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Abstract: Accurate segmented mirror wavefront sensing and control is essential for next-generation
large aperture telescope system design. In this paper, a direct tip–tilt and piston error detection
technique based on model-based phase retrieval with multiple defocused images is proposed for
segmented mirror wavefront sensing. In our technique, the tip–tilt and piston error are represented
by a basis consisting of three basic plane functions with respect to the x, y, and z axis so that they can
be parameterized by the coefficients of these bases; the coefficients then are solved by a non-linear
optimization method with the defocus multi-images. Simulation results show that the proposed
technique is capable of measuring high dynamic range wavefront error reaching 7λ, while resulting
in high detection accuracy. The algorithm is demonstrated as robust to noise by introducing phase
parameterization. In comparison, the proposed tip–tilt and piston error detection approach is much
easier to implement than many existing methods, which usually introduce extra sensors and devices,
as it is a technique based on multiple images. These characteristics make it promising for the
application of wavefront sensing and control in next-generation large aperture telescopes.
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1. Introduction

In the past, the aperture size was the main factor that impeded the development of
high-resolution telescopes. The segmented mirror scheme paves a new way to designing
a very large aperture telescope, achieving diffraction-limited optical imaging. The de-
ployment of the Keck telescope [1,2], in which the primary mirror consists of 36 hexagon
mirrors and the diameter reaches 10 m, demonstrated the success of the solution of a
segmented mirror in the application of a large aperture telescope. Nowadays, the James
Web Space Telescope (JWST) [3,4], the successor of the Hubble Telescope built for deep
space exploration, also employs a segmented mirror to design the primary mirror with an
advanced accurate control device and algorithm.

Generally, cophasing contains several steps: segment searching, coarse alignment,
coarse phasing, and fine phasing [5]. The Jet Propulsion Laboratory (JPL) developed a
multi-step stacking process to realize cophasing for JWST based on combined techniques
such as phase retrieval and dispersive fringe sensing. The wavefront is calculated by
a multiple image-based phase retrieval algorithm [6], then the tip–tilt error is obtained
by least-squares fitting with the Hexikes polynomials for each segment. The fine wave-
front of the whole aperture is then measured by phase retrieval. Following the cophasing
solution developed by JPL, more cophasing techniques were developed during the last
decade. In 2013, Fernández-Valdivia et al. developed a tip–tilt detection technique based
on the Van Dam and Lane algorithm with two defocus images measured by a geomet-
ric sensor [7]. In 2014, Cheetham et al. introduced Fizeau Interferometric Cophasing
of Segmented Mirrors, which is capable of phasing mirror segments to interferometric
precision without involving exceptional hardware in order to realize fine cophasing of
the JWST with a single algorithm [8]. In 2016, Greenbaum et al. developed an in-focus
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wavefront sensing technique using non-redundant mask-induced pupil diversity for JWST
cophasing, without introducing focus diversity [9]. In 2017, Potiron et al. realized the fine
cophasing of segmented aperture telescopes based on an analysis scheme to the signal of
a Zernike wavefront sensor, which enabled the sensor to retrieve a segment piston and
tip–tilt unambiguously [10]. More recently, a focal-plane wavefront sensing technique was
proposed for measuring and correcting the low-wind effect [11].

Nonetheless, among existing cophasing techniques, phase retrieval is considered to
be one of the best options for wavefront sensing and control for next-generation large
aperture telescopes for its high accuracy and simplicity of implementation [12]. Actually,
the wavefront sensing with phase retrieval technique has drawn lots of attentions and
became more and more mature since the success of its application with the Hubble Tele-
scope aberration detection [13]. Due to its high performance and simplicity, JWST is also
mainly based on phase retrieval for accurate wavefront sensing and control. Even though
the phase retrieval algorithm developed by JPL has been validated much more robust than
the classical phase retrieval techniques such as the Gesrchberg-Saxton (GS) [14] or hybrid
input–output (HIO) algorithm [15], by introducing phase diversity [16], simulation has
shown that the alternative projecting-based phase retrieval technique requires a very high
signal-to-noise ratio (SNR) image to guarantee high accuracy and efficiency; in contrast,
the model-based phase retrieval technique seems to be much more accurate and robust
to noise in practice [17]. In this paper, we employ a model-based phase retrieval tech-
nique [18] to directly detect the tip–tilt error in a segmented mirror without introducing
any extra sensor or device such as the abovementioned cophasing techniques. In Section 2,
we review the model-based phase retrieval and show the implementation of the non-linear
optimization-based phase retrieval algorithm with multiple defocused images for robust
and efficient wavefront sensing. In Section 3, we apply the proposed multiple image-based
phase retrieval algorithm for tip–tilt and piston detection for a segmented mirror with a
basis consisting of three basic planes. In Section 4, the proposed technique is validated by
simulation. Finally, we summarize our work in Section 5.

2. Model-Based Phase Retrieval Based on Multiple Defocus Images

The model-based method solves the phase retrieval problem with a parametrized
method and optimization algorithm such as the Newton method or Gauss–Newton algo-
rithm. Mathematically, a wavefront can be represented by an orthogonal basis such as
Zernike polynomials [19,20], by which a phase can be parameterized so that the phase
retrieval problem can be solved by a non-linear optimization method easily. The pupil
function can be expressed as

P(x, y) = A· exp(i
N

∑
n=1

qn·Ψn) (1)

where q = (q1, q2, · · · , qN) and Ψ = (Ψ1, Ψ2, · · · , ΨN)
T are a coefficient vector and an ap-

propriate polynomial basis vector, respectively. According to diffraction theory, the formed
image in the focal plane can be represented by

G(u, v) = |F[P(x, y)]|2 (2)

where F denotes Fourier transformation. Based on the least-squares estimation method,
the objective function with respect to q can be written as

E(q) =
L

∑
j
{|F[P(q)]|2j − Ij}

2
, j = 1, 2, · · · , L (3)

where I denotes the image measured by the detector, j is the index of the pixel, and L
denotes the length of the data points.
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In practice, the single image-based phase retrieval methods are very easy to stagnate
and cannot guarantee global convergence. To avoid this problem, multiple images can
be introduced, e.g., defocus images. Figure 1 shows the principle of multiple defocus
image-based phase retrieval. It uses not only the focal plane image, but also several extra
diverse images, i.e., defocused images. In this case, Equation (1) is rewritten as

P(x, y) = A· exp(i
N

∑
n=1

qn ·Ψn + φ) (4)

where φ denotes the introduced known diverse phase. For defocus diversity, the introduced
phase can be approximated with the following:

φ = π∆z
(
x2 + y2)

λ f 2 (5)

where λ is the wavelength of the light, ∆z is the defocus distance, and f is the focal length
of the lens. As more images are utilized, the algorithm becomes much more effective and
robust. Assuming M images are used, then the total error can be written as

E = E1(q) + E2(q) + · · · EM(q) (6)

Theoretically, minimizing the above objective function results in an optimal solution
that satisfies Equation (2), with which the phase can be reconstructed with the corre-
sponding basis. Basically, the minimization problem can be solved by existing non-linear
optimization methods. However, many existing non-linear optimization techniques are
very easy to stagnate due to the serious nonlinearity of the phase retrieval problem. We here
employed the Levenberg–Marquardt (LM) algorithm, which is theoretically intended for
solving least-squares problems and has been demonstrated as more accurate and robust to
noise than a Fourier iteration method such as the Modified GS algorithm [17].

Figure 1. The principle of wavefront sensing with multiple defocused images. A point object at
infinity is imaged by the optical imaging system, and the system point spread function (PSF) is
formed on the camera, with which the wavefront in the pupil plane could be retrieved algorithmically.
As phase retrieval is based on the coherent light diffraction theory, it usually needs a monochromatic
source or narrow band filter in practice.

Assuming the least-squares based objective function is represented as

E(q) = r(q)Tr(q) =
L

∑
j

r2
j (q) (7)
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where j = 1, 2, · · · , L denotes the index of data points and q = (q1, q2, . . . , qN), r denotes
the difference between the estimated result by the model function and the observed data,
the iterative formula of the LM algorithm [21] can be written as

qk+1 = qk −
(

JT J + µΛ
)−1
· gk (8)

where k denotes the index of iteration. The gradient with respect to the objective function
is written as g(q) = J(q)Tr(q), and the Jacobian matrix is defined as

J(q) =


∂r1

∂q1
· · · ∂r1

∂qN
...

. . .
...

∂rL
∂q1

· · · ∂rL
∂qN

 (9)

For model-based phase retrieval problems, the residual error is written as r = G(q)− I,
where G(q) is the image calculated by Equation (2), and the partial derivative of r with
respect to q, i.e., the column vector in the Jacobian matrix, can be derived easily as

∂r(q)
∂q

=
∂[G(q)− I]

∂q

=
∂[F(P)F∗(P)]

∂q

=
∂[F(P)]

∂q
F∗(P) + F(P)

∂[F∗(P)]
∂q

= F(P·iΨ)F∗(P) + F(P)F∗(P·iΨ)

(10)

with which LM can be implemented easily.
As mentioned above, single image-based phase retrieval usually suffers from the

stagnation problem, especially for large dynamic range phase retrieval. Therefore, more
images usually are introduced to improve robustness in practice, and the most convenient
way would be to employ defocus images. We introduced a simple multi-LM algorithm
to solve the phase retrieval problem with multiple defocus images. Namely, each LM
algorithm calculates the parameter q with an image independently and the results are then
combined with a weighting technique to guarantee global convergence.

Assuming that M defocused images are taken for phase retrieval by the proposed
multi-LM algorithm, we propose an effective weighting technique as follows: First calculate
the weight for each calculated parameter vector qm as

wm =
ε

γ
m

∑M
m=1 ε

γ
m

(11)

where εm is a quantity used for calculating the weighting value, and γ is the constant
controlling the penalty degree. The simplest way to determine the weight for each resulting
parameter by LM algorithm is to use the residual error calculated by each LM as ε. However,
the calculated images by algorithm may not match the measured ones in amplitude, which
could result in faulty weight. To avoid this problem, we introduced the maximum of
correlation between two images, which is written as

ε = max(IEst ⊗ IDet) (12)

where IEst is the image estimated by the algorithm, IDet denotes the detected image, and
max means taking the maximum of the correlation map between two images. The correla-
tion map could be calculated by a general image correlation technique, such as Pearson
coefficients, but we employed cosine similarity, which can be calculated by fast Fourier
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transformation (FFT) for the sake of efficiency. In this case, the value γ = 2 is good option
empirically. When the value of all weights are determined, qk is updated as

qk+1 = ∑M
m=1wmqm

k+1 (13)

The principle of the algorithm is be described in Figure 2. The algorithm contains two
loops: the inner loop and outer loop. In the inner loop, each LM algorithm calculates q
independently with a common input, i.e., qk. Then the results output by all LM algorithms
are combined to generate qk+1 in the outer loop. This process is repeated until the stop
condition is satisfied.

Figure 2. The principle of the multiple image-based LM algorithm, where q0 denotes the initial guess
of the parameter to be solved, LMm denotes the mth image processed by LM algorithm, and τ denotes
the error tolerance.

3. Model-Based Tip–Tilt and Piston Detection for Segmented Mirror

In practice, there are many forms of segmenting that actually share similar modeling
in analysis. For simplicity, we took the hexagon segmented mirror, one of the most popular
segmenting fashions. In the case of hexagon segmented mirror wavefront sensing, let us
just consider tip–tilt and piston phase error retrieval. In this case, each segment of the
phase can be represented as

ψ(a, b, c) = aX + bY + cZ (14)

where X, Y, and Z are the normalized bases of each phase segment, which are just as
Figure 3 shows, and a, b, and c are their respective coefficients. X and Y are defined by
planes x − z = 0 and y− z = 0, respectively, and Z is defined by plane z = 1, with the
support defined by a segment.

Figure 3. The basis for a single segment. (a) the base component on x-axis, (b) the base component
on y-axis, (c) the base component on z-axis.
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As there is no overlap between segments, the phase of the whole mirror is the sum of
the phase of all segments. Thus, the whole wavefront can be written as

Θ(a, b, c) =
N

∑
n=1

θ(an, bn, cn) (15)

where n is the index of the segment, N is the total amount of segments, and (a, b, c) is
the vector of [a1, a2, · · · aN , b1, b2, · · · bN , c1, c2, · · · cN ], which contains all the parameters to
be solved. From the above formula, it can be seen that the function of each segment has
three parameters, and there are 3N parameters in total for the whole mirror that need
to be calculated. Similar to Equation (3), the objective function for the case herein can
be written as

E
(
→
a ,
→
b ,
→
c
)
=

L

∑
j=1

[G(ψ)− I]2j (16)

=
L

∑
j=1

(
F2[A· exp(iθ(a, b, c))]− I

)2

j
(17)

where I denotes the image measured by the detector, and the sum is applied to all pixels
with index j. Obviously, the process of solving Equation (17) is just the same as the
case of model-based wavefront sensing analyzed above. Similar to the popular Zernike
polynomial-based parameterized technique, a set of bases, i.e., the segmented tip–tilt and
piston, is used to parameterize the wavefront of the whole segment mirror here. Therefore,
the tip–tilt and piston error sensing for a segmented mirror also can be calculated like a
general model-based phase retrieval algorithm with high accuracy.

4. Simulation

We validated the proposed algorithm by simulation with the case of hexagon segment
mirror tip–tilt error detection. The ground truth wavefront and corresponding coefficients
are just as Figure 4 shows. In this segmented mirror phase retrieval simulation, we consider
a segmented mirror with 7 segments, just as Figure 4a shows. The peak-to-valley (PV) value
of the whole wavefront was set to 7λ, which contained tip–tilt error and piston error, just as
Figure 4b shows. The slope and the piston error of each segment was generated randomly.
Four out-of-focus images were simulated based on the model represented by Equation (2).
Poisson noise was applied to all image data; the noisy images used for simulation are just
as Figure 5 shows.

Figure 4. The ground truth phase error and coefficients. In figure (a), the hexagon segment is
simulated according to the real size of JWST, with a diameter for each segment of 1.3 m and an image
size of 256× 256. The index of each segment is as the numbering shown. In figure (b), the bar in
blue denotes the tip–tilt error and the orange is the piston error. The coefficient index is defined as
(a1, b1, c1, a2, b2, c2, . . . a7, b7, c7 ), subscripted by the segment index.
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Figure 5. Simulated images taken from defocus planes: (a) defocus at −71.75 mm, (b) defocus
at 71.75 mm, (c) defocus at −53.81 mm, and (d) defocus at 53.81 mm. The minus symbol means
defocusing along light-traveling direction.

We then used our algorithm to retrieve the tip–tilt and piston error from the measured
images shown in Figure 5, for which the image SNR was 30 dB on average. The simulation
was implemented on the general computer without graphic card acceleration; the computer
configuration was i7-6700HQ CPU@2.6GHz, 16 G RAM, 64-bit Windows 10 OS, and the
platform for algorithm coding and testing was based on MATLAB R2018b. As Poisson noise
is the dominant noise in modern digital cameras [22], it was applied to all simulated images
for testing the algorithm’s performance, such as the efficiency and robustness to noise.

Figure 6 shows the performance of the proposed phase retrieval algorithm when
used to retrieve the tip–tilt and piston error of the segmented mirror shown in Figure 4.
The simulation shows very accurate results in tip–tilt error, but a completely different result
in piston error. In fact, due to the 2π ambiguity problem, the piston cannot be determined
uniquely when the PV is larger than one wavelength for the image-based phase retrieval
algorithm. Therefore, the phase retrieval method based on intensity can only retrieve
the real piston error within one wavelength. Nonetheless, it shows that the proposed
algorithm is still valuable for direct accurate tip–tilt and piston error detection without
introducing extra complex sensors or devices, based on the result of the coarse cophasing
step, in which the large initial tip–tilt and piston error is usually effectively corrected by
another technique. Actually, combining the proposed image-based wavefront techniques
with some existing techniques could be a good choice to realize fast and accurate large
dynamic-range cophasing in practice.

Figure 7 shows the performance of the proposed phase retrieval algorithm to noise.
It shows that the wavefront error decreased with the increasing of image SNR. The retrieved
wavefront was quite accurate even for low image SNR; for the image with SNR = 30 dB,
which corresponds to a gray level of several thousand—a quite general signal amplitude
level in practice—the resulting root mean square (RMS) of the wavefront already reached
about 0.2% radian. This denotes that the model-based phase retrieval technique is able to
achieve very high accuracy for wavefront sensing. It also shows that the lower dynamic
range (PV ≤ 3λ) resulted in higher accuracy, but the difference of resulting accuracies
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between the high dynamic range and the low dynamic range were not large, which
indicates that noise level is the main factor that impacts accuracy. Therefore, the image SNR
should be as high as possible to guarantee high performance wavefront sensing in practice.

Figure 6. Difference between the retrieved coefficients and those of the ground truth.

Figure 7. The RMS of the retrieved phase error caused by tip–tilt error vs. difference noise level.
The RMS is calculated by taking the RMS of the difference between the phase calculated by the real
tip–tilt and that calculated by the estimated tip–tilt by an algorithm with zero pistons.

To clearly show the performance of piston detection by the proposed image-based
phase retrieval technique, we also implemented simulations on small and large piston
sensing. In simulation, all tip–tilt errors were set to zero, i.e., only pistons were taken
into consideration. Then the same algorithm was used to calculate the values of all
21 coefficients. The initial value for all parameters was set to zero. Figures 8 and 9 show
the simulation results of the piston retrieval by the proposed phase retrieval algorithm.
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Figure 8. Small piston retrieval: (a) the retrieved piston vs. the ground truth piston and (b) the retrieved
relative piston vs. the relative ground truth piston. In (b), the first segment is set as the reference.

Figure 9. Large piston retrieval: (a) the retrieved piston vs. the ground truth piston and (b) the
retrieved relative piston vs. the relative ground truth piston. In (b), the first segment is set as the
reference, and the relative piston is wrapped.

Figure 8a shows that the piston could be retrieved successfully for small pistons,
however, an extra background piston was introduced. This makes sense, since a back-
ground piston denotes all segments shift as a whole, namely, there is no relative shifting
between them, which has no impact on the imaged Fourier modulus pattern. Figure 8b
shows the comparison between the retrieved relative piston and the ground truth relative
piston, which shows quite high accuracy. The simulations show that when the piston error
was small, the piston errors could be retrieved correctly, otherwise the calculated pistons
involved a 2π phase ambiguity problem. It was found that the algorithm only worked
well for relative pistons lower than half a wavelength with zero as the initial value. In fact,
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there was no guarantee that the exact piston could be retrieved by an image-based phase
retrieval algorithm mathematically; however, for a small piston error with an appropriate
initial value, the algorithm was still able to retrieve the real piston successfully.

Figure 9 shows the simulation result in the case of large piston retrieval. Similar to the
case of small piston retrieval, the pistons were retrieved quite well. Figure 9a shows that the
ground truth piston was quite high, where the PV reached 10λ, and the retrieved pistons
were quite different from the ground truth due to the 2π ambiguity problem. The retrieved
pistons were constrained within a wavelength of dynamic range.

Even though it suffered from the 2π ambiguity problem for large pistons, our simula-
tion shows that the proposed algorithm was still capable of calculating an optimal solution,
even for PV higher than 10λ, with high accuracy. The wrapped retrieved relative pistons
were actually the same as those of the ground truth, just as Figure 9b shows. Therefore,
the calculated piston value would be useful for large accurate detection within one mea-
surement, combining the result with another piston detection technique, e.g., a piston
detection sensor and the technique of sensor fusion. Therefore, it can believed that the
proposed technique still has potential for fast, accurate large piston error detection.

5. Discussion

In this article, we proposed a direct tip–tilt and piston error detection approach for a
segmented mirror in large-aperture telescope system design. We show that the tip–tilt and
piston error can be represented by the combination of three basic plane functions, which
are used as the basis for parameterizing the segmented mirror tip–tilt and piston error.
The problem then is solved by the well-known LM algorithm with multiple defocus images.
The simulation shows that the proposed technique results in accurate tip–tilt error detection,
even for a low SNR image, and is able to retrieve a high dynamic range wavefront. Even
though a large piston could not be retrieved successfully due to the ambiguity problem for
the image-based phase retrieval problem when the PV of the wavefront is higher than one
wavelength, it is still very valuable for accurate tip–tilt error detection and small piston
detection in application, and we believe that the proposed technique still has potential
for fast, accurate large piston detection. The advantage of the proposed phase retrieval
algorithm is that it is precise, efficient, and very easy to implement. However, it should be
pointed out that the complexity of the proposed algorithm will increase with the increasing
of number of segments and the number of the bases used to represent the wavefront of a
single segment. As the cost of computing is becoming cheaper and the power of computers
is increasing, we believe that the proposed technique is a still a good solution for segmented
mirror wavefront sensing with any amount of segments in the future. In future work,
we will focus on a fast, accurate piston detection approach with the proposed technique
and look for and use more appropriate basis to represent more phase error beyond tip–tilt
and piston for each segment.
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