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Abstract: The theoretical descriptions for a radial phase-locked multi-Gaussian Schell-model vortex
(RPLMGSMV) beam array is first given. The normalized intensity and coherence distributions of a
RPLMGSMV beam array propagating in free space and atmospheric turbulence are illustrated and
analyzed. The results show that a RPLMGSMV beam array with larger total number N or smaller
coherence length σ can evolve into a beam with better flatness when the beam array translating into
the flat-topped profile at longer distance z and the flatness of the flat-topped intensity distribution
can be destroyed by the atmospheric turbulence at longer distance z. The coherence distribution of a
RPLMGSMV beam array in atmospheric turbulence at the longer distance will have Gaussian distri-
bution. The research results will be useful in free space optical communication using a RPLMGSMV
beam array.

Keywords: average intensity; multi-Gaussian Schell-model source; vortex beam; beam array; atmo-
spheric turbulence

1. Introduction

With the development of wireless optical communication and laser radar, the evolu-
tions of laser beams in atmospheric turbulence were widely studied in past years [1]. In past
years, the properties of fully coherent laser beams in turbulence have been widely analyzed,
such as Gaussian beams [2], Hermite–Gaussian beam [3], Pearcey–Gaussian beam [4],
beam array [5–7], Laguerre–Gaussian beam [8], Airy beam [9], hollow beam [10,11], vortex
beam [12,13], and vortex lattices [14]. From previous studies [1], one can see that partially
coherent beams are resistance to the deleterious effects of turbulence. In past years, the
properties, including intensity, polarization, and coherence, of Gaussian Schell-model
(GSM) beams [15–19] and GSM beam array [20–23] propagating in turbulence were widely
studied. On the other hand, the special correlated beams are also be introduced and ana-
lyzed, such as non-uniformly correlated beams [24], multi-Gaussian Schell-model (MGSM)
beams [25–28], cosine-GSM beams [29], multi-cosine-Laguerre–Gaussian correlated Schell-
model beams [30]. Laser arrays can produce the higher power output than single beam
and which can have linear, rectangular and radial distributions. The beams correlated
with MGSM source can provide flat intensity profiles in the far field [25]. To obtain the
flat-topped intensity profiles, the MGSM beam arrays propagating in turbulence are in-
vestigated, and it is found that the MGSM beam arrays can achieve the better flat-topped
profiles [31,32]. Moreover, the MGSM vortex beam has been introduced and studied. It
shows that the intensity profile of MGSM vortex can be modulated by the topological
charge [33]. Thus, it will be very interesting to consider the laser array composed by
MGSM vortex beams. In this paper, we extend MGSM vortex beam into the radial phase-
locked multi-Gaussian-Schell-model vortex (RPLMGSMV) beam array, and investigate
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the intensity and coherence properties of RPLMGSMV beam array propagating in free
space and atmospheric turbulence. Moreover, the model of laser arrays with linear and
rectangular distributions can also be obtained in the similar analytical approach.

2. Theory Analysis
2.1. Analytical Description of RPLMGSMV Beam Array

The electric field distribution of a Gaussian vortex beam at source plane z = 0 is
described by

E(r0, 0) = [x + isgn(M)y0]
|M| exp

(
−

x2
0 + y2

0
w2

0

)
(1)

where w0 is beam waist and M is the topological charge.
In this work, laser array with radial distribution will be analyzed as example, the

electric field of a radial phase-locked Gaussian vortex beam array with Q beamlets can be
given as:

EQ(r0, 0) =
Q

∑
q=1

[(
x0 − rqx

)
+ isgn(M)

(
y0 − rqy

)]|M| exp

[
−
(

x0 − rqx
)2

+
(
y0 − rqy

)2

w2
0

]
exp

(
iϕq
)

(2)

with
rqx = R cos ϕq, rqy = R sin ϕq, ϕq = q

2π

Q
, q = 1, 2, · · ·Q (3)

where R is radius; ϕn is the phase of the q-th beamlet; rqx and rqy are the center of the q-th
beamlet element located at z = 0.

Considering the unified theory of coherence and polarization [34], the cross spectral
density (CSD) of partially coherent beams can be expressed as

W(r10, r20) =
〈

E(r10)E×(r20)
〉

(4)

Introducing a MGSM correlation [22], the CSD of a RPLMGSMV beam array with Q
beamlets can be written as

W (r10, r20, 0) =
Q
∑

q1=1

Q
∑

q2=1
exp

[
i
(

ϕq1 − ϕq2
)]

×
[(

x10 − rq1x
)
+ isgn(M)

(
y10 − rq1y

)]|M| exp
[
− (x10−rq1x)

2
+(y10−rq1y)

2

w2
0

]
×
[(

x20 − rq2x
)
− isgn(M)

(
y20 − rq2y

)]|M| exp
[
− (x20−rq2x)

2
+(y20−rq2y)

2

w2
0

]
× 1

C0

N
∑

n=1

(
N
n

)
(−1)n−1

n exp
{
− [(x10−rq1x)−(x20−rq2x)]

2

2nσ2 − [(y10−rq1y)−(y20−rq2y)]
2

2nσ2

}
(5)

where N is total number of terms of MGSM source, σ is the coherence length, C0 is the
normalized factor, and can be described by

C0 =
N

∑
n=1

(
N
n

)
(−1)n−1

n
(6)

Figure 1 shows the normalized intensity of a RPLMGSMV beam array at z = 0 for
the different Q, one can see that the beamlets of a RPLMGSMV beam array have the
hollow center.
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Figure 1. Normalized intensity of a RPLMGSMV beam array at z = 0 for the different Q. (a) Q = 3,
(b) Q = 4, (c) Q = 5, (d) Q = 6.

2.2. Propagation Analysis

Based on the extended Huygens–Fresnel integral, the CSD of a RPLMGSMV beam
array propagating in atmospheric turbulence at plane z can be read as [1]

W (r1, r2, z) = k2

4π2z2

∫ +∞
−∞

∫ +∞
−∞

∫ +∞
−∞

∫ +∞
−∞ W(r10, r20, 0)

× exp
[
− ik

2z (r1 − r10)
2 + ik

2z (r2 − r20)
2
]

×〈exp[ψ(r10, r1) + ψ∗(r20, r2)]〉dr10dr20

(7)

with

〈exp[ψ(r10, r) + ψ∗(r20, r)]〉 = exp

[
− (r10 − r20)

2 + (r10 − r20)(r1 − r2) + (r1 − r2)
2

ρ2
0

]
(8)

In the above equation, the spatial coherence length ρ0 can be expressed as

ρ0 =
(

0.545C2
nk2z

)−3/5
(9)

where C2
n is the structure constant of atmospheric turbulence.

Substituting Equation (5) into Equation (7), the CSD of a RPLMGSMV beam array
propagating in atmospheric turbulence at plane z can be derived as

W (r1, r2, z) =
Q
∑

q1=1

Q
∑

q2=1
exp

[
i
(

ϕq1 − ϕq2
)] k2

4π2z2 exp
[
− ik

2z
(
r2

1 − r2
2
)]

exp
[
− (x1−x2)

2+(y1−y2)
2

ρ2
0

]

× 1
C0

|M|
∑

l1=0

|M|!il1
l1!(|M|−l1)!

|M|
∑

l2=0

|M|!(−i)l2

l2!(|M|−l2)!

N
∑

n=1

(
N
n

)
(−1)n−1

n W(x, z)W(y, z)

(10)
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with

W (x, z) = exp
[
− 1

ρ2
0

(
rq1x − rq2x

)2
]

exp
[
− ik

2z

(
r2

q1x − r2
q2x

)]
exp

[
2 ik

2z
(
x1rq1x − x2rq2x

)]
× exp

[
− (x1−x2)(rq1x−rq2x)

ρ2
0

]√
π
a (|M| − l1)!

(
1
a

)|M|−l1

× exp

[
1
a

(
ik
2z x1 − ik

2z rq1x −
x1−x2+2(rq1x−rq2x)

2ρ2
0

)2
]
[
|M|−l1

2 ]

∑
k1=0

1
k1!(|M|−l1−2k1)!

( a
4
)k1

×
|M|−l1−2k1

∑
s=0

(|M|−l1−2k1)!
s1!(|M|−l1−2k1−s1)!

(
ik
2z x1 − ik

2z rq1x −
x1−x2+2(rq1x−rq2x)

2ρ2
0

)|M|−l1−2k1−s1
(

1
2nσ2 +

1
ρ2

0

)s1

×
√

π
b

(
i

2
√

b

)|M|−l2+s1

exp
(

c2
x
b

)
H|M|−l2+s1

(
− icx√

b

)

(11)

W (y, z) = exp
[
− 1

ρ2
0

(
rq1y − rq2y

)2
]

exp
[
− ik

2z

(
r2

q1y − r2
q2y

)]
exp

[
2 ik

2z
(
y1rq1y − y2rq2y

)]
× exp

[
− (y1−y2)(rq1y−rq2y)

ρ2
0

]√
π
a (l1)!

(
1
ay

)l1

× exp

[
1
ay

(
ik
2z y1 − ik

2z rq1y −
y1−y2+2(rq1y−rq2y)

2ρ2
0

)2
]

[
l1
2 ]

∑
k2=0

1
k2!(l1−2k2)!

( a
4
)k2

×
l1−2k2

∑
s2=0

(l1−2k2)!
s3!(l1−2k2−s2)!

(
ik
2z y1 − ik

2z rq1y −
y1−y2+2(rq1y−rq2y)

2ρ2
0

)l1−2k2−s2
(

1
2nσ2 +

1
ρ2

0

)s2

×
√

π
b

(
i

2
√

b

)l2+s

exp
(

c2
y
b

)
Hl2+s2

(
− icy√

b

)

(12)

where
a =

1
w2

0
+

1
2nσ2 +

1
ρ2

0
+

ik
2z

(13)

b =
1

w2
0
+

1
ρ2

0
+

1
2nσ2 −

ik
2z
− 1

a

(
1

2nσ2 +
1
ρ2

0

)2

(14)

cx = ik
2z rq2x − ik

2z x2 +
x1−x2+2(rq1x−rq2x)

2ρ2
0

+ 1
a

(
1

2nσ2 +
1
ρ2

0

)[
ik
2z x1 − ik

2z rq1x −
x1−x2+2(rq1x−rq2x)

2ρ2
0

] (15)

cy = ik
2z rq2y − ik

2z y2 +
y1−y2+2(rq1y−rq2y)

2ρ2
0

+ 1
a

(
1

2nσ2 +
1
ρ2

0

)[
ik
2z y1 − ik

2z rq1y −
y1−y2+2(rq1y−rq2y)

2ρ2
0

] (16)

In the derivations of Equation (10), the following equations has been applied [35]

(x + iy)M =
M

∑
l=0

M!il

l!(M− l)!
xM−lyl (17)

∫ +∞

−∞
xn exp

(
−ax2 + 2bx

)
dx =

√
π

a

(
i

2
√

a

)n
exp

(
b2

a

)
Hn

(
− ib√

a

)
(18)

Hn(x) =
[ n

2 ]

∑
l=0

(−1)ln!
l!(n− 2l)!

(2x)n−2l (19)
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When r1 = r2 = r in Equation (10), the intensity of a RPLMGSMV beam array
propagating in atmospheric turbulence is written as

I(r, z) = k2

4π2z2
1

C0

Q
∑

q1=1

Q
∑

q2=1

|M|
∑

l1=0

|M|![isgn(M)]l1

l1!(|M|−l1)!

|M|
∑

l2=0

|M|![−isgn(M)]l2

l2!(|M|−l2)!

×
N
∑

n=1

(
N
n

)
(−1)n−1

n exp
[
i
(

ϕq1 − ϕq2
)]

I(x, z)I(y, z)

(20)

where

I(x, z) = exp
[
− 1

ρ2
0

(
rq1x − rq2x

)2
]

exp
[
− ik

2z

(
r2

q1x − r2
q2x

)]
exp

[
2 ik

2z
(
rq1x − rq2x

)
x
]

√
π
a (|M| − l1)!

(
1
a

)|M|−l1
exp

[
1
a

(
ik
2z x− ik

2z rq1x −
rq1x−rq2x

ρ2
0

)2
]

[
|M|−l1

2 ]

∑
k1=0

1
k1!(|M|−l1−2k1)!

( a
4
)k1
|M|−l1−2k1

∑
s1=0

(|M|−l1−2k1)!
s1!(|M|−l1−2k1−s1)!(

ik
2z x− ik

2z rq1x −
rq1x−rq2x

ρ2
0

)|M|−l1−2k1−s1
(

1
2nσ2 +

1
ρ2

0

)s1

√
π
b

(
i

2
√

b

)|M|−l2+s1

exp
(

c2
xx
b

)
H|M|−l2+s1

(
− icxx√

b

)

(21)

I(y, z) = exp
[
− 1

ρ2
0

(
rq1y − rq2y

)2
]

exp
[
− ik

2z

(
r2

q1y − r2
q2y

)]
exp

[
2 ik

2z
(
rq1y − rq2y

)
y
]

√
π
a l1!
(

1
a

)l1
exp

[
1
a

(
ik
2z y− ik

2z rq1y −
rq1y−rq2y

ρ2
0

)2
]

[
l1
2 ]

∑
k2=0

1
k2!(l1−2k2)!

( a
4
)k2

l1−2k2
∑

s2=0

(l1−2k2)!
s2!(l1−2k2−s2)!(

ik
2z y− ik

2z rq1y −
rq1y−rq2y

ρ2
0

)l1−2k2−s2
(

1
2nσ2 +

1
ρ2

0

)s2

√
π
b

(
i

2
√

b

)l2+s2

exp
(

c2
yy
b

)
Hl2+s2

(
− icyy√

b

)

(22)

with

cxx =
ik
2z

rq2x −
ik
2z

x +
rq1x − rq2x

ρ2
0

+
1
a

(
1

2nσ2 +
1
ρ2

0

)(
ik
2z

x− ik
2z

rq1x −
rq1x − rq2x

ρ2
0

)
(23)

cyy =
ik
2z

rq2y −
ik
2z

y +
rq1y − rq2y

ρ2
0

+
1
a

(
1

2nσ2 +
1
ρ2

0

)(
ik
2z

y− ik
2z

rq1y −
rq1y − rq2y

ρ2
0

)
(24)

The degree of coherence for a RPLMGSMV beam array propagating in atmospheric
turbulence at plane z is given as [34]

µ(r1, r2, z) =
W(r1, r2, z)

[W(r1, r1, z)W(r2, r2, z)]1/2 (25)

3. Numerical Results and Discussions

In this section, the intensity and coherence distributions of a RPLMGSMV beam array
in free space will firstly be investigated, and then the influences of atmospheric turbulence
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on intensity and coherence distributions of a RPLMGSMV beam array will be discussed.
The relevant parameters in numerical simulations are selected as λ = 532 nm, w0 = 1 cm,
σ = 1 mm, N = 10, M = 1 and R = 5 cm without other explanations.

The normalized intensity of a RPLMGSMV beam array with Q = 5 in free space at the
different distances is illustrated in Figure 2. As can be seen from Figures 2a and 1c, the dark
hollow center of beamlets of a RPLMGSMV beam array will evolve into a Gaussian-like
beam at z = 50 m (Figure 2a), while the beamlets have the dark hollow center at z = 0
(Figure 1c); The reason that the dark hollow profile translating into the Gaussian beam can
be explained as the effect of initial coherence length [33]. As the z increases further, the
Gaussian-like beamlets can evolve into a beam with flat-topped profile (Figure 2b), and
the beamlets will also begin to overlap with each other (Figure 2b); thus, a RPLMGSMV
beam array can translate into a beam with Gaussian-like intensity distribution; at last, the
RPLMGSMV beam array can evolve from beam array into the beam with flat-topped inten-
sity distribution at longer distance z (Figure 2d). The phenomenon whereby a RPLMGSMV
evolves into a beam with flat-topped profile is dominated by MGSM correlated function,
and similar evolutions can also be found in the previous reports [25–28,33].
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To view the action of Q on intensity distribution, normalized intensity of a RPLMGSMV
beam array with Q = 4 in free space are illustrated in Figure 3. As z increases, it is found
that the evolution of intensity distributions of a RPLMGSMV beam array with Q = 4
are almost the same with a RPLMGSMV beam array with Q = 5 (Figure 2), the beamlets
of beam array will lose the dark hollow profile and become a beam with Gaussian-like
beam distribution, the beam array with Q = 4 will translate into the flat-topped profile
(Figure 3b). Moreover, the flat-topped profile of a RPLMGSMV beam array is dominated by
the MGSM sources at longer distance [33]. By comparing Figures 2 and 3, we can conclude
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that a RPLMGSMV beam array with the different Q will evolve form beam array into
flat-topped profile due to the action of MGSM source.
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To view the effects of source parameters on the evolutions of intensity of a RPLMGSMV
beam array propagating in free space, the cross sections (y = 0) of the normalized intensity
of a RPLMGSMV beam array with Q = 4 in free space for source parameters σ, N and M at
the different distances are shown in Figures 4–6, respectively. From Figure 4, it is found that
the RPLMGSMV beam array with larger σ will lose the dark hollow distribution slower
than the beam array with smaller σ. So, the smaller coherence length σ will accelerate
the evolutions of beam array translating into flat-topped profile, and the beam array with
smaller σ will have the better flatness when the beam array translating into flat-topped
intensity profile at the longer distance z (Figure 4d). Thus, it can conclude that the speed of
a beam array translating into the flat-topped profile can be dominated by setting different
σ of MGSM source. Figure 5 shows that the RPLMGSMV beam array with larger N will
evolve from beam array into flat-topped beam faster, and which will have the better flatness
when the beam array translating into the flat-topped beam at last (Figure 5d). The flatness
of flat-topped profile is dominated by the total number N of MGSM source, and the similar
results can also be seen in the previous work [25]. Thus, from previous discussions, one
can conclude that the flatness of flat-topped profile generating by RPLMGSMV beam array
can be modulated by the parameters σ and N in the far field. The better the flatness of
flat-topped profile is, the more power can be received by the same receiver, this is helpful
for received power of free space optical communication. One can see from Figure 6 that
the RPLMGSMV beam array with larger M will have the larger dark hollow center at z = 0
(Figure 6a), while the influences of different M on the intensity distribution will disappear
as the beam array evolve into the flat-topped beam at the longer distance z (Figure 6d).
Thus, we can conclude that the flat-topped profile is not correlated with topological charge
in the far field.
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Figure 7 illustrates the average intensity of a RPLMGSMV beam array with Q = 4
propagating in free space and atmospheric turbulence for different C2

n. As can be seen that
in Figure 7b, the flatness of the flat-topped profile obtained at the longer distance is poorer
than a RPLMGSMV beam array in free space, and the larger the C2

n is, the poorer the flatness
of flat-topped profile is. The phenomenon where the flat-topped profile is becoming poor
in atmospheric turbulence can be explained by the influences of atmospheric turbulence.
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Figure 8 gives the cross-sections of degree of coherence of a RPLMGSMV beam array
with Q = 5 in free space (Figure 8a–c) and atmospheric turbulence at z = 1000 m for
the different M, σ, N and C2

n. From Figure 8a,b, it is seen that the coherence properties
of a RPLMGSMV beam array can be affected by the M and σ. Meanwhile, the effects
of total number N on the coherence distribution is not found (Figure 8c). Further, when
x1 − x2 is smaller, the influences of M and σ are less. In the analysis of the influences
of atmospheric turbulence on coherence, it is seen that the coherence distribution of a
RPLMGSMV beam array in atmospheric turbulence with larger C2

n will have the Gaussian
distribution (Figure 8d). Meanwhile, the same beam in free pace will have the irregular
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coherence distribution. To view the influences of z on coherence distribution, the coherence
of a RPLMGSMV beam array with Q = 5 at the different distance z is illustrated in Figure 9.
One can see from Figure 9 that a RPLMGSMV beam array at the longer propagation
distance will have more regular coherence distribution. One can conclude that the spectral
degree of coherence of a RPLMGSMV beam array in atmospheric turbulence will have a
Gaussian distribution at longer distance.
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4. Conclusions

In this paper, the analytical description of a RPLMGSMV beam array generated by
MGSM sources is introduced and analyzed. Based on the extended Huygens–Fresnel
integral, the CSD of a RPLMGSMV beam array propagating in atmospheric turbulence
is derived. The evolutions of intensity and coherence properties of a RPLMGSMV beam
array propagating in free space and atmospheric turbulence are analyzed in detail. It
is seen that a RPLMGSMV beam array propagating in free space can gradually lose the
initial intensity distribution of beamlets, and evolve from the beam array into a beam with
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a flat-topped profile due to the action of MGSM source as z increases. In the far field,
when the total number N is larger or the coherence length σ is smaller, the flatness of
flat-topped profile of a RPLMGSMV beam array will be better, this is useful for the free
space optical communication. When a RPLMGSMV beam array propagates in atmospheric
turbulence, the flatness of the flat-topped profile can be dominated by the atmospheric
turbulence, the flatness will become poor. It is also found that the coherence distribution of
a RPLMGSMV beam array in atmospheric turbulence will have Gaussian distribution at
the longer distance.
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