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Abstract: We consider a quantum nonlinear Kerr-like oscillator externally pumped by a series of
ultrashort coherent pulses to analyze the quantum time-correlations appearing while the system
evolves. For that purpose, we examine the violation of the Leggett–Garg inequality. We show how
the character of such correlations changes when the system’s dynamics correspond to the regular
and chaotic regions of its classical counterpart.
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1. Introduction

Quantum correlations, such as quantum entanglement [1–5], Einstein–Podolsky–
Rosen steering [6–10], and Bell’s nonlocality [11–14] are one of the most intriguing phe-
nomena of quantum physics.

The analogs of the Bell’s inequalities in the temporal domain are so-called Leggett–
Garg inequalities (LGI). Assumptions that should be fulfilled in a classical physical theory
are core in the formulation of both: Bell and Leggett–Garg inequalities. In Bell inequalities,
the concept of local realism is verified, and consequently, the violation of this type of
inequalities is a signature of inconsistency with local hidden variable (LHV) theory.

Inequalities, proposed for the first time by Leggett and Garg in 1985 [15], are based on
the assumptions of macrorealism and noninvasive measurements and are used for witness-
ing non-classicality appearing in a macroscopic system. According to these assumptions, a
physical system at any time is found in one of the macroscopically distinguishable states,
which can be measured without affecting the evolution of the system at any later time.
LGI, therefore, are based on correlations between the states of the system. Using those
inequalities can be analyse the correlations between the outcomes of quantum observables’
measurements performed at different times. According to the noninvasive measurement
assumption, the observables evolving in time should not be affected by the experiments
performed. Therefore, for testing the assumptions on which LGI are based, one should
perform experiments that are noninvasive in a classical sense. In [15], Legget and Garg
proposed a loophole-free type of quantum measurement (ideal negative measurements
in which one obtains information about the state of a quantum system without any direct
interaction with it), preserving the feature of being noninvasive in a classical sense, and
therefore can be used for the correct testing of macrorealism in physical systems [15,16]. If
the condition of noninvasive measurement is satisfied, whenever LGI is violated, we can
associate that feature with the existence of nonclassical correlations. The existence of strong
nonclassical time correlations of this type has led to the proposal of the concept of quantum
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entanglement in the time-domain [5], and then, the application of such type of correlations
in the research related to quantum information theory and quantum computing [17].

Up to this time, various successful experiments have proven the existence of a vio-
lation of LGI, proving the appearance of nonclassical correlations in the time domain in
real systems. The first experimental observation of the violation of LGI was performed
in the experiment made by Palacios-Laloy et al. in 2010, on a pseudo-macroscopic super-
conducting system with two states [18]. However, further discussion showed that a weak
measurement does not necessarily have to be noninvasive [16]. Subsequent experiments
that confirmed the violation of LGI were made using spin-bearing phosphorus impurities
in silicon [19] and “quantum error” on optical networks [20] or projection measurement
in the magnetic resonance system [21]. Recently, violations of LGI have been observed
in various physical systems, such as those involving defect centers in diamond [22,23],
nuclear magnetic resonance [24,25], photons [26–29], and many others.

The analysis of correlation function is one of the methods which can be used in the
study of the dynamics of deterministic nonlinear systems. The difference between the
regular and chaotic dynamics of the classical system can be observed in the behavior of
autocorrelation functions. The autocorrelation function is a measure of the correlation
between the elements of time series [30]. By using it, we obtain the information showing
how much a given element in a time-series affects the next one. For regularly evolving
systems, the autocorrelation function oscillates with a constant amplitude. However, for
chaotic systems, those oscillations are exponentially damped. Such behavior is related to
the fact that the signals become uncorrelated. For quantum systems presenting chaotic
behavior, with increasing the time interval between the system states—such states become
uncorrelated. Therefore, encouraged by the research in that field, in this paper, we are
going to study quantum correlations in the time domain. For studies of the character
of the system’s evolution, we propose the application of the Leggett–Garg inequality
(LGI). We believe that the method presented here can be applied in detecting quantum
chaotic behavior. Already in the past, chaotic systems were analyzed in the context of the
appearance of various quantum correlations [31,32]. One of the methods of research of
chaotic systems is entanglement’s investigation. This procedure has been used, for instance,
in such a system as coupled quantum kicked tops [33–36]. While the study of correlations
in chaotic systems is not a new approach, the use of LGI opens up new possibilities for the
analysis of quantum systems whose classical counterparts exhibit chaotic behavior.

The main purpose of the research presented here is to show whether the nonclassical
correlations in the time domain can be related to the type of quantum system dynamics.
We investigate a particular example of the quantum system which, depending on the
parameter’s values, can exhibit regular or chaotic dynamics. Macrorealism assumption
leads to the conclusion that also a system evolving in a nonregular way, or even in a
chaotic one, should be found at any time in the well-definite state. In the time correlation
study, taking into account the interaction of the quantum system with the environment by
analyzing quantum noise can be interesting. In real physical situations, the influence of the
quantum noise may significantly change the system’s dynamics. In [37], for example, the
system of quantum top is affected by classical Gaussian white noise. It was shown that in a
given quantum system, the level of LGI violation increases when the system approaches
the semiclassical limit of a large angular momentum. The influence of random telegraph
noise, leading to quantum system dephasing, on the LGI violation was also considered [38].

The analyzed model is a nonlinear oscillator driven by ultrashort coherent pulses [39,40].
Such a system has already been extensively studied, also in the context of quantum chaos
(for instance, see [41–43]). The classical counterpart of the system discussed here exhibits
both regular and chaotic behavior for various values of the strength of excitation [44]
and thus can be a good candidate for the research in the field of quantum chaos. The
model of the anharmonic quantum oscillator, which is analyzed in the present paper,
has wide applications in many areas of present study in quantum optics. It is worth
emphasizing that we can associate it with various optical systems which are described



Photonics 2021, 8, 20 3 of 15

by effective Hamiltonians of the nonlinear Kerr-like oscillator type. The optical cavity
with vibrating mirror [45], optomechanical micro-cavities [46], vibrating modes of trapped
atoms/ions [47], nanoresonators [48], photonic crystals [49], optical lattices [50,51], or Bose–
Einstein condensates [52], just to name the few examples of using anharmonic oscillator
description. Kerr-type quantum systems can also be applied for obtaining emissions of
single photons—photon blockade effect [53–55].

The paper is organized as follows. In Section 2, we describe the model and present the
bifurcation diagram to show the ranges of excitation strength values related to the regular
and chaotic dynamics of the classical counterpart of our quantum model. In Section 3, we
introduce LGI and describe the adequate procedure for determining the violation of the
inequalities. Next, in Section 4, we find the optimal conditions of projective measurements
giving the maximum violation of LGI for our system. In Section 5, we discuss the relation
between the values of correlators and the importance of the appropriate choice of time
between measurements. In Section 6, we investigate the time evolution of correlators. Both
Sections 5 and 6 are devoted to the problems of optimal choice of measurement conditions
and time between measurements. On the basis of our study, we can associate the transition
between violating and not violating the LGI with the type of evolution of the quantum
system. Finally, in Section 7, we present our conclusions.

2. The Model

In this paper, we consider the system of a quantum anharmonic oscillator of a Kerr-
type driven by a series of ultrashort external pulses. The classical counterpart of such a
system can exhibit both types of behavior—regular and chaotic [44]. We assume that the
system initially is in the vacuum state |ψ(t = 0)〉 = |0〉. In the interaction picture, the time
evolution of the oscillator is governed by the following Hamiltonian:

Ĥ =
χ

2

(
â†
)2

â2 + ε
(

â† + â
) ∞

∑
k=1

δ(t− kT), (1)

where the first term represents a “free” evolution of the oscillator during the time between
the two subsequent pulses, whereas the second term describes the interaction with coherent
external pulses. The operators â† and â are the boson creation and annihilation operators,
respectively. The parameter χ is the nonlinearity parameter describing the Kerr-type
nonlinearity, whereas ε is the strength of the interaction with external pulses. Such an
interaction is modeled by the sum of the Dirac-delta functions δ(t− kT). Time T is the
time interval between two subsequent pulses labeled by k and k + 1. In our considerations,
we neglect all damping processes. Therefore, we can use the wave function approach to
describe the system’s dynamics. Therefore, its evolution can be described by the following
unitary evolution operator:

Û = ÛnlÛk (2)

which can be decomposed into two parts. The first corresponds to the evolution of the
oscillator during the time between two subsequent pulses

Ûnl = exp
(
−iχ

(
â†
)2

â2T/2
)

, (3)

whereas the second is related to the action of the pulses

Ûk = exp
(
−i(εâ† + ε∗ â)

)
. (4)

To find the state after k-th pulse, we apply the quantum mapping procedure [44].
Thus, we act k-times on the initial state with the use of the defined evolution operator:

|ψk〉 =
(
ÛnlÛk

)k|ψ(t = 0)〉. (5)
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As already mentioned, the classical counterpart of our system exhibits both regular
and chaotic behavior for various values of the strength of excitation. To find the borders
between the regions of regular and chaotic dynamics, we shall plot a bifurcation diagram
(see Figure 1). In this diagram, we present the values of the real and imaginary parts of the
complex parameter α, which is the classical counterpart of the annihilation operator â, and
|α|2 is the energy of our system’s classical counterpart. To prepare such a diagram, we use
the method described in [44]. With the accordance of this method, we find the equation of
motion for the annihilation operator for the time between the subsequent external pulses.
Next, we include the influence of the external pulse, and finally, we replace all operators â
and â†, appearing in the solution, by the complex numbers α and α∗, respectively. Analysis
of the bifurcation diagram shows that the first regular motion region extends for approx
0 ≤ ε . 0.344. Next, we observe the first, not so broad, chaotic belt as 0.344 . ε . 0.356,
which is followed by a regular window 0.356 . ε . 0.47. Finally, we observe the deep
chaos region for ε & 0.47.

Figure 1. Bifurcation diagram for the real and imaginary parts of α as a function of the strength of
external excitation ε for the nonlinearity parameter χ = 1 and the time between subsequent pulses
T = π.

3. Leggett–Garg Inequalities

To analyze nonclassical temporal correlations, we will use the LGI. Assuming an
experiment in which two measurements are made at three different times t1 < t2 < t3, we
can obtain the simplest form of such inequality. Additionally, the measured observable
should be dichotomous, i.e., it has two eigenvalues Q = ±1. In such a case, the LGI takes
the following form:

− 3 ≤ C21 + C32 + C31 ≤ 1. (6)

In general, when n measurements (n > 2) are performed, the LGI can be written
as [15,16,56]:

−n ≤ Kn ≤ n− 2 for odd n ≥ 3

−(n− 1) ≤ Kn ≤ n− 2 for even n ≥ 4 (7)

where Kn is the n-th order correlator defined by the following equation

Kn = C21 + C32 + . . . + Cn,n−1 − Cn,1 (8)

and Cij are the correlation functions defined with an application of the joint probability

Cij = ∑
qjqi

qjqi p
(
qi, ti; qj, tj

)
. (9)
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The quantity p
(
qi, ti; qj, tj

)
appearing in (9) is a probability of obtaining the results qi

from measurements performed at the moment of time ti, and the results qj at the time tj.
Such probability can be expressed by [16,57]:

p
(
qi, ti; qj, tj

)
= Tr

(
Pqj Utj ;ti Pqi Uti ;0ρ(t = 0)U†

ti ;0Pqi U
†
tj ;ti

)
, (10)

where ρ(t = 0) is the density matrix describing the system for the initial time t = 0. The
operator Utj ;ti which appears in Equation (10) is an operator of the evolution between the
moments of time tj and ti (it corresponds to the time interval T = tj − ti). For the system
analyzed here, the evolution operator is defined by Equations (2)–(4). For the situation
discussed here, we will perform measurements just after each pulse.

The measured observable Q is described by the equation:

Q = q+P+ + q−P− (q± = ±1) (11)

where P+ and P− are projection operators

P+ = |Ψ(θ, φ)〉〈Ψ(θ, φ)|,
P− = I − P+. (12)

Additionally, in further consideration, we assume that the wave function describing
the system is projected onto the vector defined on a Bloch sphere

Ψ(θ, φ) = cos2(θ/2)|0〉+ eiφ sin2(θ/2)|1〉. (13)

It should be also noted that for projective measurements, the maximal value of the
correlator Kn which can be reached is n cos(π/n) [16].

4. Leggett–Garg Inequalities for an Arbitrarily Assumed Time Interval
between Measurements

In this section, we concentrate on the dynamics of a quantum nonlinear oscillator
characterized by the Kerr-type third-order nonlinearity. We assume that at the initial time
t = 0, the system was the vacuum state |0〉. Next, the oscillator undergoes excitation in the
form of a train of coherent external pulses. Finally, for the moments of time corresponding
to each pulse, we perform subsequent measurements—projections on the specific Bloch
vectors (the measurements are performed just after each pulse). Those measurements
are performed one by one over a period of time τ = tj − ti = T. Such measurements
allow finding the correlators defined in (8), giving information on whether the appropriate
LGIs are violated. The violation of those inequalities implies the existence of nonclassical
temporal correlations. Our purpose is to show the relation between the appearance of
violations of LGI and the character of the discussed system’s dynamics. We are interested
in any difference in the character of the correlators’ evolution appearing when we change
the parameters that “switch” the system from the regular to quantum chaotic dynamics.
Such differences could be applied as a novel witness of the quantum chaotic dynamics.

In Figure 2, we show the values of the correlators K3–K6 found by taking measure-
ments in a short-time evolution range. This means that the subsequent projections on the
Bloch vector are performed in short series, just after two, three, four, or five subsequent
excitations. From the results presented in Figure 2, one can see that LGI are violated only
for some limited range of Bloch vectors. The width of this range depends strongly on the
strength of the external excitations. For the weak excitation case, very narrow windows
on θ angles around 0 and π values result in violating inequalities of all analyzed orders
for various values of φ. The degree of violation increases with the order of the correlator
(therefore, with the number of performed measurements).
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Figure 2. At (a–c) K3 correlator; at (d–f) K4 correlator; at (g–i) K5 correlator and at (j–l) K6 correlator for a single nonlinear
oscillator exposed to a series of ultra-short excitations of various strengths ε. Time between pulses T = π; times between
projective measurements: tj − ti = T. Initial state of the system is |ψ(t = 0)〉 = |0〉 and state Ψ(θ, φ) = cos2(θ/2)|0〉+
eiφ sin2(θ/2)|1〉. The horizontal dashed lines represent the border between values of Kn excluded and not excluded by the
Leggett–Garg inequality.
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Increasing the excitation’s strength, the range of θ values for which the LGI are vio-
lated initially increases (which is seen in Figure 2a–c, and for larger values of ε are present
only for θ close to 0 and 2π for K3. For higher-order correlators, it is true when we dis-
cuss the regions of the parameters for which the quantum oscillator evolves regularly—
Figure 2d,e,g,h,j,k. When the excitation strengths are large enough to cause the chaotic
evolution of the oscillator, the LGI is no longer violated if we perform more than two
subsequent measurements—Figure 2f,i,l.

We can consider the values of correlators for the specific choice of the state θ = φ = 0 to
which the projection is performed, as the optimal choice of the state to show the maximum
violation of LGI for various values of excitation strength ε. It is presented in Figure 3,
and it is evident that higher-order correlators, like K6, can be used for distinguishing
between regular and not regular dynamics of the quantum system. When the classical
kicked nonlinear oscillator is in a region of chaotic evolution, its quantum counterpart
evolves between a large number of quantum states. It was already shown [44] that for
higher excitation strengths, the mean number of photons present in the system significantly
increased when compared to oscillations between 0 and 1 photon states in regular dynamics
obtained for smaller values of ε. In [44], it is also shown that such an increase and change
in the type of system’s dynamics can be observed after several number of external pulses.
Therefore, it seems to be clear that when correlators are defined in such a way that the
projective measurement is made after subsequent pulses, the higher range of correlators, the
larger number of photons in the system, and any changes in dynamics can be seen better.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0

1

2
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4

5

6

K
n

K
3

K
4

K
5

K
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 = 0

 = 0

Figure 3. K3–K6 correlators versus ε for a single nonlinear oscillator exposed to a series of ultra-short
excitations. Time between pulses T = π; times between projective measurements: tj − ti = T. Initial
state of the system is |ψ(t = 0)〉 = |0〉 and state Ψ(θ = 0, φ = 0) = cos2(θ/2)|0〉+ eiφ sin2(θ/2)|1〉.
The horizontal lines represent the border between values of Kn excluded and not excluded by the
Leggett–Garg inequality.

5. Leggett–Garg Inequalities and Long-Time Measurements

When examining the inequalities of temporal correlations by using them for differ-
entiating between the regular and chaotic evolution of the quantum system, it will be
useful to find the optimal length of time between subsequent measurements for which any
differences are visible.
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Therefore, in Figure 4, we show the values of correlators up to the 6-th order with re-
spect to the time lengths τ between performed measurements. These lengths are expressed
as a multiple of the unitary evolution time T. Therefore, the longer the time τ, the larger
number of external excitations of the oscillator before the measurement occurs. In such a
way, via appropriate correlators K3 − K6 defined by Equation (8), we are able to analyze
the quantum system’s state after longer times of evolution than in the preceding chapter. It
may be of special use when the quantum system does not exhibit regular oscillations, and
it starts to evolve chaotically. When studying the dynamics in longer time, if the system
does not follow regular oscillations between specific quantum states, it should be seen in
the changes of correlators values and consequently in the inequality violation.

We can easily see (Figure 4a,b,d,e,g,h,j,k) the periodic behavior of correlators with the
increase of τ in regions in which the system’s dynamic is regular and quantum oscillator
evolves among few quantum number states.

However, when the excitation’s strength ε increases to the values for which the
classical counterpart of the analyzed system starts to evolve chaotically, such an increase
in time length τ leads to a situation in which LG inequalities are no longer violated for
the majority of the analyzed number of excitations n. In that sense, the system loses its
quantumness related to time correlations. Occasional increases of the correlators values,
sufficient to violate the appropriate LG inequality, come from the fact that for a large number
of excitations between subsequent projective measurements, the chaotically evolving
oscillator may probably be found accidentally in a quantum state corresponding to the
one chosen in (12). The majority of the obtained values of correlators are below their
specific border values n cos(π/n) [16], indicating that the evolution of the oscillators is not
regular anymore. Such evolution of the described quantum nonlinear oscillator in that
sense reflects the adequate evolution and type of dynamics of its classical counterpart and
using high-order correlators may be a good choice for distinguishing between various
types of dynamics.

When analyzing how the values of appropriate correlators change with increasing
time between measurements, we can see that smaller values of τ result in the violation of
inequalities expressed by correlators K3–K6. However, when the time between projective
measurements allows for much larger, about several dozen, the number of excitations (see
Figure 4c,f,i,l), the LG inequalities are no longer violated.

We can also conclude that the larger the number of pulses and the oscillator evolves
longer, not regular oscillations are more easily revealed. When we compare Figure 4c,f,i,l,
we can see that the correlator K6 for example, indicates not violating Leggett–Garg inequal-
ity after a smaller number of pulses than correlator K3 for the same values of parameters
describing the oscillator. This is most likely related to the fact that the method of analyzing
the behavior of a system is more sensitive when we apply a higher-order correlator. The
use of higher-order correlators allows taking into account a longer part of a time series in
the analysis. This is important in the case of a chaotic system where quantum correlations
disappear over time and the hold of the correlation for a long time is not possible. Thus,
the higher-order correlator is more sensitive to correlation decay.

Such behavior would potentially allow for choosing appropriate τ values for which
one could distinguish between regular and chaotic evolution by correlator’s transition
between violating and not violating Leggett–Garg inequalities.
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Figure 4. At (a–c) K3 correlator; at (d–f) K4 correlator; at (g–i) K5 correlator and at (j–l) K6 correlator for a single nonlinear
oscillator exposed to a series of ultra-short excitations of various strengths ε. Time between pulses T = π; times between
projective measurements: tj − ti = nT. Initial state of the system is |ψ(t = 0)〉 = |0〉 and state Ψ(θ = 0, φ = 0) =

cos2(θ/2)|0〉+ eiφ sin2(θ/2)|1〉. The horizontal dashed lines represent the border between values of Kn excluded and no
excluded by the Leggett–Garg inequality.
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6. Time Evolution in Leggett–Garg Inequalities

The next question which arises is whether the inequalities are violated when analyzing
the system constantly evolving in time. Therefore, in Equation (10), instead of the initial
system’s state ρ(t = 0), the adequate state of the oscillator after n-th excitation is used
ρ(t = nT)

p
(
qi, ti; qj, tj

)
= Tr

(
Pqj Utj ;ti Pqi Uti ;t=nTρ(t = nT)U†

ti ;t=nT Pqi U
†
tj ;ti

)
. (14)

In such a way, in calculating appropriate correlators, we refer their values to the
specific state of the system, which is constantly excited by ultrashort coherent pulses. Time
between subsequent measurements stays constant and for our consideration is maintained
and equal to π:

τ = t2 − t1 = t3 − t2 = π (15)

The same value takes the time of free evolution between external pulses. Therefore,
the nonlinear oscillator evolves in time and is subjected to n excitations while we probe
the system and perform projective measurements (find values of correlators) after various
time lengths expressed by multiples of T.

In the same manner as it was done in the previous chapters, the main objective is to
identify any differences between correlators values, and consequently determine whether
LG inequalities are violated or not, in two cases: for an oscillator which evolves regularly
between quantum states, and an oscillator which can be treated as a chaotic one.

As an example, in Figure 5, we show the time evolution of correlators K3 – K6 for the
state Ψ(θ = 0, φ = 0), which is the optimal choice when maximizing the correlators values
for the nonlinear oscillator.

We can clearly see the values of correlators of all analyzed orders when the oscillator
is weakly excited and evolves regularly among the limited number of quantum states
indicate the violating of Leggett–Garg inequalities throughout the whole evolution time—
Figure 5a,b,d,e,g,h,j,k. When the excitation strength ε exceeds 0.5, which is the value for
which the classical counterpart of the oscillator is within the chaotic region, the time
evolution of correlators values changes its character—Figure 5c,f,i,l. The lowest level
correlator K3 initially decreases its value, and after that some, oscillations close to the
border value K3 = 1 are visible. Nevertheless, during the whole analyzed time, Leggett–
Garg inequality is violated, indicating the existence of quantum temporal correlations in
the system.

Correlators of higher values K4, K5, and K6, which give information about correlations
when three, four, or five subsequent projective measurements are performed, for large
excitation values, drop below the border values indicating that Leggett–Garg inequalities
are no longer violated. All correlators indicate a type of perturbed oscillatory evolution
in that region and only fourth-order time correlator K4 during these oscillations is able
to slightly exceed the border line (K4 = 2). This behavior is maintained throughout the
whole evolution time. Therefore, analyses of these correlators seem promising when
distinguishing between different types of dynamics of the analyzed system. For the
optimal choice of the state Ψ(θ, φ), the transition between violating and not violating the
higher-order correlators suggests a change in the type of evolution of the quantum system.
Moreover, we come to the conclusion that, for that purpose, the better solution would be
to use higher-order correlators (as K5 for example). Increasing the number of projective
measurements during the evolution of a not regularly evolving quantum system, one may
obtain a better parameter to distinguish between the types of system’s dynamics.

Moreover, it comes to the conclusion that, for that purpose, the better solution would
be to use higher-order correlators (as K5 for example). As mentioned earlier, the use of
higher-order correlators allows covering a longer part of a time series in the analysis. Then,
the analysis method based on higher-order correlators is more sensitive to the disappear-
ance of the correlation between the elements of the time series. It is particularly important
in the case of the chaotic evolution of a system, where quantum correlations disappear over
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time. Therefore, increasing the number of projective measurements during the evolution of
not regularly evolving quantum systems, one may obtain a better parameter to distinguish
between the types of system’s dynamics.
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Figure 5. At (a–c) K3 correlator; at (d–f) K4 correlator; at (g–i) K5 correlator and at (j–l) K6 correlator for a single non-
linear oscillator exposed to a series of ultra-short excitations of various strengths ε. Time between pulses T = π; times
between projective measurements: tj − ti = nT. Initial state for (14) is a state of the oscillator after n-th excitation. State
Ψ(θ = 0, φ = 0) = cos2(θ/2)|0〉+ eiφ sin2(θ/2)|1〉. The horizontal dashed lines represent the border between values of Kn

excluded and no excluded by the Leggett–Garg inequality.
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7. Conclusions

We propose the use of inequalities based on temporal correlations between the states of
a system which is exposed to several projective measurements for distinguishing between
the regular and chaotic evolution of a given quantum system. We have decided to analyze
a simple nonlinear oscillator which is externally driven by a series of ultrashort pulses.
That specific system was described and reported as an example of both a regularly and
chaotically evolving one, depending on the strength of the excitations applied to the system.
A thorough analysis has already been performed when assuming classical and quantum
descriptions of that model.

In this paper, we focus on the temporal correlations between the outcomes of the mea-
surements made on that quantum system. The measurements that are taken are the projec-
tions on the vector taken from the Bloch sphere Ψ(θ, φ) = cos2(θ/2)|0〉+ eiφ sin2(θ/2)|1〉.
In our considerations, we analyze Leggett–Garg inequalities based on correlators of various
orders K3, K4, K5, and K6 which give us information about temporal correlations within
the system when making 2, 3, 4 or 5 subsequent measurements. Our purpose was to
find whether a violation of Leggett–Garg inequality will reflect the type of dynamics the
quantum system follows. Therefore, we have compared the adequate values of correlators
(8) in various ranges of parameters identifying our system. We have obtained the optimal
values of angles θ and φ for maximal Leggett–Garg inequality violation and for that specific
choice showed the differences in correlators values when the oscillator evolves regularly
between a few quantum states and can be considered as a chaotic one. We have considered
the behavior of the correlators when the projections were made just after the initial system’s
excitation. Additionally, we analyzed the same parameters when assuming that the time
between subsequent measurements is longer and defined as a multiple of the excitation.

In all of these cases, we have found that the transition between a violation and no
violation of the Leggett–Garg inequality can be associated with regular and not regular
dynamics, when the oscillator is excited several times before the measurements are made.
This does not influence the result in the regular dynamics region but is important when
the system evolution is no longer regular. The longer the evolution of the quantum
system with nonregular dynamics, the less likely one is to observe the violation of LG
inequalities. Additionally, we have found that for such cases, the types of dynamics are the
higher-order correlators, which are more fragile. This is associated with a larger number
of measurements performed on the system at various moments during its evolution.
Whenever our quantum system is evolving in a nonregular way among a large number
of quantum states, such multiple “probing” reveals the lack of correlation between the
measurements’ outcomes in the time domain.

Then, the non-classicality associated with temporal correlations is destroyed. For
that reason, it is also better to use more than 3 correlators’ orders, which ensure that the
number of measurements increases and consequently the time of the whole evolution is
significantly longer.

The same happens when taking into consideration the time evolution of the whole
system and for each of the measurements take the state of the system after time t—the state
of the oscillator after n-th excitation (14). Once more, when the quantum system is far from
regular oscillations, it is reflected in correlators (of higher than 3 order) values.

Therefore, we believe that temporal correlation analysis can also be adapted as a tool
in the field of regular and chaotic evolution of quantum systems. It would be valuable
if it was possible to carry out an appropriate experiment confirming the possibility of
analyzing LGI inequality violation in the context of regular or chaotic evolution of the
quantum system under study. Potentially, some of the attempts may be associated with
systems such as optical lattices [58]. It would also allow for the extension of the method
in the experimental aspect, using the already described noninvasive measurements. For
instance, in the system of cold atoms in an optical lattice, the absence of atoms at a chosen
lattice site without affecting them was probed [20].
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