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Abstract: An optical configuration was designed and simulated with a metal-photonic crystal (PhC)
nanocavity, which had high sensitivity on gas detection. The simulated results shows that this
configuration can generate a strong photonic localization through exciting Tamm plasmon polaritons.
The strong photonic localization highly increases the sensitivity of gas detection. Furthermore,
this configuration can be tuned to sense gases at different conditions through an adjustment of the
detection light wavelength, the period number of photonic crystal and the thickness of the gas cavity.
The sensing routes to pressure variations of air were revealed. The simulation results showed that
the detection precision of the proposed device for gas pressure could reach 0.0004 atm.
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1. Introduction

A high-sensitivity method of gas sensing is increasingly necessary through the devel-
opment of a measurement technique. Recently, optical sensors have played an important
role in the high-sensitivity sensing of various targets due to the development of photonic
and laser technologies [1–3]. Tamm plasmon polaritons (TPPs) based optical sensors present
many advantages [4,5]. TPPs, traditionally formed at the interfaces between photonic crys-
tal and metal film, can be excited with both transverse electric (TE) and transverse magnetic
(TM) polarized lights without the assistance of external structures [6,7]. Meanwhile, TPPs
can selectively transform the energy of a specific wavelength light into an electromagnetic
mode and can generate optical field enhancement. Their easy excitation mode and high
optical field localization make TPPs attractive for many types of research fields, including
sensors [4,5,8], photodetection [9–11], thermal emission [12], solar cell [13,14], confined
laser [15,16], nonlinear optical effects [17,18], perfect absorption [19,20], and tunable fil-
ters [21–23]. Benefiting from the increasingly mature preparation technology, simple Tamm
structures have been experimentally studied and have garnered plenty of results that
matched well with theoretical studies [24–29]. These results demonstrate the value and
the potential of TPPs-based devices. Recently, we found that a metal-PhC cavity could
also generate TPPs, as the cavity could be used as gas channel. In this work, we designed
an optical sensor based on a Ag-PhC nanocavity, that could allow for the high-sensitivity
detection of gas.

2. Structure and Methods

The structure of an Ag-PhC nanocavity is shown in Figure 1a, and mainly contains
PhC, gas nanocavity and Ag film. The preparation of an Ag-PhC nanocavity can be
processed as discussed. Firstly, by preparing Ag film on silica substrate and etching a gas
nanocavity on the Ag film. Then, by preparing a PhC structure on another silica substrate.
Finally, by combining the etched Ag film and the PhC structure. The selected alternate
dielectric layers of the PhC structure are silicon dioxide (SiO2) and titanium dioxide (TiO2),
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two common periodic structure materials. The thicknesses of SiO2 and TiO2 are set as
245 nm and 160 nm, respectively. The thickness of the gas nanocavity is set as 50 nm.
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Figure 1. (a) Schematic of the Ag-PhC nanocavity. Red line is the electric field distribution of light at
1550 nm (b) Absorption and reflection spectra of the Ag-PhC nanocavity when the period number of
PhC is 10.

Both the reflection and absorption spectra of this configuration are theoretically
investigated by the transfer matrix approach. There are two different matrices in this
method, which are the transmission matrix (TM) and propagation matrix (PM), that can be
described as:

TMk =
1
tk

[
1 rk
rk 1

]
, PMk =

[
exp(−iϕk) 0

0 exp(−iϕk)

]
. (1)

Here, tk and rk are the transmission and reflection coefficients of light transmission
from the (k − 1)-th layer to the k-th layer. ϕk is the phase of light propagating in the k-th
layer. Thus, the total transfer matrix can be represented as:

M = TM1PM1 · · · TM20PM20TMgPMgTMs. (2)

Here, TMg refers the transmission matrix for the interface of the TiO2 layer and the
gas nanocavity, PMg refers the propagation matrix of the gas nanocavity, TMs refers the
transfer matrix for the interface of the gas nanocavity and the Ag film. The transmission
intensity will increase when the thickness of the Ag film is thinner than 60 nm. This will
influence the intensity of the reflection light. In this study, the thickness of Ag film is set
as 150 nm. Thus, the transmittance of the Ag-PhC nanocavity is near zero and negligible.
The reflectance and absorptance of the structure can be expressed as R = |M21/M11|2 and
A = 1 − R. M21 refers the first matrix element in the second row of M. M11 refers the first
matrix element in the first row of M.

Figure 1b shows the reflection and absorption spectra of the Ag-PhC nanocavity when
the period number of PhC is set as 10. The refractive indices of SiO2 and TiO2 can be set
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as 1.45 and 2.13 [23]. The permittivity of the Ag film is described by the Lorentz-Drude
model [30]. It can be seen that the proposed structure has a narrow-band absorption of
almost 1550 nm. The reflection spectrum shows a narrow valley at the corresponding
wavelength. Meanwhile, the red line in Figure 1a shows the electric field distribution of
light at 1550 nm, at which a high localization in the PhC exists. These results reveal the
generation of TPPs in the Ag-PhC nanocavity.

3. Results and Discussion

The intensity of the reflection light (I) and the intensity of the light source (I0) can be
detected using an optical power meter. We can simulate I/I0 by calculating the reflectance
of the Ag–PhC nanocavity. The influence of the gas refractive index (n) on the reflectance
of the Ag–PhC nanocavity is shown in Figure 2, in which the period number of the PhC
(N) is set as 10. As shown in Figure 2a, we can find that the reflection valley blue-shifts
from ~1552 nm to ~1548 nm as n varies from 0.97 to 1.03. We derived the reflectance of the
Ag–PhC nanocavity at 1548 nm, 1550 nm and 1552 nm, as shown in Figure 2b–d. It can
be observed that the reflection has high selectivity on the light wavelength. For 1548 nm
light, the reflectance decreases from ~0.7 to near zero as n varies from 0.97 to 1.03, which
increases from almost zero to ~0.7 for 1552 nm light. To clearly study the sensitivity to
n, we plotted the derivative of the reflection with n, as the dotted lines in Figure 2b–d.
It can be observed that the absolute value of derivation reaches ~15, which means the
reflectance of the Ag–PhC nanocavity will change by ~15 times the I0 as n changes 1. The
maximum absolute value of derivation appeared at a medium value of the reflectance,
which is disparate for different light wavelengths. That means we can tune the sensitivity
of gas nanocavity by selecting the wavelength of light source.
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After this, we investigated the influence of N (the period number of PhC), as shown
in Figure 3. The wavelength of the light source is set as 1550 nm. It can be observed
that the minimum value of reflectance is lowest when N is 10, which is near zero. This
minimum value of reflectance appears at a lower n as N increases. Meanwhile, we calcu-
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lated the derivation of lines in Figure 3a, as shown in Figure 3b. It can be seen that the
maximum value of derivation increases with an increase of N. Meanwhile, the position of
this maximum sensitivity appeared at different n for different N. These results reveal that
the sensitivity of the Ag–PhC nanocavity on the gas nanocavity can be adjusted using the
period number of PhC.
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Furthermore, the influence of the thickness of the nanocavity (dg) was investigated.
We found a series of dg could lead to the TPPs reflectance valley at 1550 nm, such as
50 nm, 825 nm, 1600 nm, 2375 nm and so on. These thicknesses of the nanocavity satisfy
ng·∆dg = λ/2. Furthermore, ng refers the refractive index of the cavity. λ refers the wave-
length of light. The generation of TPPs must satisfy the phase matching condition that can
be deduced as [6,7]:

rPhCrAg exp(2iϕg) = 1 (3)

Here, rPhC and rAg refer the reflection coefficients from the gas cavity to the PhC and
the Ag layer, respectively. ϕg = 2πngdg/λ is the phase of light propagating in the gas cavity.
As seen in Equation (4), the variation of ϕg needs to be an integral number of π, which
corresponds well with the above results. The influence of dg on the reflectance spectrum is
investigated, as shown in Figure 4a. It can be found that the full width of half maximum
(FWHM) of the TPPs valley becomes narrower with an increase of dg. The FWHM of
the TPPs valley is 5.38 nm (dg = 50 nm), 3.14 nm (dg = 825 nm), 2.22 nm (dg = 1600 nm),
1.71 nm (dg = 2375 nm), respectively. Additionally, the derivative of reflection on the gas
refractive index is also investigated, as shown in Figure 4b. It can be seen that the maximum
value of derivation dramatically increases with an increasing dg, which reaches ~800 for
dg = 2375 nm. However, the detection range of the gas refractive index decreases with an
increase of dg. We can set the monotone increasing section in Figure 4b as the detection
range. For dg = 50 nm, the detection range is ~0.04. For dg = 2375 nm, the detection range
decreases to ~0.0001. Thus, we can select the applicable thickness of the gas cavity based
on practical necessity.

To discuss the detection precision of the proposed structure, we calculated the wave-
length of the reflectance valley at different dg. From Figure 5, we found that the wavelength
of the reflectance valley linearly red-shifts when the refractive index of the gas cavity
increases. For the proposed structure, the detection sensitivity can be set as S = ∆λ/∆n. It
can be deduced that S reaches 1057 nm/RIU when dg = 2375 nm. The figure of merit (FOM)
is also an important parameter to characterize the sensing ability, which can be defined
as FOM = S/FWHM. It can be deduced that FOM reaches 618.1/RIU when dg = 2375 nm.
These parameters of detection sensitivity can be further enhanced by increasing the thick-
ness of the gas cavity. This can be explained by the phase matching condition, for which
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the TPPs wavelength is related to ϕg. The refractive index of the gas will have a greater
influence on ϕg when the thickness of the gas cavity increases. To assess the detection
ability of the proposed configuration, sensitivities of different TPP-based gas sensors are
listed in Table 1. It can be seen that the proposed structure in this paper has a relatively
high sensitivity on the refractive index of gas.
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Table 1. Sensitivities of different Tamm plasmon based gas sensors.

Structure S (nm/RIU) FOM (/RIU)

PhC-Au-Gas [31] 55 -
Ag-Gas/Si PhC [4] 83.3 -

Graphene-Gas-PhC [32]
(in terahertz band) - 142

This work 1057 618.1

4. Simulation Sensing of Gas Pressure

To clearly demonstrate the high sensitivity of the Ag–PhC nanocavity on gas, we
simulated the detection of air at different gas pressures. The sensing route is shown in
Figure 6a. The 1550 nm laser passes through a splitter into the Ag-PhC nanocavity. The
reflection laser of the Ag–PhC nanocavity is reflected by the splitter. Finally, the laser
reflected from the splitter is detected by an optical detector, which can obtain the intensity
of signal light I. The gas cavity is exposed to the outside, in which the gas pressure is
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consistent with the environment. The relationship between gas pressure and the gas
refractive index can be expressed as [33]:

n = 1 +
p(n0 − 1)
96095.43

× 1 + p(0.613 − 0.00998t)× 10−8

1 + 0.003661t
(4)
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Here, n is the gas refractive index and n0 is the gas refractive index of standard air,
which equals 1.00012438 for 1550 nm light. p is the gas pressure and t is the temperature.

We set a standard intensity of the signal light Is at 1.0 atm and 25 ◦C. Based on the
above formula, we plotted the intensity variation of the signal light (normalized by Is) with
different gas pressures as shown in Figure 6b. It can be seen that I is greatly influenced
by the gas pressure, has and that they have a significant linear relationship. The variation
rate of normalized light intensity on gas pressure reaches ~2.5 per atm, which means that
∆pI/∆I is ~0.4 atm if we set the detection precision of optical power meter as a thousandth
of the detection range. Thus, the detection precision of gas pressure can reach 0.0004 atm.

5. Conclusions

In summary, TPPs were generated in an Ag-PhC nanocavity. Based on the Ag-PhC
nanocavity, an optical sensor for gas was designed. The simulated results revealed that
the detection sensitivity for the gas refractive index could reach 1057 nm and the FOM is
able to reach 618.1/RIU. Meanwhile, the simulated results demonstrated that the detection
precision of the Ag–PhC nanocavity on gas pressure could reach 0.0004 atm. The proposed
configuration can also be used for many other applications, such as concentration sensing
and composition detecting.
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