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Abstract: Quantum steering, as a cornerstone of quantum information, is usually used to witness the
quantum correlation of bipartite and multi-partite states. Here, we experimentally demonstrate the
quantum steering inequality of two-qubit mixed states based on the fine-grained uncertainty relation.
Our experimental results show that the steering inequality has potent sensitivity to Werner states and
Bell diagonal states. The steering strategy exhibits a strong ability to identify that Werner states are
steerable when the decoherence coefficient a > 1

2 . Compared to the steering inequality obtained by
another stratagem, the steering witness criteria of mixed states based on the fine-grained uncertainty
relation demonstrated in our experiment has better precision and accuracy. Moreover, the detection
efficiency in our measurement setup is only required to be 50% to close the detection loophole, which
means our approach needs less detector efficiency to certificate the steerability of mixed states.

Keywords: quantum steering; uncertainty relation; Werner states; Bell diagonal states; quantum detection

1. Introduction

Quantum nonlocality [1–3], as a fundamental feature of quantum theory, divides
into quantum entanglement [4,5], quantum steering [6–9] and Bell nonlocality [10–13]
based on the degree of correlation. A typical application of quantum nonlocality is to
witness the type of bipartite and multi-partite states, in which the well-known model is
quantum steering inequality. Consider a system where Alice and Bob share a quantum
state; they apply a couple of observables to their own sub-systems and then obtain the
joint probability distribution. The state is labeled as steerability if the probability cannot
be described by any local hidden state (LHS) models. Another way of speaking, the
state is steerable if the specific combination of joint probability distribution violates the
corresponding quantum steering inequality. In general, if Alice wants to steer Bob, she is
allowed to transmit the measurement probability distribution to Bob, while Bob must apply
a quantum measurement on the collapsed reduced density matrix. Therefore, the quantum
steering strategy permits one of the two parts to carry out the classical measurement,
which means one measurement device can be untrusted. Thus, quantum steering is
usually connected with the secret key rate in one-sided device-independent quantum key
distribution [14,15]. Apart from this, quantum steering shows the advantages to self-test
pure entangled states [16,17] and discriminate quantum states [18].

At present, quantum steering inequalities, which are an analog of the Bell-type, have
been presented [19,20] and experimentally demonstrated in many systems [21–23]. Basi-
cally speaking, the observables applied to Alice’s (Bob’s) sub-system are noncommutative
in the aforesaid case. It is natural to connect steerability with uncertainty relation. Heisen-
berg’s uncertainty relation [24], another milestone in the understanding of quantum theory,
reveals that two noncommutative observables cannot be accurately measured at the same
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time. For example, if the position of a particle was able to be measured accurately, the
uncertain relation shows that when measuring its momentum, all outcomes would occur
with equal probability, which results in uncertainty. Therefore, the uncertainty relation is
of paramount significance to explain the double-slit interference of physical particles [25].
Recently, the entropy uncertainty relation in measurement has attracted general attention
since it can witness the nonlocality of quantum states [26–29]. In Ref. [26], Oppenheim J.
and Wehner S. show that the uncertainty relation and quantum nonlocality are inextricably
and quantitatively linked and obtain the tradeoff relationship between them. Based on this,
Pramanik et al. put forward the fine-grained steering (FGS) inequality and discussed the
steerability of different quantum states [30].

The experimental demonstration of the FGS inequality of any two-qubit pure entan-
gled states has been realized in Ref. [18]. In this article, we provide experimental evidence
of FGS inequality in mixed states via linear optical elements. By comparing to the other
stratagem, our approach shows the powerful sensitivity to Werner states and Bell diagonal
states, especially to Werner states. Our article is organized as follows. In Section 2, we
give a brief introduction of quantum steering based on fine-grained uncertainty relation
and present the theoretical violation of two mixed states. Section 3 is the experimental
demonstration of the FGS inequality, and we give a comparison between FGS inequality
and another steering inequality. In Section 4, we discuss and summarize our results.

2. Fine-Grained Steering Inequality

Consider a system in which Alice and Bob share a quantum state ρAB. In the beginning,
Alice receives a dichotomic order I ∈ {0, 1} and applies the corresponding measurement
operators to her sub-system, labeled by A. The outcome is defined as aA. If Alice wants
to steer Bob, she is permitted to transmit the measurement probability to Bob, and then
Bob must apply a quantum measurement on the collapsed reduced density matrix $a|A.
By labeling B to Bob’s sub-system and defining the measurement outcome as bB, we can
obtain the joint probability distribution P(aAbB|AB) (Figure 1). The joint probability can
be written under the LHS model as:

P(aAbB|AB) = ∑
λ

P(λ)P(aA|λ)P(bB|λ), (1)

in which λ is the hidden variable. In a nutshell, Alice can steer Bob if P(aAbB|AB) unable
to be expanded by any forms of Equation (1). Meanwhile, the state ρAB they shared
is steerable.

Alice BobSource

A0 A1 B0 B1Counter

Figure 1. Schematic diagram for quantum steering. Two spatially separated parties, Alice and
Bob, share a quantum state and they want to certify whether it is steerable. Alice performs a set of
black-box measurements Ai, while Bob’s performs quantum measurements Bi. The statistics of the
outcomes of the measurements are used to verify a violation of the steering inequality.

Here, we give a brief introduction of the fine-grained uncertainty relation. For sim-
plicity, consider the qubit case first. Suppose the dichotomic order I ∈ {0, 1}, which Alice
received is equiprobable, i.e., the probability p(I) = 1/2. When the command is 0(1), Alice
performs the σz(σx) to the qubit and then obtains the measurement result a, where σz and
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σx are the Pauli matrix. We define that Alice wins the game if she obtains the spin-up
outcome, namely the measurement result a = 0, regardless of which order she receives.
Obviously, the wining probability can be written as:

P = ∑
I

p(I)pa=0 ≤ Pmax, (2)

where pa=0 is the probability distribution of obtaining a result 0 outcome for the measure-
ment corresponding to the dichotomic order. Pmax is the maximum winning probability
over all possible strategies, which Alice can choose. Evidently, Pmax = 1

2 + 1
2
√

2
when the

qubit state is the eigenstates of σx+σz√
2

[26]. Similarly, for the measurement outcome 1, the

maximum winning probability is the same and occurs for the eigenstates of σx−σz√
2

. This
is the well-known fine-grained uncertainty relation, and it can be extended to bipartite
systems and tripartite systems [26–28].

By introducing the fine-grained uncertainty relation into the LHS model, we can
obtain [30]:

P(bB|aA) ≤ P(bB|λmax), (3)

where the conditional probability P(bB|λmax) represents the maximum winning probability
on Alice’s side in the case of Bob’s side completely unchanged. Since the observables
that Alice and Bob choose are random, here we define the two groups of corresponding
measurement operators as {A1, B1} and {A2, B2}, the inequality above becomes:

P(bB1 |aA1) + P(bB2 |aA2) ≤ P(bB̃1
|λmax) + P(bB̃2

|λmax), (4)

where B̃1 and B̃2 range over all possible maximally incompatible measurements.
Equation (4) is a fine-grained steering criterion satisfied by bipartite states that admit

LHS models for the system of Bob. It shows that Alice can steer Bob if it is violated for
any combination of outcomes {a, b}. Here, we consider Alice’s strategy that she obtains
no prior knowledge of Bob’s measurement at the beginning. To ensure winning the game,
Alice needs to scan all the possible measurement strategies and then maximize the average
winning probability in regard to all possible local hidden states. Bob can check whether the
state is steerable by calculating the violation of Equation (4) after receiving Alice’s result.
The sum of two average winning probability over all possible observables is 3

2 [30]. In this
case, the FGS inequality becomes:

P(bB1 |aA1) + P(bB2 |aA2) ≤
3
2

. (5)

This is the main conclusion of FGS inequality. It clearly shows that Alice can steer Bob
when Equation (5) is violated, and the quantum state ρAB is steerable.

In the following, we analyze the witness sensitivity of FGS inequality to mixed states.
First, we consider that Alice prepares the initial input states as two-qubit Werner states, the
forms of the density matrix are give by:

ρw = a|ψ+〉〈ψ+|+
1− a

4
I4, (6)

where |ψ+〉 = 1√
2
(|00〉+ |11〉) is the two-qubit maximally entangled pure state, I4 is the

4× 4 identity matrix. Without the loss of generality, we use Equation (6) to represent all
classes of Werner states, since the whole Werner states can be translated into Equation (6)
via certain unitary operations, which do not change the degree of quantum correlation.
In order to steer Bob’s system in a specific basis that is known, Alice needs to choose the
observable measurement corresponding to this basis. It is obvious that Equation (5) has four
different equivalent forms because a, b ∈ {0, 1}. As a demonstration, we define a = b = 0.
For simplicity, we specify that Bob’s observable is taken from the set {σz, σx}, therefore,
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the left-hand side of Equation (5) hits the maximum value when Alice applies the same
set of observables on her system. The reason is that the Equation (6) states are constructed
by introducing completely decoherence in maximally entangled pure state |ψ+〉, which
violates Equation (5) maximally when Alice and Bob apply the same observables {σz, σx}
simultaneously[18]. In this case, the left-hand side of Equation (5) obviously becomes:

P(0σB
z
|0σA

z
) + P(0σB

x
|0σA

x
) = 1 + a, (7)

where the conditional probability distribution P(0σB |0σA) = P(0σA 0σB)/P(0σA). It is
easily calculated that the joint probability distribution P(0σA

z
0σB

z
) = P(0σA

x
0σB

x
) = 1+a

4 and
P(0σA

z
) = P(0σA

x
) = 1

2 [30]. Thus, Equation (6) is shown to be steerable for a > 1
2 .

As we know, the quantum concurrence is a strict entanglement criteria, which is
defined for a two-qubit mixed state as [31,32]:

C = max(0, e1 − e2 − e3 − e4), (8)

where ej(j = 1, 2, 3, 4) are the eigenvalues in descending order of the Hermitian rotation
matrix R =

√√
ρρ̃
√

ρ with ρ̃ = (σy ⊗ σy)ρ∗(σy ⊗ σy). Here, ∗ represents complex conju-
gation and σy is the two dimensional Pauli matrix. It is easily calculated that C = 0 when
a ≤ 1

3 . Note that Werner states are entangle but not steerable for 1
3 < a ≤ 1

2 , so the FGS
strategy gives the ultimate tight steering witness bound for Werner states.

Now, we focus on another type of mixed state, Bell diagonal states, where the form
can be written as:

ρb = p|ψ+〉〈ψ+|+ (1− p)|ψ−〉〈ψ−|, (9)

where |ψ−〉 = 1√
2
(|00〉 − |11〉). Note that Bell diagonal states are a linear superposition

of the maximally entangled states |ψ±〉, according to Ref. [18], for |ψ±〉, the maximum
value of the left-hand side of Equation (5), P(0B1 |0A1) + P(0B2 |0A2) = 2 is achieved for
Alice’s choices {σz,±σx} when fixing Bob’s measurement observables as {σz, σx}. Thus,
we can easily calculate that when p < 0.5, Alice should apply the measurement {σz,−σx}
on her subsystem, the corresponding is {σz, σx} on her side if p ≥ 0.5. The joint probability
distribution P(0σA

z
0σB

z
) = 1

2 , P(0−σA
x

0σB
x
) = 1−p

2 , and P(0σA
x

0σB
x
) = p

2 . The probabilities
of Alice’s measurement result a = 0 with both observables are P(0σA

z
) = P(0±σA

x
) = 1

2 .
Therefore, we obtain that the left-hand side variables of Equation (5) are all greater than 1.5,
except p = 0.5. We can conclude that the FGS inequality has strong sensitivity to certify
the steerablity of Bell diagonal states.

3. Experimental Demonstration and Results

In our experiment, |0〉 and |1〉 are represented by the horizontal and vertical polariza-
tion of a photon, respectively. The experimental setup can be divided into two modules:
the state preparation and the measurement module (Figure 2). In the state preparation
module, the entangled photon pairs are generated via a type-I spontaneous parametric
down-conversion process [33,34] of the pump beam from a semiconductor laser with 400.8
nm on the first platform, P1. The pump beam’s polarization is controlled by a half-wave
plate (HWP) H0, passed through a pair of back-to-back nonlinear β-barium-borate (BBO)
crystals with two optical axes vertical to each other. By setting the angle of H0 as 22.5◦,
photon pairs are prepared into |ψ+〉. The following couple of α-BBO crystals after two
mirrors are used to modulate the phase difference between two photon paths. On the basis
of P1, the second platform P2 is added to prepare arbitrary Bell diagonal states ρb. Here, we
use a couple of quartz crystals of the same length to realize the decoherence parameter p.
The optical axis of one quartz crystal is horizontal, and the other is vertical. Different Bell
diagonal states are prepared by adjusting the length of quartz crystals. For Werner states,
we replace P2 by platform P3. Inspired by Ref. [35], we use the beam splitters (BSs), quartz
crystals, and apertures to introduce the decoherence. In the upper path, the photons first
go across a 50/50 BS and separate into two ways. The HWP H3 in the transmission way
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is tilted to compensate the phase of the two-photon states for the generation of |ψ+〉. The
reflected way has a set of quartz crystals with a sufficient thickness and an HWP H4 with
22.5◦ to dephase the state into a completely mixed state. The two adjustable apertures in
the reflected and transmission ways are used to change the ratio of two states mixed at the
output port of the second BS for the generation of an arbitrary Werner state ρw. The optical
path difference between the two ways is large enough to lead to incoherent superposition
since there is a lack of compensated crystals in a transmission way. In the lower path, the
photons directly propagate to the measurement setup.

Figure 2. Experimental setup. The experimental setup can be divided into a state preparation module
and measurement module. The maximally polarization-entangled photon pairs are generated via
type-I spontaneous parametric down-conversion process on platform P1. On this basis, the platform
P2 is used to prepare arbitrary Bell diagonal states ρb and platform P3 is used to prepare arbitrary
Werner states ρw. In the measurement setup, the observables Alice and Bob carried out in our
whole experiment are realized by a combination of sandwich-type QWP-HWP-QWP sequences and
following PBS. All the joint probabilities can be read out from the coincidence between certain APDs.
Key to components: HWP, half-wave plate; BBO, β-barium-borate crystal; BS, beam splitter; QWP,
quarter-wave plate; PBS, polarizing beam splitter; APD, avalanche photodiodes.

In the measurement module, all of the observables Alice and Bob applied in the FGS
strategy can be implemented by an HWP, a polarization beam splitter (PBS), and two
single-photon avalanche photodiodes (APDs). By rotating the setting angle to H1 = 22.5◦

and H2 = 22.5◦, Alice and Bob carry out measurement σx, whereas σz can be realized
by a similar setup by removing the two HWPs. The coincidence counting of D1 and
D3 represents that Alice and Bob measure the result a = b = 0 simultaneously. Thus,
the conditional probability distribution P(0σB |0σA) can be calculated via dividing by the
measurement result a = 0 in Alice’s side, which is directly read by the coincidence counting
summation of {D1, D3} and {D1, D4}.

For each measurement, we record the clicks for 20 s under a 7 ns time window, and
the total coincidence counts are approximately 10,000. The fidelities of Werner states in the
experiment are all higher than 0.982, and we show the concurrence with a different decoher-
ence coefficient a, as calculated by the density matrices of the states which are reconstructed
through quantum state tomography. In Figure 3a, we show that the experimental values
agree well with theoretical concurrence, which tells us the states are entangled when a > 1

3 .
We then calculate the violation of Equation (5), according to the experimental raw data
of conditional probabilities P(0σB |0σA). Figure 3b shows the measurement violation as a
linear function of decoherence coefficient a and the experimental values match well with
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the theoretical ones. At the point a = 1
2 , the sum of correlation P(0σB

z
|0σA

z
) + P(0σB

x
|0σA

x
) is

1.498± 0.039, which indicates that the Werner state is steerable when a > 1
2 .
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Figure 3. Experimental results of Werner states. (a) Experimental concurrence as a function of
the decoherence coefficient a for different Werner states ρw. The triangle symbols represent the
experimental data. Solid line represents the theoretical prediction. Error bars are obtained based
on assuming Poisson statistics. (b) Experimental violations of FGS inequality as a function of the
state coefficient a. The circular symbols represent the experimental data. Solid line represents the
theoretical prediction. Dashed line represents the bounds of violation of FGS inequality. Error bars
are due to the statistical uncertainty. The experimental results match well with theoretical predictions.

Unlike Werner states, for Bell diagonal states, the maximum violation of the FGS
inequality is achieved when Alice and Bob carry out observables {σz,−σx} when p < 1

2
simultaneously and {σz, σx}when p > 1

2 . The experimental demonstration is implemented
by replacing the state preparation part P3 to P2. In the measurement setup, if we realize
the observable −σx, we need add a 45◦ HWP after the previous HWP H1. The fidelities
of Bell diagonal states are all higher than 0.975. Figure 4a shows the concurrence of the
initial states. By scanning p from the range [0, 1], we find that for any Bell diagonal states in
Equation (9), the violations P(0σB

z
|0A1) + P(0σB

x
|0A2) are symmetric with respect to p = 0.5

(Figure 4b). At the point p = 0.5, the value of violation 1.493± 0.042 means that the state
ρb,p=0.5 is unsteerable, which agrees well with Figure 4a, which tells us that the concurrence
of state ρb,p=0.5 is 0, namely, ρb,p=0.5 is not entangled, let alone the steerability.

From the foregoing, the FGS inequality shows the powerful sensitivity to mixed states,
especially to Werner states. This is one of the advantages of the steering inequality based on
the fine-grained uncertainty relation. As a comparison, we experimentally verify another
steering inequality of mixed states, the so-called Cavalcanti-Foster-Fuwa-Wiseman (CFFW)
inequality, which is presented by Cavalcanti et al. [19]. In Ref. [19], they derived CFFW
inequality for steering, which is an analog of the Clauser–Horne–Shimony–Holt (CHSH)
inequality, in that it is necessary and sufficient in the simplest Bell-nonlocality scenario:
two parties, two measurements per party and two outcomes per measurement. The CFFW
inequality is given by:√

〈(A1 + A2)B1〉2 + 〈(A1 + A2)B2〉2 +
√
〈(A1 − A2)B1〉2 + 〈(A1 − A2)B2〉2 ≤ 2. (10)

Here, the two sets of observables {A1, B1} and {A2, B2}, which correspondingly
applied to Alice’s and Bob’s sub-system are not fixed, but {B1, B2}must be two mutually
unbiased qubit measurements. The correlations of the form 〈AB〉 = P(a = b|AB) −
P(a = (b⊕ 1)|AB), in which ⊕ is an addition to modulo two and {a, b} are the respective
measurement results of Alice and Bob. A violation of Equation (10) is demonstrating
quantum steering.
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Figure 4. Experimental results of Bell diagonal states. (a) Experimental concurrence as a function of
the parameter p for different Bell diagonal states ρb. The triangle symbols represent the experimental
data. Solid line represents the theoretical prediction. Error bars are obtained based on assuming
Poisson statistics. (b) Experimental violations of FGS inequality as a function of p. The circular
symbols represent the experimental data. Solid lines represent the theoretical prediction. The
dashed line represents the bound of violation of FGS inequality. Error bars are due to the statistical
uncertainty. The experimental results match well with theoretical predictions.

In order to achieve the maximal violation of CFFW inequality, we scan the whole
permitted measurement strategies of Alice and Bob since the observables are unknown
but keeping B1 and B2 mutually unbiased. In the experiment, we only need to add
certain QWPs in the original measurement setup, namely, a combination of sandwich
type QWP-HWP-QWP sequence [36–38], and a following PBS to realize the measurement
operators. The coincidence counting of the APDs {D1, D3} represent the result a = b = 0,
simultaneously. Similarly, coincidence counting of APDs {D1, D4} represent a = 0 and
b = 1, APDs {D2, D3} for a = 1 and b = 0, APDs {D2, D4} for a = b = 1. As we all
know, Werner states consist of different ratios of |ψ+〉 and a completely mixed state, thus,
the observables, which maximally violate the CFFW inequality of Werner states are as the
same as |ψ+〉 and remain unchanged with different decoherence coefficient a.

The symmetry of CFFW inequality is another reason why the observables stay the
same. The setting angles of QWP-HWP-QWP are given by {−45◦, 11.8◦,−20.8◦} for A1,
{−45◦, 21.3◦,−3.1◦} for B1, {−45◦, 34.6◦, 25.1◦} for A2 and {−45◦, 1.2◦,−41.9◦} for B2.
Figure 5 shows the measurement violation of CFFW inequality still varies linearly with
parameter a. At the point a = 1√

2
, the experimental data is 1.977± 0.081, which denotes

Werner states are steerable when a > 1√
2
, based on the CFFW inequality.

For Bell diagonal states, we also use the sandwich type QWP-HWP-QWP sequence
and a PBS to implement the measurement operators. Unlike the Werner state, the setting
angles of wave plates change with parameter p. Table 1 gives the whole setting angles of the
QWP-HWP-QWP sequence to realize the measurement operators which maximally violate
the CFFW inequality of different Bell diagonal states. Figure 6 exhibits the experimental
violation data of the CFFW inequality. We conclude that the values are symmetrical about
the p = 0.5. When p = 0.5, the point data is 1.967± 0.042, which indicates that the state
ρb,p=0.5 is unsteerable.

Compared to the steering inequality obtained by other stratagems, which identify
the steerablity of Werner states when a > 1√

2
, the inequality based on the fine-grained

uncertainty relation has a tighter bound, which means that the steering witness criteria
demonstrated in our experiment can obtain better precision and accuracy for Werner states.
In addition, the FGS inequality still exhibits the sensitivity to witness the Bell diagonal states.
More importantly, the fair sampling condition in steering inequalities needs to be invoked
only on the untrusted subsystem [39], the detection efficiency in the measurement setting
is required only to be 50% to close the detection loophole [40,41] (the detection efficiency
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is about 62% in our experiment). Compared to the fully device-independent protocol of
an analog of the Bell-CHSH-type steering inequalities, in which the detection efficiency
required is up to 83% [42], our approach needs less detector efficiency to certificate the
steerablity of mixed states.
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Figure 5. Experimental violations of CFFW inequality as a function of the state decoherence coefficient
a for different Werner states ρw. The diamond symbols represent the experimental data. The solid
line represents the theoretical prediction. The dashed line represents the bound of violation of the
CFFW inequality. Error bars are due to statistical uncertainty. The experimental results match well
with theoretical predictions.
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Figure 6. Experimental violations of the CFFW inequality as a function of the state parameter p for
different Bell diagonal states ρb. The diamond symbols represent the experimental data. The solid
line represents the theoretical prediction. The dashed line represents the bounds of violation of the
CFFW inequality. Error bars are due to the statistical uncertainty. The experimental results match
well with theoretical predictions.
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Table 1. The different setting angles of the sandwich type QWP-HWP-QWP sequence to realize the measurement operators
in demonstration of the CFFW inequality.

p A1 B1 A2 B2

Q1’ H1 Q1 Q2’ H2 Q2 Q1’ H1 Q1 Q2’ H2 Q2

0 45◦ −52.1◦ 31.5 ◦ −45◦ 28.7◦ 9.2◦ −45◦ 18.9◦ −3.5 ◦ −45◦ −6.2◦ −54.2◦

0.1 −45◦ 6.5◦ −31.5◦ −45◦ 29◦ 8.8◦ 45◦ 26.9◦ −86.5 ◦ −45◦ −6.5◦ −53.8◦

0.2 45◦ −52.3◦ 31.4 ◦ −45◦ 35.3◦ 17.1◦ −45◦ 9.7◦ −8.8 ◦ 45◦ −4.3◦ 27.9◦

0.3 −45◦ −2.6◦ −46.2◦ −45◦ 25.3◦ 4.7◦ −45◦ 10.6◦ −23 ◦ −45◦ −2.8◦ −49.8◦

0.4 −45◦ −3.6◦ −45.4◦ −45◦ 24.6◦ 1.9◦ −45◦ 10.3◦ −22.3 ◦ 45◦ −42.9◦ 46.9◦

0.5 45◦ −38.7◦ 45◦ −45◦ 27.5◦ −1.9◦ −45◦ 10.5◦ −19.9 ◦ −45◦ −5◦ −43.1◦

0.6 −45◦ −1.5◦ −47.9◦ 45◦ 25.6◦ −83.8◦ −45◦ 15.1◦ −14.6 ◦ −45◦ −3.1◦ −51.2◦

0.7 −45◦ 4.2◦ −35.4◦ −45◦ 23.1◦ 0◦ 45◦ 6.8◦ −32.7 ◦ −45◦ −0.6◦ −45◦

0.8 −45◦ −7.1◦ −48.7◦ 45◦ 20.8◦ 2.4◦ −45◦ 11.9◦ −15.6 ◦ −45◦ −1.7◦ −42.6◦

0.9 45◦ −55.3◦ 24.9◦ 45◦ 24.1◦ 2.8◦ −45◦ 36.2◦ 26.8 ◦ −45◦ 1.6◦ −42.2◦

1 −45◦ 12.4 ◦ −20.8◦ 45◦ 24.4◦ 3.1◦ −45◦ 35.5◦ 25.1 ◦ −45◦ 1.9◦ −41.9◦

4. Discussion and Summary

To summarize, in this article, we have presented an experiment to demonstrate the
FGS inequality for different mixed states via linear optical elements. Our experimental
proof is on the strength of fact that the steering inequality based on fine-grained uncertainty
relations can be used to witness two-qubit mixed states. The experimental results exhibit
that FGS inequality has strong sensitivity to Werner states and Bell diagonal states. For
Werner states, compared to the steering inequalities obtained by other stratagems, which
give the bound a > 1√

2
, our approach gives the ultimate bound a > 1

2 , which has better
precision and accuracy. For Bell diagonal states, it still shows the powerful ability to
identify whether the class of Bell diagonal states is steerable as well.

It is worth stressing that the approach based on the FGS inequality requires observ-
ing joint probabilities only for two pairs of observables {A1, B1} and {A2, B2}, while for
the Bell-CHSH-type steering inequality, to observe joint probabilities requires all four
pairs of observables {A1, B1}, {A1, B2}, {A2, B1}, and {A2, B2}. Therefore, our approach
of steerablity certification requires a lesser number of joint observables. Besides, com-
pared to the fully device-independent protocol for demonstrating the Bell-CHSH-type
steering inequality violation, our approach needs less detector efficiency to certificate the
steerablity of mixed states, which results in a promising better applicability in practical
information processing.
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Abbreviations
The following abbreviations are used in this manuscript:

LHS Local hidden state
FGS Fine-grained steering
HWP Half-wave plate
BBO Barium borate
QWP Quarter wave plate
BS Beam splitter
PBS Polarization beamsplitter
APD Avalanche photodiodes
CFFW Cavalcanti-Foster-Fuwa-Wiseman
CHSH Clauser–Horne–Shimony–Holt
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