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Abstract: This paper presents the quantitative measurement through an experimental test of 640 Gbps
16-QAM coherent-optical orthogonal frequency-division multiplexing (CO-OFDM) over 800 km
optical fiber with mid-link optical phase conjugation (OPC) using highly nonlinear fiber (HNLF).
The first focus is the OPC parameter optimization, including the optimization of HNLF length and
signal/pump power that inputs into OPC. Four different HNLFs, as the illustrative examples, are
investigated. The second focus is to investigate the effects of fiber dispersion, nonlinearity, and
amplified spontaneous emission (ASE) noise on the long-haul transmission of 16-QAM CO-OFDM
signal, and the OPC compensation efficiency. The performance evaluation focuses on the conversion
efficiency (CE), received signal constellation, Q-factor improvement, and bit error rate (BER) at
the receiver end. Such end-to-end performance evaluation is important because the 16-QAM CO-
OFDM signal status is heterogeneous and the mitigation of transmission impairments to the signal
is still unclear. The OPC parametric optimization is achieved experimentally using commercially
available HNLFs with different scenarios and the numerical results are interpreted in conjunction
with simulations.

Keywords: 16-QAM CO-OFDM; optical phase conjugation (OPC); four-wave mixing (FWM); high
nonlinear fiber (HNLF); OPC parameter

1. Introduction

The optical network demands to have a transmission capacity of over 1000 Gbps, so
coherent-optical orthogonal frequency-division multiplexing (CO-OFDM) as an advanced
modulation scheme is currently under investigation to support both high spectral efficiency
and long transmission distance. The advantage of CO-OFDM includes seamlessly multi-
plexed sub-carriers which not only offer a high spectral efficiency but also enable efficient
channel estimation and dynamic allocation of carrier number and data rate at negligible
hardware cost. In 2016, Ellis et al. demonstrated a single-wavelength 400 Gbps OFDM
experimental system [1]. However, due to the relatively high peak-to-average power ratio,
the long-haul transmission of CO-OFDM is constrained by self-phase modulation (SPM),
cross-phase modulation (XPM), and four-wave-mixing (FWM), which become significant
under a high signal launched power [2]. From this point of view, if high launched power is
used to improve the optical signal-to-noise ratio (OSNR) and transmission distance, the
nonlinear mitigation is indispensable.

There are many approaches of nonlinear compensation available in the literature.
Bharath et al. proposed an adaptive modulation technique to mitigate fiber nonlinear
effects [3]. Optical phase conjugation (OPC) is an approach for nonlinear compensation
in long haul transmission over optical fiber, where the signal formats and bit rates are
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heterogeneous and agnostic [4,5]. OPC based on FWM benefits from the uniqueness of
signal-transparent, multichannel-adaptive, wide bandwidth, and effective in simultaneous
compensation of linear dispersion and nonlinear impairments [6,7]. OPC combined with
wavelength division multiplexing (WDM) to transmit intensity-modulated and phase-
modulated signals were tested in the laboratory [6]. Likewise, OPC is also utilized in a
long-haul transmission based on multichannel and agnostic modulation-format/bitrate
operations [7–9]. Recently, CO-OFDM has become increasingly popular owing to its ca-
pability to retrieve complex signals [10,11]. Whilst considering long haul transmission,
linear dispersion and nonlinear effect in fiber can distort the signal [11,12]. There are a
number of digital OPC solutions, including a semiconductor optical amplifier (SOA) [13],
periodically-poled lithium-niobate (PPLN)-based guard-band-less optical phase conju-
gation [14], and silicon waveguide-based OPC [15]. However, such OPC solutions are
inefficient for multiple sub-channel operations in real-time due to the limited available
bandwidth of the components. Besides, the nonlinear distortion compensation requires a
large computing resource.

In practice, mid-link OPC, also named mid-span spectral inversion (MSSI), is utilized
to enhance the transmission quality over long haul fiber [1], where the key element for
optical phase conjugation is HNLF [2] through XPM and FWM effects. For example,
mid-link OPC compensation is employed in 2×, 4×, and 8 × 28 Gbps PM-QPSK over
100 km fiber [8] and 3 × 20 Gbps PAM4 over 360 km fiber [9]. The numerical results
demonstrate that OPC compensates 90% of the signal nonlinear interference, equivalent to
2.3 dB Q-factor gain [10]. Furthermore, mid-link OPC implemented by wavelength shift-
free technique [11] shows that 0.7 dB gain in Q-factor can be obtained in the transmission
of 8 × 200 Gb/s polarization division multiplexed 16-QAM over 1.6 Tb/s fiber for 800 km.
Regarding to WDM employed in long haul fiber transmission, a 64-QAM signal over
400 km is equipped with mid-link OPC [16]. The numerical results show that Q-factor gain
up to 2.5 dB can be achieved.

Nonlinear distortion mitigation in OPC can also be implemented by introducing
backward-pumped Raman amplifier that allows a lower input signal power of 2 dB com-
pared with direct transmission. Dual-order Raman based mid-link OPC was tested in
a 256 Gb/s dual-polarization 16-QAM transmission over 2 × 50.4 km single-mode fiber
(SMF) [17], in which the performance evaluation in Q-factor achieved 7 dB reduction in
nonlinear threshold and 5 dB optimum launch power, respectively. H. Hu presented an
experimental test of 8 × 32 Gbaud PDM 16-QAM sub-channels over a 912 km WDM
link with OPC based on 500 m HNLF, [18], in which 3 dB nonlinear threshold gain was
achieved comparing to the case of no OPC. However, the effect of HNLF length was not
discussed [18]. L.B. Du reported an experimental test of a 604.7 Gb/s 16-QAM OFDM
rather than CO-OFDM over 800 km fiber with mid-link [19], in which 4.8 dB Q-factor
improvement was achieved comparing to the case of no OPC. In [20], 4-QAM CO-OFDM
with multiple OPC sections was studied using an analytical model, in which the BER
improvements were investigated for dispersion unmanaged (DU) and dispersion managed
(DM) system, respectively.

This paper presents a case study of multiple 16-QAM super sub-channels over 800 km
CO-OFDM link with mid-link OPC using HNLF. When 16-QAM CO-OFDM signal, includ-
ing carrier frequency and bandwidth, is given, the investigation focuses on OPC parametric
optimization, including the optimization of HNLF length and signal/pump power that
inputs into OPC, where four different HNLFs, as illustrative examples, are considered.
Furthermore, the investigation focuses on the effects of fiber dispersion, fiber nonlinearity,
and ASE noise on the transmission of 16-QAM CO-OFDM signal and the compensation
efficiency of using mid-link OPC with different HNLFs. The performance evaluation
focuses on the transmission quality of 16-QAM CO-OFDM with mid-link OPC, including
conversion efficiency, the received signal constellation, Q-factor gain, and BER at the re-
ceiver end. This is important because 16-QAM CO-OFDM signal status is heterogeneous
and the mitigation of transmission impairments to the signal is still unclear. On the other
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hand, the case study of 16-QAM CO-OFDM with mid-link OPC presented in this paper is
different comparing to [17–19], which focus on OPC with OPSK [17], WDM link [18], and
OFDM link [19], respectively. Although the performance evaluation in [20] focused on BER
versus the signal launch power but without considering of HNLF length and transmission
distance.

2. Experiment Setup

Figure 1 shows a diagram of experimental 640 Gbps 16-QAM CO-OFDM transmission
over 800 km fiber with a mid-link OPC. Likewise, the same optical simulation system as the
laboratory experimental system described in Figure 1 is implemented on the “OPTISYSTEM
15.0” optical simulation platform [21].
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Figure 1. A diagram of 16-QAM coherent-optical orthogonal frequency-division multiplexing (CO-
OFDM) transmission with mid-link optical phase conjunction (OPC) compensation.

In the transmitter, two signal streams are loaded into two parallel arbitrary wave-
form generators (AWG, M8195A: Keysight, Penang, Malaysia) running at 64 GS/s and
modulated with a pair of parallel dual-drive Mach–Zehnder modulators (MZM) with op-
posite polarity, respectively. The signal laser has 193.1 THz (1552.52 nm) central frequency
and 0.3 MHz linewidths. At the output of MZM, there are in-phase optical 16-QAM and
quadrature-phase optical 16-QAM, respectively, in which each signal stream is composed of
80 sub-carriers. Two optical 16-QAM signal streams, orthogonal to each other, are coupled
into a 16-QAM CO-OFDM stream at a bit rate of 640 Gbps. The detailed parameters of the
experiment are shown in Table 1.

Table 1. The experiment parameters.

Parameters Value

Bit rate 640 Gbps
Maximum possible sub-carriers 128

Number of sub-carriers 80
Number of prefix points 10

Number of training symbols 10
Number of pilot symbols 6

The fiber link is implemented by 16 spans of 50 km standard single-mode fiber
SMF-28e+ (SSMF, Corning) and an erbium-doped fiber amplifier (EDFA, AEDFA-18-B-FA:
Amonics, Hong Kong, China) of 10 dB gain per span. Variable optical attenuators (VOAs,
VOAA-15-40-S/FA: OptoQuest, Saitama Prefecture, Japan) are employed at the input of
each fiber span to ensure the optical signal power symmetry throughout the system [16].
Band-pass filter (BPF, WSS-1000s: Finisar, Sydney, Australia) with bandwidth 0.32 nm is
used to minimize the amplified spontaneous emission (ASE) noise. Alternatively, a disper-
sion compensated fiber (DCF) with group velocity dispersion (GVD) of −98 ps/nm/km
and attenuation of 0.16 dB/km is implemented as a bypass route to evaluate the effect of
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fiber nonlinearity on 16-QAM CO-OFDM signal without OPC, where an EDFA to provide
20 dB gain in signal power and an optical BPF of 0.32 nm to minimize the ASE noise are
included for comparing with the case of using OPC under the same conditions.

The mid-link OPC has two inputs, including dual pump laser signals at 193.14 THz
(1552.20 nm) and the 16-QAM CO-OFDM signal at 193.1 THz (1552.52 nm). A polariza-
tion beam combiner (PBC) provides orthogonal polarization for the pumps to achieve
polarization-insensitive operation. To prevent useless idles generated by two different
pump frequencies, two pumps with the same frequency of 193.14 THz are utilized to
improve the phase conjugation efficiency and polarization insensitivity [4]. The optical
phase conjugation occurs at a center frequency 193.18 THz (1551.88 nm) based on FWM
which benefits from HNLF [13]:

λcon = 2λpump − λsig (1)

At the receiver end, the 16-QAM CO-OFDM signal into 90◦ hybrid coherent detection
which consisting of a Kylia optical hybrid and balanced photodiodes to down-convert
the optical signal. A real-time sampling oscilloscope (DSO-X 92804A Infiniium: Agilent,
Penang, Malaysia) running at 80 GS/s was used as the analog to digital converter (ADC).

Clearly, when 16-QAM CO-OFDM signal is given, the design of OPC involves the
selection of HNLF length and the optimization of signal power and pump signal power that
inputs into OPC, which are highly related to the characteristics of HNLF. Hence four differ-
ent types of HNLFs, as illustrative examples, are considered to study how to select suitable
OPC parameters based on the HNLF characteristics. As shown in Table 2, four types of
HNLFs, denoted by IDs A to D, are considered, where A represents dispersion-flattened
HNLF (DF-HNLF), B is a standard HNLF, C is HNLF with stable phase-matching for im-
proved nonlinear efficiency (HNLF-SPINE), and D is specified HNLF-SPINE with a lower
value of fourth-order fiber dispersion coefficients. Note that the dispersion parameters are
measured by an Agilent 86037C dispersion test set [22].

Table 2. Four types of highly nonlinear fiber (HNLF) are considered for OPC.

HNLF A B C D

λ0 [nm] 1541.3 1546.7 1542.9 1545.4
S0 [ps/nm2km] 0.0074 0.017 0.072 0.07

α [dB/km] 0.76 0.74 0.83 0.47
n2 [m2/W] 30.467 31.989 27.392 18.951

γ [W−1/km−1] 10.8 11.3 9.7 6.7

3. Optical Phase Conjunction (OPC) Parametric Optimization

Figures 2 and 3 illustrate the measured conversion efficiency and BERs at the receiver
end versus the signal power and the pump signal power input into OPC, respectively. The
conversion efficiency is defined as the power ratio of the resulting phase conjugate signal to
the transmitted signal. It is well-known that the control of signal power and pump signal
power at the input of OPC is an important approach to eliminate the nonlinear distortion
such as SPM and pump stimulated Brillouin scattering (SBS) [23]. Figure 2 shows that the
balance of BER and conversion efficiency at the receiver end requires the input signal power
of OPC to be−2.5,−3.3,−2.4, and 1.7 dBm for HNLF A–D, respectively. Likewise, Figure 3
shows that the balance of BER and conversion efficiency at the receiver end requires the
pump signal power to be 23, 23, 23, and 21 dBm for HNLF A–D, respectively.
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4. Performance Evaluation

Figure 4 illustrates a comparison of Q-factor versus HNLF length for HNLF A–D,
which are obtained by simulations using “OPTISYSTEM 15.0” [21]. On other hand, Q-factor
can be calculated from the measured BER using Equation (2), which is provided by [11].

Q(dB) = 20lg[
√

2× er f cinv(2× BER)] (2)
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Note that the numerical results illustrated in Figure 4 are obtained under the conditions
that the input signal power and the pump signal power of OPC are set to the optimum
values obtained by Figures 2 and 3 for HNLF A–D, respectively. Figure 4 shows that the
HNLF length corresponding to the optimum Q-factor value for HNLF A–D is 550, 500,
750, and 800 m, respectively. Equation (3) shows that the deterioration power of OPC is
sensitive to HNLF length [2].

Pdeterioration = 3N2
SC(γL)4P2

pumpP3
SC (3)

where, NSC is the number of sub-carriers, γ = 2πn2
λ0 Ae f f

is the non-linearity factor in the
HNLF, L is the length of HNLF, Ppump is the pump signal power, PSC is the power of a
single sub-carrier.

Figure 5 illustrates the received 16-QAM signal constellation diagrams at the receiver
end for different scenarios, where received OSNR is set up to 34 dB. The aim is to evaluate
the OPC compensation capability. It is known that fiber nonlinear effect, dispersion effect,
and ASE noise accumulated within the transmission bandwidth are the major interference
in optical transmission systems, especially in long haul transmission. After an optical
BPF of 0.32 nm is adapted for reducing the out-band ASE noise effect, it can be seen that
constellation rotation obviously due to fiber nonlinearity in Figure 5a. The constellation
diagram of OPC with different HNLF scenarios as shown in Figure 5b–e demonstrates that
OPC can effectively compensate the fiber dispersion and nonlinearity. In contrast, as shown
in Figure 5a, although DCF is used for dispersion compensation, the constellation points
are still scattered compared to that of using OPC. It clearly demonstrates that dispersion
compensation using OPC is better than that of using DCF [9].
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dispersion compensated fiber (DCF); (b) mid-link OPC using 550 m HNLF A; (c) mid-link OPC using 500 m HNLF B;
(d) mid-link OPC using 750 m HNLF C; (e) mid-link OPC using 800 m HNLF D.

Figure 6 shows Q-factor versus OSNR for different HNLF scenarios. Table 3 presents
the numerical results of conversion efficiency, Q-factor gain, and BER, where received
OSNR is 34 dB. It can be observed that the mid-link OPC with 550 m HNLF A has Q-factor
of 9.8 dB, BER of 6.1 × 10−4 and conversion efficiency of −22 dB. In contrast, the mid-link
OPC with 800 m HNLF D has Q-factor gain of 8.9 dB, BER of 2.7 × 10−3, and conversion
efficiency of −22.6 dB. This can be explained by Equation (4), that the power spectrum of
OPC, denoted as POPC, is in direct proportion to the term (γL)2 [2].

POPC = (γL)2P2
pumpPSC (4)

The mid-link OPC improves Q-factor of 3 dB in average and enhances the BER
performance nearly two orders magnitude comparing to the case of no OPC.
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800 km transmission.

Table 3. A comparison of OPC performance at OSNR 34 dB.

Parameters BER Q [dB] CE [dB]

Without compensation 1.5 × 10−2 6.8 -
With dispersion compensation fiber 1 × 10−2 7.2 -

with mid-link OPC using 550 m HNLF A 6.1 × 10−4 9.8 −22
with mid-link OPC using 500 m HNLF B 1.6 × 10−3 9.4 −22.4
with mid-link OPC using 750 m HNLF C 1.3 × 10−3 9.5 −20.6
with mid-link OPC using 800 m HNLF D 2.7 × 10−3 8.9 −22.6
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5. Conclusions

This paper presents quantitative measurement through an experimental test of 640 Gbps
16-QAM CO-OFDM over 16 × 50 km optical fiber link with a mid-link OPC, which is
implemented using FWM via HNLF. For a given 16-QAM CO-OFDM signal, the design
of OPC needs to focus on the selection of HNLF length and determine signal power and
pump signal power at the input of OPC, which are highly related to the characteristics
of HNLF. There are four different types of HNLFs investigated. The numerical results
show that for a given 16-QAM CO-OFDM signal at 193.1 THz (1552.52 nm), the optimum
length for HNLF A–D is 550, 500, 750, and 800 m, while the optimum signal power
into OPC is −2.5, −3.3, −2.4, and 1.7 dBm and the optimum pump power is 23, 23, 23,
and 21 dBm, respectively. The performance evaluation is presented in terms of OPC
conversion efficiency, Q-factor improvement, received signal constellation, and BER at the
receiver end. It is important because 16-QAM CO-OFDM signal status is heterogeneous
and the mitigation of transmission impairment to the signal is still unclear. The study of
received 16-QAM signal constellation diagrams shows that OPC plays a better role for
compensating fiber dispersion and nonlinearity effect comparing to the case of using DCF.
The numerical results show that mid-link OPC using 550 m HNLF A provides Q-factor of
9.8 dB and BER of 6.1 × 10−4, which has the Q-factor improvement of 3 dB and nearly two
orders magnitude improvement in BER comparing to the case of no OPC. The evaluation
methodology presented in this paper provides useful information for OPC design.
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