫ ∞

−∞
rζG(v)

√
pζG(v)HζG(ρ, v)d2v

]
, (24)

where rζG , like rS, is a sample function drawn from a delta-correlated, zero-mean, CCG
random process. The discrete representation of Equation (24) is identical to Equation (22)
with appropriate substitutions.

Having a ζG realization, the next step is to form i by translating ζG. This is accom-
plished using the non-linear transform

i(ρ) = F−1
T {FG[ζG(ρ); 0, σI(ρ)]; 1, σI(ρ)}, (25)

where FG is the Gaussian CDF and F−1
T is the inverse target CDF [33–40]. In Equation (25),

both FG and F−1
T are parameterized by their respective means and standard deviations

(assuming, in the latter case, they exist). Any probability distribution i ≥ 0 can be selected
as the target PDF.

The final step is to form a random field instance U by substituting the S and i realiza-
tions into Equation (2). In the next section, we use the above procedure to generate two
example partially coherent beams.

3. Results and Discussion

Here, we use the analysis from Section 2 to generate two partially coherent sources.
The first is a GSM beam, which we generate in two different ways—one using the results
from Section 2 (which we call the P&I technique hereafter) and the second using an
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established method that filters CCG random numbers (reviewed in Appendix B and called
the complex screen technique) [17,18,20]. We then compare the simulation results to GSM
theory. The details are presented in the next section.

The second partially coherent source is a novel stochastic beam, where the CSD
function has the form of a Lajunen and Saastamoinen NUC source [25], the irradiance is
log-normally distributed, and the covariance of irradiance takes a pseudo-Schell model
form [26]. For brevity, we refer to this source as the NUC beam. We compare the simulated
W, BI , field PDFs, and irradiance PDF to theory to prove that we have successfully gener-
ated the desired NUC beam. The details of this simulation are presented after the GSM
beam results.

3.1. GSM Beam

Before presenting the results, we provide a brief background on GSM sources and
discuss details of the simulation. A GSM beam has the following CSD function W:

W(ρ1, ρ2) = exp

(
−

ρ2
1 + ρ2

2
4σ2

)
exp

(
−|ρ1 − ρ2|

2

2δ2

)
, (26)

where σ is the beam radius and δ is the correlation or coherence radius [2,4]. If the underly-
ing optical fields are Gaussian distributed, the irradiance follows a negative exponential
PDF, that is,

p(I) =
1
〈I〉 exp

(
− I
〈I〉

)
, (27)

where 〈I〉 = µi = 1 [3,12,24]. The covariance of irradiance BI can easily be derived by
applying the Gaussian moment theorem [3,4,24]:

BI(ρ1, ρ2) =
|W(ρ1, ρ2)|

2

〈I(ρ1)〉〈I(ρ2)〉
= exp

(
−|ρ1 − ρ2|

2

δ2

)
. (28)

To form GSM field realizations using Equation (2), we compare Equation (26) to
Equation (14) and conclude that

τ(ρ) = exp
(
− ρ2

4σ2

)
χα(ρ1, ρ2)

1/σ2
S

=
|ρ1 − ρ2|

2

2δ2

. (29)

Furthermore, α = 2, χ(ρ1, ρ2) = |ρ1 − ρ2|/δS, where δS is the phase correlation radius,
and δ2

S = 2σ2
Sδ2. We then use these relations to find pS and HS in Equation (20), namely,

pS(v) =
σ2

Sδ2
S

4π
exp

(
−

δ2
Sv2

4

)
HS(ρ, v) = exp(−jρ · v)

. (30)

With HS being the Fourier kernel, Equation (20) equals the Fourier transform of the
product of two Fourier transforms and simplifies to a convolution integral.

Similarly for i, we compare Equation (28) to Equation (23) and find that σ2
I = 1 and

bI(ρ1, ρ2) = exp

(
−|ρ1 − ρ2|

2

δ2

)
. (31)
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The space- or shift-invariant form of bI in Equation (31) makes pζG and HζG in Equa-
tion (24) equal to

pζG(v) =
δ2

4π
exp

(
− δ2v2

4

)
HζG(ρ, v) = HS(ρ, v) = exp(−jρ · v)

. (32)

As a result of HζG equaling the Fourier kernel, Equation (24), like Equation (20),
simplifies to a convolution integral. Lastly, we use Equation (25) to transform ζG to i, where
F−1

T is the inverse exponential CDF with σI = 1.
For the simulations, we used grids that were N = 512 points per side. The spacings

in the x-y and vx-vy domains were ∆x = ∆y = 97.66 µm and ∆vx = ∆vy = 40π m−1,
respectively. The GSM beam parameters were σ = 6.25 mm and δ = 1.67 mm. With
σS = 2π, δS =

√
2σSδ = 0.0148 m.

We generated S, i, and complex screen (CS) T realizations by evaluating Equa-
tions (20), (24), and (A7) using fast Fourier transforms. These were then substituted into
Equation (2) and Equation (A5) to form GSM P&I and CS field instances. From 10,000 GSM
fields each, we computed the field PDFs, irradiance PDFs, and planar (two-dimensional)
cuts through W and BI . The simulation computer code (MATLAB® version R2018b .m
files) is included as Supplementary Materials to this paper.

Figures 1–3 show the GSM simulation results. Figure 1a–d shows a CS and P&I GSM
field realization. Clearly, CS and P&I fields are different. The way that P&I fields are
formed means that both S and i are continuous, independent random functions. On the
other hand, CS fields are fully developed speckle fields, and while the fields themselves
are continuous, the phase, in general, is not. At locations where a CS field vanishes, a
phase singularity, known as a branch point, occurs [3,42]. Since the phase S in a P&I field
is defined at every location, even at locations where i = 0, branch points can only ever
appear in propagated P&I fields.

Figure 1. Gaussian Schell-model (GSM) beam field realizations and field probability density functions
(PDFs)—(a,b) complex-screen (CS |U| and arg(U); (c,d) P&I |U| and arg(U); and (e,f) theory, CS, and
P&I Re(U) and Im(U) PDFs. The CS and P&I field expressions are given in Equations (A5) and (2),
respectively. The theoretical Re(U) and Im(U) PDFs are Gaussian with µ = 0 and σ = 1/

√
2.
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Although branch points do not appear in source-plane P&I fields, CS and P&I fields
are quantitatively identical in terms of the key statistical moments discussed earlier in the
paper. These results are presented in the remaining plots and figures: Figure 1e,f shows
the optical field PDFs, and Figures 2 and 3 show the CSD function and irradiance results,
respectively. In Figure 2a–c, we report the theoretical, CS, and P&I Re[W(x1, 0, x2, 0)],
respectively; (d)–(f) show the corresponding Im[W(x1, 0, x2, 0)]; (g) compares the y = 0
slices through the mean irradiance [equal to the diagonals of (a), (b), and (c)]; and lastly, (h)
compares the Re[W(x, 0,−x, 0)] [equal to the anti-diagonals of (a), (b), and (c)]. Figure 3 is
similarly arranged: (a)–(c) show the theoretical, CS, and P&I BI(x1, 0, x2, 0); (d) compares
BI(x, 0, x, 0) = σ2

I (x, 0); (e) compares BI(x, 0,−x, 0); and (f) compares the irradiance PDFs.
The agreement between theory, CS, and P&I results in these figures is excellent.

Figure 2. GSM beam cross-spectral density (CSD) function results—(a) theory, (b) CS, and (c) P&I
Re[W(x1, 0, x2, 0)]; (d) theory, (e) CS, and (f) P&I Im[W(x1, 0, x2, 0)]; (g) theory, CS, and P&I 〈I(x, 0)〉;
and (h) theory, CS, and P&I Re[W(x, 0,−x, 0)]. The CS and P&I field expressions are given in
Equations (A5) and (2), respectively. The theoretical CSD function is given in Equation (26).

3.2. NUC Beam

We now discuss the NUC beam simulation and results. The NUC beam CSD function is

W(ρ1, ρ2) = exp

(
−

ρ2
1 + ρ2

2
4σ2

)
exp

−
(
|ρ1 − γ|2 − |ρ2 − γ|2

)2

δ4

, (33)

where γ is a real, two-dimensional vector that shifts the maximum of the correlation
function away from the origin [25]. The other symbols are defined above. The PDF of
irradiance is log-normal, viz.,

p(I) =
1

Iσ
√

2π
exp

[
− (ln I − µ)2

2σ2

]
, (34)
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where the log-normal PDF parameters µ and σ are related to the i moments by

σ =
√

ln
[
σ2

I (ρ) + 1
]

µ = ln

 1√
σ2

I (ρ) + 1

. (35)

Lastly, the covariance of irradiance takes the form

BI(ρ1, ρ2) = σI(ρ1)σI(ρ2) sinc
(

ρ1 − ρ2

δI

)
, (36)

where sinc(x) = sin(x)/x [26].

Figure 3. GSM beam irradiance results—(a) theory, (b) CS, and (c) P&I BI(x1, 0, x2, 0); (d) theory,
CS, and P&I BI(x, 0, x, 0); (e) theory, CS, and P&I BI(x, 0,−x, 0); and (f) theory, CS, and P&I irra-
diance PDFs. The CS and P&I field expressions are given in Equations (A5) and (2), respectively.
The theoretical irradiance PDF and covariance of irradiance are given in Equations (27) and (28),
respectively.

Following the same procedure used to generate a GSM field realization, we find, after
comparing Equations (33) and (14), that

τ(ρ) = exp
(
− ρ2

4σ2

)
χα(ρ1, ρ2)

1/σ2
S

=

(
|ρ1 − γ|2 − |ρ2 − γ|2

)2

δ4 .

. (37)
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The second line of Equation (37) implies α = 2,

χ(ρ1, ρ2) =
|ρ1 − γ|2 − |ρ2 − γ|2

δ2
S

, (38)

and δ4
S = σ2

Sδ4. The pS and HS in Equation (20) are

pS(v) =
σ2

Sδ2
S

2
√

π
exp

(
−

δ4
S
4

v2
x

)
HS(ρ, v) = exp

(
−j|ρ− γ|2vx

)
.

. (39)

In contrast to the GSM beam, and Schell-model beams in general, HS is not the Fourier
kernel, and therefore, Equation (20) must be evaluated as a matrix-vector product. This
is generally a daunting task because of the size of HS. Here however, both HS and pS are
one-dimensional in the v domain. This significantly reduces the size of HS and simplifies
Equation (20) to

S(ρ) =
σSδS(

2
√

π
)1/2 Re

[∫ ∞

−∞
rS(vx) exp

(
−

δ4
S
8

v2
x

)
exp

(
−j|ρ− γ|2vx

)
dvx

]
. (40)

For i, the autocorrelation function of ζG is given in Equation (36). The pζG and HζG in
Equation (24) are

pζG(v) =
δI
2

rect
(

δI
2

vx

)
HζG(ρ, v) = σI(ρ) exp(−jρvx),

, (41)

where rect(x) is the rectangle function defined in Reference [43]. Like pS and HS, pζG and
HζG are one-dimensional in the v domain. Equation (24) simplifies to

ζG(ρ) = σI(ρ)

√
δI
2

Re
[∫ ∞

−∞
rζG(vx) rect

(
δI
2

vx

)
exp(−jρvx)dvx

]
. (42)

The last step is to transform ζG to i using Equation (25), where F−1
T is the inverse

log-normal CDF with µ and σ given in Equation (35).
For the NUC beam simulations, we used spatial domain grids that were 512 points

per side with a spacing equal to 97.66 µm. To discretize vx, we used 1024 points with a
spacing equal to 75.47 m−2 or m−1 for S or i, respectively. The NUC beam parameters
were σ = 6.25 mm, δ = 5 mm, γ = −x̂4.17− ŷ5 mm, σI(ρ) = 0.5, and δI = 1 mm. With
σS = 2π, δS =

√
σSδ = 0.0125 m.

Like the GSM simulations, we generated 10,000 P&I NUC beam field realizations and
from these, computed the field PDFs, irradiance PDF, W, and BI . The MATLAB® scripts
are included as Supplementary Materials.

The NUC beam simulation results are shown in Figures 4–6. With the exception of
the CS results, the layout of the figures is identical to Figures 1–3. The agreement between
the theory and P&I results is again excellent. We also note that the optical field PDFs in
Figure 4c,d are clearly non-Gaussian. The exact forms of these functions are unknown; we
found the theoretical PDFs numerically.
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Figure 4. Nonuniformly correlated (NUC) beam field realizations and field PDFs—(a,b) P&I |U|
and arg(U); and (c,d) theory and P&I Re(U) and Im(U) PDFs. The P&I field expression is given in
Equation (2).

Figure 5. NUC beam CSD function results—(a) theory and (b) P&I Re[W(x1, 0, x2, 0)]; (c) theory and
(d) P&I Im[W(x1, 0, x2, 0)]; (e) theory and P&I 〈I(x, 0)〉; and (f) theory and P&I Re[W(x, 0,−x, 0)]. The
P&I field expression is given in Equation (2). The theoretical CSD function is given in Equation (33).
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Figure 6. NUC beam irradiance results—(a) theory and (b) P&I BI(x1, 0, x2, 0); (c) theory and P&I
BI(x, 0, x, 0); (d) theory and P&I BI(x, 0,−x, 0); and (e) theory and P&I irradiance PDFs. The P&I
field expression is given in Equation (2). The theoretical irradiance PDF and covariance of irradiance
are given in Equations (34) and (36), respectively.

4. Conclusions

In this paper, we demonstrated a new technique to synthesize partially coherent
sources by independently controlling the phase and magnitude statistics of the underlying
optical fields. In so doing, we generated non-Gaussian random field instances, which can
be used to model interesting optical phenomena, such as random beam scattering and
propagation through turbulent media, and to design new partially coherent beams with
potentially interesting characteristics.

We began the analysis by presenting our model for a random field realization. Our
model consisted of three functions—one deterministic function corresponding to the beam
shape and two statistically independent random functions representing the phase and
irradiance. We then computed ensemble moments of our field model to relate the phase
and irradiance random function statistics to those of the desired partially coherent beam.
We ended the analysis by describing how to generate phase and irradiance realizations
that, when substituted into our model, produced a random optical field with statistics
corresponding to the desired partially coherent source.

To validate our method, we generated two partially coherent sources—a GSM beam
and a novel source called a NUC beam. For the GSM source, we compared simulated field
and irradiance moments computed from 10,000 field realizations to the theoretical expres-
sions. In addition, we generated GSM field instances using the complex screen approach to
compare our method to an established synthesis technique. While the field realizations
generated using our approach differed from complex screen fields, the agreement amongst
the statistical moments was excellent. For the NUC beam, we again generated 10,000 field
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realizations and compared the Monte Carlo moments to the desired, theoretical expressions.
The agreement was again excellent.

In conclusion, the method presented in this paper expands existing partially coherent
beam synthesis approaches by permitting control over the irradiance moments of random
beams. In addition, this work has the potential to be used in the design of new partially
coherent sources for beam-control applications.

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, MATLAB®
version R2018b (The MathWorks, Inc., Natick, MA, USA) scripts (.m files) used to perform the
simulations described in the paper.
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Abbreviations
The following abbreviations are used in this manuscript:

CCG circular complex Gaussian
CDF cumulative distribution function
CS complex screen
CSD cross-spectral density
GSM Gaussian Schell-model
JCF joint characteristic function
NUC nonuniformly correlated
NORTA NORmal To Anything
PDF probability density function

Appendix A. Proof of Equation (21)

Starting with Equation (20), we bring the real-part operator inside the integrals to yield

S(ρ) =
∫∫ ∞

−∞

√
pS(v)Re[rS(v)HS(ρ, v)]d2v

=
∫∫ ∞

−∞

√
pS(v)

[
rr

S(v)Hr
S(ρ, v)− ri

S(v)Hi
S(ρ, v)

]
d2v

, (A1)

where the superscripts “r” and “i” denote real part and imaginary part, respectively.
Taking the autocorrelation of Equation (A1) and bringing the expectations inside the
integrals produces

〈S(ρ1)S(ρ2)〉 =
∫∫∫∫ ∞

−∞

√
pS(v1)pS(v2){〈rr

S(v1)rr
S(v2)〉Hr

S(ρ1, v1)Hr
S(ρ2, v2)

−〈rr
S(v1)ri

S(v2)〉Hr
S(ρ1, v1)Hi

S(ρ2, v2)− 〈ri
S(v1)rr

S(v2)〉Hi
S(ρ1, v1)Hr

S(ρ2, v2)

+〈ri
S(v1)ri

S(v2)〉Hi
S(ρ1, v1)Hi

S(ρ2, v2)
}

d2v1d2v2

. (A2)

www.mdpi.com/xxx/s1
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Recall that rS is a sample function drawn from a delta-correlated, zero-mean, CCG
random process; thus, the above auto- and cross-correlations are

〈rr
S(v1)rr

S(v2)〉 = 〈ri
S(v1)ri

S(v2)〉 = δ(v1 − v2)

〈rr
S(v1)ri

S(v2)〉 = 〈ri
S(v1)rr

S(v2)〉 = 0
. (A3)

This simplifies Equation (A2) to

〈S(ρ1)S(ρ2)〉 =
∫∫ ∞

−∞
pS(v)

[
Hr

S(ρ1, v)Hr
S(ρ2, v) + Hi

S(ρ1, v)Hi
S(ρ2, v)

]
d2v, (A4)

which is equivalent to Equation (21). Since Equation (24) is of the same form as Equa-
tion (20), this result holds for ζG as well.

Appendix B. Generating GSM Beams Using the Complex Screen Technique

A GSM complex-screen (CS) field realization takes the form

U(ρ) = exp
(
− ρ2

4σ2

)
T(ρ), (A5)

where T is the CS and a zero-mean, unit-variance, correlated CCG random process [20].
Taking the autocorrelation of Equation (A5) and comparing that result to the GSM CSD
function given in Equation (26) yields the relation

〈T(ρ1)T
∗(ρ2)〉 = exp

(
−|ρ1 − ρ2|

2δ2

)
. (A6)

Clearly, the autocorrelation function of T is genuine, and therefore, we can use Equa-
tion (1) to generate realizations of T. Reference [41] provides the details for general sources.
Specializing to GSM sources, a realization of T can be generated by evaluating

T(ρ) =
∫∫ ∞

−∞
r(v)

√
1
2

√
δ2

2π
exp

(
− δ2v2

2

)
exp(−jρ · v)d2v, (A7)

where r is a sample function drawn from a delta-correlated, zero-mean, CCG random
process. Equation (A7) is the Fourier transform of the product of two Fourier transforms,
and therefore, simplifies to a convolution integral.

Since r is Gaussian and the operation in Equation (A7) is linear, T and therefore U
in Equation (A5) are Gaussian distributed. It then follows that the irradiance PDF and
covariance of irradiance are given by Equations (27) and (28), respectively.
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