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Abstract: This study proposes different fitting methods for different types of targets in the 400–900 nm
wavelength range, based on convex optimization algorithms, to achieve the effect of high-precision
spectral reconstruction for small space-borne spectrometers. This article first expounds on the
mathematical model in the imaging process of the small spectrometer and discretizes it into an AX=B
matrix equation. Second, the design basis of the filter transmittance curve is explained. Furthermore,
a convex optimization algorithm is used, based on 50 filters, and appropriate constraints are added
to solve the target spectrum. First, in terms of spectrum fitting, six different ground object spectra
are selected, and Gaussian fitting, polynomial fitting, and Fourier fitting are used to fit the original
data and analyze the best fit of each target spectrum. Then the transmittance curve of the filter is
equally divided, and the corresponding AX=B discrete equation set is obtained for the specific object
target, and a random error of 1% is applied to the equation set to obtain the discrete spectral value.
The fitting is performed for each case to determine the best fitting method with errors. Subsequently,
the transmittance curve of the filter with the detector characteristics is equally divided, and the
corresponding AX=B discrete equation set is obtained for the specific object target. A random error
of 1% is applied to the equation set to obtain the error. After the discrete spectral values are obtained,
the fitting is performed again, and the best fitting method is determined. In order to evaluate the
fitting accuracy of the original spectral data and the reconstruction accuracy of the calculated discrete
spectrum, the three evaluation indicators MSE, ARE, and RE are used for evaluation. To measure
the stability and accuracy of the spectral reconstruction of the fitting method more accurately, it is
necessary to perform 500 cycles of calculations to determine the corresponding MSE value and further
analyze the influence of the fitting method on the reconstruction accuracy. The results show that
different fitting methods should be adopted for different ground targets under the error conditions.
The three indicators, MSE, ARE, and RE, have reached high accuracy and strong stability. The effect
of high-precision reconstruction of the target spectrum is achieved. This article provides new ideas
for related scholars engaged in hyperspectral reconstruction work and promotes the development of
hyperspectral technology.

Keywords: spectral reconstruction; convex optimization; spectral fitting; sparse optimization

1. Introduction

In recent years, hyperspectral technology has been widely used in agriculture [1–4],
resource exploration [5–8], oceanic studies [9], and environmental research [10]. Spec-
trometers are gradually becoming intelligent, miniaturized, and lightweight. At present,
space-borne and airborne spectrometers must use miniaturized and high-precision spec-
trometers due to their volume limitations. At present, the main difficulties faced by
miniature spectrometers are concentrated on two points. One is the influence of the num-
ber of filters in front of the detector on the accuracy of spectral information. The higher
the number of filters, the higher the accuracy of the solution [11]. The second is to fit the
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discrete spectral information. At present, few scholars have studied the spectral fitting
method based on the filter. Thus, the focus of this article is to analyze the influence of the
fitting method on spectral reconstruction.

The number of filters used in previous related research projects is about 200, and
the spectral range is 400–900 nm. Therefore, the fitting method has little influence on
the effect of spectral reconstruction. However, when the number of filters is small, the
amount of data is sparse, and the fitting method has a greater impact on spectral recon-
struction. Therefore, the fitting method is essential for a small spectrometer to achieve
high-precision measurement. High-precision spectral deconstruction algorithms are the ba-
sis of high-precision spectral reconstruction. Many algorithms for spectral decomposition
have recently been proposed.

Chang [12] analyzed the working process of the spectrometer and proposed a mathe-
matical model for spectral reconstruction. Based on 200 filters, regularization and general-
ized cross-validation (GCV) were used to achieve high-precision spectral reconstruction.
Finally, combined with non-uniform correction, the spectrum reconstruction accuracy is
further improved, and the minimum value of the spectrum accuracy evaluation index ARE
reaches 0.0248. In 2015, Bao [13] made innovations on the filter material, using quantum dot
materials as 50 filters for spectral reconstruction, and achieved a better reconstruction effect.

In 2018, Zhang [14] proposed a reconstruction algorithm based on sparse optimization
and dictionary learning based on 192 filters. The results show that the relative recon-
struction error (RE) reaches 5.92%, achieving a good spectral reconstruction effect. In
2021, Zhao [15] used compressed sensing in the spectral reconstruction algorithm to recon-
struct spectral reflectance. The experimental results prove that compressed sensing uses
low-sampling data to achieve the effect of full sampling, which improves the accuracy of
spectral reflectance reconstruction. The previous related research was based on hundreds
of filters to reconstruct the target spectrum. Although a high reconstruction accuracy
was achieved, hundreds of filters could not reconstruct the target spectrum due to the
satellite spectrometer detector’s volume limitation. This article uses 50 filters for analy-
sis, which effectively reduces the amount of data and should prove vital for developing
space-borne spectrometers.

2. Spectral Reconstruction Process

The reconstruction process is shown in Figure 1. The target spectrum first passes
through the filter at the front of the detector. The energy on each filter can be obtained
after the detector is modulated. The whole process can be considered the integration of the
target spectrum, the transmittance of the filter, and the quantum efficiency of the detector
within the wavelength range.

The integral expression is shown in Formula (1) [16,17]. Ti(λ) is the transmittance
function, f (λ) is the detector quantum efficiency, X(λ) is the target spectral function, λ1
and λ2 are the integral wavelength ranges, and n is the number of filters.

λ2∫
λ1

Ti(λ) f (λ)X(λ)dλ, i = 1, 2, · · · · · · , n (1)

The transmittance curve of the filter with detector characteristics in Figure 2 is the
curve obtained by integrating the transmittance curve of the filter and the quantum effi-
ciency curve of the detector in the range of λ1 and λ2, which is A(λ) = Ti(λ) f (λ). In this
paper,λ1 and λ2 are, respectively, 400 nm and 900 nm. By dividing the wavelength range
of 400–900 nm equally, finding the area of each band, and then doing the same division
on the target spectrum curve, it yields the average value of energy in each band. After
discretization, the area of each band in each filter is multiplied by the mean value in the
corresponding band of the target spectrum to obtain the energy B of the target on each filter.
In order to ensure the uniqueness of the solution of the discrete equation, matrix A is a
square matrix of n× n (that is, the number of filters is equal to the dimension of matrix A).
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The discretized integral Equation (1) becomes Equation (2) [18].
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However, the spectrometer’s accuracy will be affected by a variety of error sources.
The main error sources are the stray light error [19–21] and the detector non-uniformity
error [22–24]. These errors make the equation AX=B unsuitable and add difficulty obtaining
a solution for the equation.

In an ideal situation, the number of discrete wavelengths of the target spectrum should
be equal to the number of filters. The greater the number of discrete wavelengths, the
higher the spectral resolution.

To calculate the spectral information more accurately, we first divide the spectral
curve of the filter into 25 evenly equal regions and calculate the average light intensity
in the range of every 20 nm Yj(j = 1, 2, · · · · · · , 25). The spectral curve of the filter is
divided into 50 equal parts (one part for every 10 nm), and the average light intensity
Xi(i = 1, 2, · · · · · · , 50) is calculated in the range of every 10 nm.

The theoretical expressions of Yj(j = 1, 2, · · · · · · , 25) and Xi(i = 1, 2, · · · · · · , 50) are
as shown in Equation (4). The calculation of Yj and Yj is solved by a convex optimization
algorithm, and the specific expressions are shown in Equations (5) and (6):

(Xi + Xi+1) ≈ 2Yj, i = 1, 3, 5, · · · · · · , 49, j = 1, 2, · · · · · · , 25 (4)
min

∣∣∣∣Aj ·Y− Bj
∣∣∣∣

2

s.t.
∣∣Aj ·Y− Bj

∣∣≤ K′

| (Y1+Y2+,······ ,+Y25)
500 × 20−mean| < T′

j = 1, 2, · · · · · · , 25 (5)



min||Ai · X− Bi||2
s.t.|Ai · X− Bi|≤ K

| (X1+X2+,······ ,+X50)
500 × 10−mean| < T

|Xi+Xi+1
2 −Yj| < Q

i = 1, 2, · · · · · · , 49, j = 1, 2, · · · · · · , 25 (6)

In Equations (5) and (6), Xi (i = 1, 3, 5, · · · · · · , 50) and Yj(j = 1, 2, · · · · · · , 25) are
energy constraints. Yj is the estimated value calculated by Equation (5)

When Equation (1) is not discretized, calculate the average energy mean of the target
spectrum in the range of 400–900 nm. T′ and T are used as constraints to solve the overall
mean value of the discrete spectrum. The calculated Yj (j = 1, 2, · · · · · · , 25) value is
the average value of energy in every 20 nm wavelength range, and the calculated Xi
(i = 1, 2, · · · · · · , 50) value is the average value of energy in every 10 nm wavelength range.

The Q in Equation (6) is the constraint between X and Y. After obtaining the discrete
values, they are considered the energy value of the center wavelength in the corresponding
band. The data are then fitted to obtain the target reconstructed spectrum curve.

The choice of the filter is critical as it directly affects the accuracy of Equation (3).
According to the matrix analysis, the condition number cond(A) of the matrix A composed
of the filter is as small as possible to ensure the matrix equation is more robust [25]. In
short, when designing the transmittance curve of the filter, the shape of the curve should
have a low similarity. Based on this principle, the filter is designed and simulated.

3. Fitting the Original Spectra of Ground Objects

Since spacecraft functions are different, the observation targets are also different, but
the spectral curve shapes of the same types of ground targets are similar. Therefore, the
monochromatic light source and five typical objects are selected for spectral reconstruction.
First, the target spectrum is normalized, and then the commonly used Gaussian, polyno-
mial, and Fourier methods are selected for error-free fitting. The fitting results are shown
in Figures 3–8.
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Figure 8. Asphalt fitting image.

There are different indicators for evaluating the effect of spectral reconstruction. Most
previous studies have adopted MSE, ARE, and RE. The expressions of MSE, ARE, and RE
are shown in (6)–(8). Equations (6) and (7) have similar meanings, but for better comparison
with previous research, this paper uses the three indicators of MSE, RE, and ARE to evaluate
the reconstructed spectrum. The smaller the three indicators are, the better the spectral
reconstruction effect will be.

ARE =
||yi −

∧
y||22

||yi||22
(7)

RE =
||yi −

∧
y||2

||yi||2
(8)
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MSE =
1
n

n

∑
k=1

(yi −
∧
y)2 (9)

In the above equations,yi is the original target spectrum,
∧
y is the target spectrum

after fitting, and y is the average value of the original spectrum. The specific evaluation
indicators are shown in Tables 1–3.

Table 1. Gaussian fitting results of the original spectrum.

MSE ARE RE

Copper metal 2.4880 × 10−5 5.0388 × 10−5 0.0071
Mica schist 1.4671 × 10−4 1.7104 × 10−4 0.0131

Grass 0.0035 0.0107 0.1034
Loam 7.9708 × 10−5 1.9231 × 10−4 0.0139

Jasper Ridge gravel 1.9713 × 10−4 3.0797 × 10−4 0.0175
Asphalt 1.3364 × 10−4 2.2575 × 10−4 0.0150

Table 2. Polynomial fitting results of the original spectra.

MSE ARE RE

Copper metal 0.0010 0.0021 0.0462
Mica schist 1.5045 × 10−4 1.7555 × 10−4 0.0132

Grass 0.0025 0.0077 0.0879
Loam 7.4197 × 10−5 1.7902 × 10−4 0.0245

Jasper Ridge gravel 1.6368 × 10−4 2.5553× 10−4 0.0160
Asphalt 1.0546 × 10−4 1.7816 × 10−4 0.0133

Table 3. Fourier fitting results of the original spectrum.

MSE ARE RE

Copper metal 1.2568× 10−4 2.5342 × 10−4 0.0159
Mica schist 1.8001 × 10−4 2.0959 × 10−4 0.0145

Grass 0.0031 0.0097 0.0984
Loam 6.4220 × 10−5 1.5494 × 10−4 0.0126

Jasper Ridge gravel 1.8638 × 10−4 2.9076 × 10−4 0.0196
Asphalt 9.7617× 10−4 1.6491 × 10−4 0.0128

Tables 1–3 show that copper metal and mica schist use Gaussian fitting to achieve the
best results. Grass green plants, Jasper Ridge gravel, and asphalt have the best polynomial
fitting effect. Loam uses Fourier fitting the best. The evaluation indicators when the best fit
method is adopted for the six targets are shown in Table 4.

Table 4. Evaluation index of optimal fitting of target spectrum.

Fitting Method MSE ARE RE

Copper metal Gaussian fitting 2.4880 × 10−5 5.0388 × 10−5 0.0071
Mica schist Gaussian fitting 1.4671 × 10−5 1.7104 × 10−4 0.0131

Grass Polynomial fitting 0.0025 0.0077 0.0879
Loam Fourier fitting 6.4220 × 10−5 1.5494 × 10−4 0.0126

Jasper Ridge gravel Polynomial fitting 1.6368 × 10−4 2.5553 × 10−4 0.0160
Asphalt Polynomial fitting 1.0546 × 10−4 1.7816 × 10−4 0.0133
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4. Spectral Fitting of Discrete Objects with Errors

After determining the best fitting method of the original target spectrum, 50 filters are
used to establish the AX=B equation set, and a 1% random error is applied. The convex
optimization algorithm is used to calculate 50 discrete spectra, and fitting is performed.
For the case of applied error, the best fitting method of each discrete target spectrum was
determined. The error between the MSE value of each 10 nm wavelength and the standard
value was calculated by comparing the changes of the fitting methods under the two
conditions. The results are shown in Figures 9–20.
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The target spectrum curve fitting evaluation index is shown in Tables 5–7.

Table 5. Gaussian fitting evaluation index.

MSE ARE RE

Copper metal 6.2831 × 10−4 0.0013 0.0356
Mica schist 0.0010 0.0012 0.0352

Grass 0.0050 0.0154 0.1243
Loam 6.4275 × 10−4 0.0016 0.0394

Jasper Ridge gravel 5.8079 × 10−4 9.0730 × 10−4 0.0301
Asphalt 4.3241 × 10−4 7.3048 × 10−4 0.0270

Table 6. Evaluation index of polynomial fitting.

MSE ARE RE

Copper metal 0.0019 0.0038 0.0614
Mica schist 1.7523 × 10−4 2.0402 × 10−4 0.0143

Grass 0.0024 0.0075 0.0865
Loam 1.7204 × 10−4 4.1509 × 10−4 0.0204

Jasper Ridge gravel 3.8443 × 10−4 5.9980 × 10−4 0.0245
Asphalt 1.1884 × 10−4 2.0076 × 10−4 0.0142
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Table 7. Fourier fitting evaluation index.

MSE ARE RE

Copper metal 2.6600 × 10−4 5.5337 × 10−4 0.0235
Mica schist 1.8525 × 10−4 2.1573 × 10−4 0.0147

Grass 0.0033 0.0102 0.1008
Loam 1.3221 × 10−4 3.1900 × 10−4 0.0179

Jasper Ridge gravel 4.7297 × 10−4 7.3980 × 10−4 0.0272
Asphalt 8.3006 × 10−4 0.0014 0.0377

Tables 5–7 show that when there is an error, the discrete value calculated by AX=B is
fitted. Mica schist, grass, Jasper Ridge gravel, and asphalt have the best fitting results by
polynomial fitting, while copper metal and loam have the best fitting precision by Fourier
fitting. The evaluation indicators are shown in Table 8.

Table 8. Evaluation index of optimal fitting of target spectrum with error.

Fitting Method MSE ARE RE

Copper metal Fourier fitting 2.6600 × 10−4 5.5337 × 10−4 0.0235
Mica schist Polynomial fitting 1.7523 × 10−4 2.0402 × 10−4 0.0143

Grass Polynomial fitting 0.0024 0.0075 0.0865
Loam Fourier fitting 1.3221 × 10−4 3.1900 × 10−4 0.0179

Jasper Ridge gravel Polynomial fitting 3.8443 × 10−4 5.9980 × 10−4 0.0245
Asphalt Polynomial fitting 1.1884 × 10−4 2.0076 × 10−4 0.0142

Tables 5–7 show that the target polynomial fitting of mica schist, grass, loam, asphalt,
and Jasper Ridge gravel has little difference with Fourier fitting, and the indicators are
relatively close.

To further verify the correctness and stability of the above-mentioned feature target
evidence fitting method, 500 calculations and fittings are performed, and the MSE value of
each target under different fitting methods is calculated. The MSE distribution is shown in
Figures 21–38.
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Figure 38. Fourier fitting of asphalt MSE value distribution.

After 500 calculations under the condition of 1% random error, the following results
can be obtained. Copper metal, mica schist, loam, and Jasper Ridge gravel achieve poly-
nomial fitting accuracy with the highest MSE average values of 0.01, 1 × 10−3, 2 × 10−3,
4 × 10−3, respectively. The fitting accuracy of Fourier and polynomials of grasses and
other green plants is about 10e-3, and the effect of Fourier fitting is better. In particular, it is
pointed out that although Gaussian fitting has higher accuracy, the MSE value is prone to
jump, so Gaussian fitting is not suitable for the above-mentioned object targets.

5. Conclusions

In this study, the working principle and mathematical model of the spectrometer are
elaborated. Six typical targets are selected based on fifty filters. The convex optimization
algorithm is used to solve the Equations (2). Unlike the previous research, the number of
filters used in this paper is fewer, and the spectral data are sparser, so the fitting method is
critical. Based on the 50 transmittance curves given in this paper, the best fitting method of
the original spectrum and the 50 discrete spectrums obtained by solving Equation (2) re
analyzed. In terms of spectral reconstruction evaluation, the three indicators ARE, RE, and
MSE are used for evaluation, further improving the accuracy of the spectral reconstruction
evaluation. The convex optimization solution method, fitting method, and spectrum
evaluation index proposed in this study are unique and promising to advance the field of
spectrum reconstruction and are also conducive to the miniaturization of the spectrometer.

The transmittance curve of 50 filters in the wavelength range of 400–900 nm is shown
in Figure 39 below.
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