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Abstract: Interconnecting networks adopting Fast Optical Switches (FOS) can achieve high band-
width, low latency, and low power consumption. We propose and demonstrate a novel intercon-
necting topology based on FOS (FOSquare) with distributed fast flow control which is suitable for
HPC infrastructures. We also present an Optimized Mapping (OPM) algorithm that maps the most
communication-related processes inside a rack. We numerically investigate and compare the network
performance of FOSquare with Leaf-Spine under real traffic traces collected by running multiple
applications (CG, MG, MILC, and MINI_MD) in an HPC infrastructure. The numerical results show
that the FOSquare can reduce >10% latency with respect to Leaf-Spine under the scenario of 16
available cores.

Keywords: high performance computing; fast optical switch; network architecture; mapping algo-

rithm

1. Introduction

Driven by the requirements of the computing in large-scale scientific problems and the
processing of massive data, such as computing simulation, gene sequencing, weather fore-
cast, and so on, the peak arithmetic speed of the High-Performance Computing (HPC) in-
frastructure has had an increase of multiple orders of magnitude and reached 125.4 PFlop/s
during the last five years [1]. This imposes stringent requirements for accommodating the
booming HPC applications; thus, an open research question is: How can we efficiently
scale out the servers count and scale up the data rate with a satisfactory performance under
a suitable interconnecting architecture?

In current electronic switches-based architectures that support a large number of
servers (>10,000) operating at high data rata (>50 Gb/s), multi-tier high radix electronic
switches are being employed to satisfy the requirements of connectivity and bandwidth
at the price of large latency, high cost, and power consumed optical-electro (and electro-
optical) conversion (O/E/O) modules [2-5]. By exploiting optical switching technologies,
the cost and power consumption associated with the O/E/O modules can be largely elimi-
nated. Moreover, the optical switching technologies are transparent to data rate/format
and therefore support huge bandwidth per port.

Current data center networks and HPCs are evolving from the hierarchical networks
based on high radix electrical switches to optical interconnecting networks to meet the high
bandwidth, low latency, cost, and power consumption efficiency requirements. Several
optical switching technologies have been investigated based on Opto-mechanical and
Piezo-electric Circuit Switching (OCS) [6-10], Fast Optical Switching (FOS) [11-13], and
arrayed waveguide router (AWGR) combined with fast tunable lasers [14,15]. Exploiting
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optical switching technologies that transparently switch high data rate signals in DCN can
efficiently reduce the cost and power consuming O/E/O interconnects and latency.

As a mature commercial technology, OCS exploits micro-electro-mechanical systems
(MEMS). In the past few years, some efforts have been made to investigate the optical
switching schemes for HPC applications [16]. C-through and Helios represent the architec-
tures introducing MEMS based OCS in parallel with electrical switches [9,10]. Such hybrid
electrical/optical solutions take advantage of the relative merits of each. OCS could switch
on the order of milliseconds or microseconds supporting the switching granularity of flows.
Because of the inefficient bandwidth utilization and inflexible connection resulting from the
slow reconfiguration time and reservation time, the network architectures based on OCS
are only suitable for long-term bulky data transfers. On the other hand, a fast optical switch
(FOS) could switch on the order of nanoseconds and supports the switching granularity
of packets.

FOS can switch packets in time, space, and wavelength domain in nanoseconds, and
therefore can maintain the statistical multiplexing performance offered by the electronic
switches. Benefiting from the huge bandwidth provided by the optical switching technolo-
gies, the link delay could also be decreased by simplifying the multi-tier interconnecting
topology into a flatter one with the reduced switching hops. Despite the bandwidth and
fast switching (nanoseconds) operation, one of the main challenges to build an interconnect-
ing network by fast optical switching technologies is the lack of optical buffers for packet
contention resolution. Therefore, to properly introduce a fast optical switching based
interconnecting network, the fast (nanoseconds scale) controller should be implemented.

Several architectures have been proposed and investigated for large-scale DCNs
exploiting multi-stage fast optical switching technologies [11-13]. However, the intercon-
nected architectures based on FOS must overcome the lack of optical memory to support
buffer-less operation. To maintain the statistical multiplexing offered by the electrical
switches, OPSquare and HiFOST DCN architecture based on FOS is proposed to over-
come the lack of optical memory [12,13]. Apart from the architectures based on OCS and
FOS, there are also architecture built of AWGR and tunable lasers. However, the AWGR
technology requires very expensive tunable lasers and sophisticated control to achieve
sub-microseconds tuning time [14,15].

Accompanying the evolving of network technology, the real-time, interactive and big-
data applications are also booming. When the communication happens between the servers
in separate racks, there will be a severe performance bottlenecked for the data-intensive
applications and computations. Considering the mapping algorithms in optical networks,
different solutions have been proposed to handle the intrinsic characteristics of optical
networks. The impact of the choice of a packet transfer mode on network performance is
analyzed in [17], and to find out how a network node can exploit the wavelength resource
to achieve statistical multiplexing efficiency. A heuristic network mapping algorithm
called resource and load aware algorithm based on ant colony optimization (RL-ACO)
is proposed in [18]. RL-ACO considers the load jointly with spectrum continuity and
spectrum contiguity during the node mapping stage and focuses on decreasing the blocking
ratio of virtual network requests. The consequences of packet collisions in application
performance and how this situation can be avoided or minimized is not reported either.
Besides, a mapping algorithm considering the collisions between different processes is
proposed in [19]. However, it only shows the performance for a small-scale network with
16 servers and assumes that all the resources are available for use in the network.

In this work, we demonstrate a novel scalable and low latency HPC interconnecting
architecture based on distributed fast optical flow control FOS that scales as the square of
the FOS port count (FOSquare). The fast optical flow control overcomes the lack of optical
memory in the FOS and enables the fast (nanoseconds) control of the FOSquare architecture
for low latency operation. We also propose a novel Optimized Mapping (OPM) mechanism
that maps the most communication-related processes inside a rack. OPM takes the traffic
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relevance of processes into consideration so that the processes with higher communication
ratio are mapped to neighboring cores (cores in the same rack).

In the simulations, we use the traffic traces from real HPC applications to evaluate
the network performance of average server-to-server latency. The length, transmission
time, and destination of each packet are all fixed in the simulation. The completion time of
the application is determined by the transmission time of the last packet. Therefore, the
application completion time is almost the same for different networks. Also, the mapping
algorithm is only used to show the network performance improvement of FOSquare with
respect to Leaf-Spine. The latency performance of the FOSquare is numerically investigated
by analyzing real HPC application traces under the specific mapping mechanism. For the
application CG, MG, MILC, and MINI_MD, numerical results show that the latency of FOS-
quare architecture is 28.1%, 13.6%, 25.2%, and 10.9% less than the electrical interconnecting
architecture Leaf-Spine, respectively, under the 16 available cores scenario.

The novel contributions with respect to the previous works are shown below. Firstly,
benefiting from the advantages of FOS and the customized servers, we introduce the FOS in
the HPC network and propose the FOS based optical FOSquare HPC network. By using the
star topology for both the wavelength division multiplexing (WDM) inter-group and intra-
group interconnection, FOSquare provides a scalability of N? to interconnect thousands of
servers with medium radix FOS. A comparison of FOSquare with various network archi-
tectures is shown in Table 1. Secondly, we evaluate the network performance of FOSquare
HPC network by obtaining the traffic traces of real HPC applications in a Marenostrum 3 su-
percomputer. To show the advantages of FOSquare, the network performance of FOSquare
is compared with the Leaf-Spine architecture adopted in a Marenostrum 3 supercomputer.
The results show that FOSquare achieves less latency compared with Leaf-Spine.

Table 1. Comparison of various network architecture (M: network size, RS: radix of inter-group (Spine) switch, R4: down

link radix of intra-group (leaf) switch, a: local channels and h: global channels in Dragon, N: radix of fast optical switch. BS:

Bisection bandwidth).

Architecture Scalability BS Optical/Electrical/Hybrid Degree Diameter
Leaf-Spine RSRd /2 RS/2 Electrical 1 2
Dragonfly Rgq x a(ah +1) a(ah +1)/4 Electrical 2 3
2D Torus M 2M05 Electrical 4 vM-1
De Bruijn M 2 dM/loggM Electrical D logqM
FOSquare N2 N2/2 Optical 2 2
OPSquare Ry x N2 N2/2 Hybrid 1 3

HiFOST Ry x N(N +1) NN +1)/4 Hybrid 2 2

2. Materials and Methods

The proposed high-bandwidth, low-latency, and scalable HPC architecture based on
flow-controlled FOS is shown in Figure 1. The network is divided into N racks. Each rack
contains N servers interconnected by the intra-rack FOS through the WDM optical link.
Meanwhile, the inter-rack connectivity is achieved by inter-rack FOS.

As illustrated in Figure 1, servers in the i-th rack are interconnected by the i-th intra-
FOS (intra-FOS;); and the j-th inter-rack FOS (inter-FOS;) interconnects the j-th server
(1 <1i,j <N) of all the racks. There is no direct connection among FOSs in FOSquare.
For the inter-rack communication, servers undergo at most two optical hops. It is worth to
notice that FOSquare allows servers to be interconnected via different path connections,
increasing network fault-tolerance and facilitating load balancing algorithms to optimize
the performance of the network. To be specific, for the inter-rack communication, there are
two available shortest paths, the first is source — intra-rack FOS — mid-serverl — inter-
rack FOS — destination. The second path is source — inter-rack FOS — mid-server2 —
intra-rack FOS — destination. The number of interconnected servers in FOSquare scales as
NZ2. The square scalability of FOSquare comes from the double NICs equipped in the sever.
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By using 64 x 64 port FOS, up to 4096 servers can be interconnected. Therefore, a scalable
HPC can be built by using FOS with moderate radix due to the excellent square scalability.

Inter-rack FOS

Inter-FOS; Inter-FOSy

Intra-rack FOS

Y= = R~
Intra-FOS, e

wDM Intra-FOS;

rack 1 rack 2 rack N

Figure 1. The FOSquare High-Performance Computing (HPC) architecture based on fast optical switch with flow control.

The composed modules of server are shown in Figure 2. There are k cores in the server,
and the core operates at 50 Gb/s. The packets from the cores are segmented into cells with
length of 1500-byte and buffered before sending out of the server. The number of cells N
that a packet occupied is calculated by the following formula:

Neeyy = ceil (Lpacket/1500) 1)

where Lyt is the length of the packet, and the ceil function maps a real number to the
least succeeding integer. To achieve a target oversubscription with respect to the expected
performance, p and § WDM transceivers (TRXs) are allocated to the intra-rack and inter-rack
interconnection, respectively. In our system, the payload of the optical packet is composed
of 5 cells. Therefore, the payload size of the optical packetis 5 x 1500 bytes = 7500 bytes,
and the preamble length for the optical packet is 1000-bit (20 ns).

ﬁ / ___ ACK/NAC.
) -

E: _____ ?& Flow
= = --->Controlle
Bus

e oo

Figure 2. Schematic of the server equipped with wavelength division multiplexing (WDM)
transceivers and fast flow control.

For both intra-rack and inter-rack traffic, the packets are first segmented into cells and
stored in the p intra-rack or q inter-rack TRX buffers. Then, the cells are transmitted to the
intra-rack or inter-rack FOS with an attached optical label. The optical label is processed
at the FOS to determine the destination. In case of contention, the blocked packet will be
retransmitted benefiting from the operating of fast flow control. An optical flow control
protocol between the servers and the FOS is implemented to fast control the switch and to
solve packet contention through packet retransmission. The flow controller receives the
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ACK or NACK from the FOS. The FOSquare scales out as the FOS radix increases resulting
in more servers inside the group. Meanwhile, there are only intra-group and inter-group
optical interfaces in the servers. Therefore, the flow controller of the server does not need
any updates since it only need to communicate with the optical interfaces.

Successful acknowledge (ACK) or unsuccessful acknowledge (NACK) are exchanged
between FOS and server based on the contention results. The packet loss comes from the
overload of the electronic buffer in the server, while the optical packet fails the contention
in the FOS. Then the NACK generated by switch controller in the FOS is sent to the server
to retransmit the packet.

The schematic of the modular and buffer-less FOS based on broadcast and select
architecture is shown in Figure 3. FOS supports statistical multiplexing technique that
allows information from a number of input ports to be combined for transmission over
a single output port. The modular FOS architecture scales to N x N port count by using
p x N parallel smaller 1 x N switches with moderate broadcast splitting losses. In the
photonic switch (PS), the optical label is first extracted and processed by the label extractor,
then the optical payload is transparently switched by the 1 x N switch. Details on the
operation for label extractor and 1 x N switch port count scalability up to 64 can be found
in [11]. The 1 x N switch is based on optical gates exploiting semiconductor optical
amplifier (SOA) technology. The main contribution to the optical power loss results from
the splitter to divide the optical link to all the output ports. For a 4*4 SOA based FOS,
the power loss caused at the splitter is 12 dB. The SOA in the FOS not only works as the
switch gate to control the on/off of the optical link, but it can also amplify the optical
power to compensate the power loss caused by the splitter. By providing 60 mA current
to the SOA, the SOA gate can compensate the 12 dB power loss. SOA typically has a
—3 dB gain bandwidth larger than 40 nm, which is sufficient for accommodating more than
50 100-GHz spaced channels. At current of 80 mA, the OSNR of 20 dB can be achieved for
the FOS [20]. Benefiting from the modular structure and parallel processing of each WDM
channel, the possible contentions among the F input ports can be solved in a distributed
manner which results in port-count independent nanoseconds reconfiguration time. This
allows operation on large as well as small flows exploiting statistical multiplexing.

6 Module 1

A\
M /B--E
@_ - MOdUIe 2 a

Module N

Switch
Controller

Label Extractor
& ACK inserter

A 4

Figure 3. Schematics of Fast Optical Switches (FOS) architecture.

In the case of contention, the packet with higher priority is forwarded to the output
ports while the others are blocked, and the corresponding flow control ACKs are generated
and sent back to the servers. According to the received ACK (or NACK), the flow controller
at the server releases (or retransmits) the cells stored in the buffers. In terms of scalability,
the maximum number of WDM wavelength channels supported by the FOSquare is
determined by the operational bandwidth of the SOA gate and the achievable wavelength
spacing. The SOA typically has a —3 dB gain bandwidth larger than 50 nm which is
sufficient for accommodating more than 64 100 GHz-spaced channels.
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In FOSquare, FPGA is used to implement the flow controller of server and the switch
controller of FOS. Also, it can receive a Global Position System (GPS) signal to obtain
precise time information on the order of sub-nanosecond. The whole network nodes
(FPGA-based flow controller and FPGA-based switch controller) can be time accurately
synchronized with less than 5 ns time skewing. All the packets are forwarded based on the
time-slot mechanism in the proposed FOSquare and the gap time for the optical packet is
set as 200 ns. The 200 ns gap time is then sufficient to provide 100 ns margin time between
the switch controller signal and the optical packet. The 100 ns margin time can cover the
potential 5 ns time-skewing.

To investigate the performance of the FOSquare architecture, four well-known scien-
tific applications CG, MG, MILC, and MINI_MD, are considered for the simulations [21-23].
The descriptions of these MPI-based applications are given in Table 2. The traces of all
the applications were obtained by executing the applications in the MareNostrum 3 su-
percomputer. The MareNostrum 3 supercomputer has 3024 compute nodes, which were
interconnected through a high-speed Leaf-Spine interconnection network: Infiniband
FDR10. The Infiniband FDR 10 was composed of four racks. The different nodes were inter-
connected via fiber optic cables and 6 Mellanox 648-port FDR 10 Infiniband core switches.
MareNostrum'’s 3 nodes consist of two processors Intel SandyBridge-EP E5-2670/1600
20 M 8-core at 2.6 GHz with 32 GB DDR3-1600 memory modules.

Table 2. Application descriptions.

Name Processes (KB) Problem Size Description
MILC 16(8640) g4 4D-SU3 lattice gauge computations [21]
MINI_MD 16(6974.25) 323 Molecular dynamics application LAMMPS [22]
CG 16(20461.6) 14000 Conjugate gradient, irregular memory access [23]
MG 16(8353) 256° Multi-grid on a sequence of meshes, memory intensive [23]

Figure 4 shows the packet size cumulative distribution function (CDF) of the four
applications. The CG and the MILC applications only generate fixed length packets of
28,000-Byte and 4608-Byte, respectively. While the MG and MINI_MD applications gener-
ate variable packets length. Each application runs with 16 processes. All the application
processes are allocated on different servers. Therefore, the number of processes per ap-
plication is 16 and one process per server is placed. As shown in Figure 5, to evaluate
the performance of the HPC networks, we build the network simulation infrastructures
through the open-source tools.

1.0
0.8
&
[
Q 0.6
)
N
2 0.4 A
2 —CG
g 0.2+ MG
Ay —— MILC
0.0{ = —— MINI_MD |
0 40 . 80 120
Packet size (KB)

Figure 4. Cumulative distribution function (CDF) of the packets size of the 4 applications.
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Figure 5. HPC optical network simulation framework.

Extrae is employed to extract information that includes timestamps of events such
as message transmissions and other runtime calls. Then Dimema, a replay tool for traces
collected by Extrae, reproduces the events from the trace and creates a new Paraver trace of
the simulated execution. Paraver is a visualization and analysis tool of the computation and
communication events for Extrae traces. We dig the communication pattern, namely, the
source and destination nodes pairs, packet lengths, and packet transmission times from the
Paraver trace with Python script; the extracted traffic patterns of various HPC application
are recorded in trace files. Then, acting as the traffic generator, the traffic patterns recorded
in the trace files are fed into the HPC optical network built in OMNeT++.

In the simulation, each server operates at 5 x 50 Gb/s with 4 intra-rack and 1 inter-
rack optical interfaces (p = 4, g = 1). The delay caused by the switching unit and buffering
of cells at the server are taken as 80 ns and 240 ns, respectively [24]. The switching
time of 80 ns is taken from the cut-through switch. This switching time is the same for
both the FOSquare and Leaf-Spine. Therefore, it will not have an impact on the network
performance results. The average link distance for servers to intra-FOS and inter-FOS
are taken as 5 m and 50 m, respectively. The delay of the physical realization of label
processing and port-count independent switch control are considered as 20 ns in total
during all the simulations based on the experimental result presented in [25]. The buffer
size of each transceiver is set as 50 KB. To investigate the performance of FOSquare under
various applications, we consider a FOSquare network of 24 racks supporting 576 servers
(each server has 8 cores), therefore there in total are 4608 cores in the simulated FOSquare
network. However, as we already pointed out, the FOSquare can achieve a good scalability
of N2. (supporting 4096 servers with 64 x 64 port FOS). And we provide the performance
investigation under the application traces we currently obtained.

During the simulations, we separated the cores into two categories, the busy cores
and the available cores. The available cores are idle ones that can be allocated for new ap-
plications. While the busy cores are already running a hypothetical synthetized application
with a fixed packet length of 28,000-byte, we take 28,000-byte (from HPC application CG)
as a representative packet length for HPC applications. The length of the packet is taken
from the analysis of the traces. The busy cores generate those type packets destining other
cores based on a certain load. We analyzed the traffic traces from HPC applications CG,
MG, MILC, and MINI_MD, and found that the load for those applications is all less than
0.5. Considering the worst scenario and to give a conservative estimation, we set the load
of the hypothetical synthetized application deployed in the busy cores as 0.5. The traffic
ratio of the intra-server, intra-rack and inter-rack for busy cores are taken as 50%, 37.5%,
and 12.5%, respectively. Three scenarios with 16, 32 and 64 available cores are taken into
consideration. The index array of the available cores is obtained in advance. For example,
the index array is [387, 544, 1452, 1517, 1771, 1909, 2304, 2448, 2809, 2825, 3065, 3514, 3794,
4148, 4193, 4241] for the first scenario with 16 available cores.
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3. Optimized Process and Core Mapping Algorithm

To carry out the simulations in FOSquare, each process of the application trace is
mapped to one of the available cores in the server. In this section, we describe a novel
optimized mapping algorithm for processes. The target of OPM is to improve the perfor-
mance of the application by taking the traffic relevance of processes into consideration so
that the processes with higher communication ratio are mapped with neighboring cores.
The philosophy behind OPM algorithm is to find out the maximum number (1) of the
available neighboring cores and the process group that has the greatest number of com-
municated packets with m processes. Those grouped processes will be allocated to the m
available neighboring cores to decrease the traffic hops, and therefore to reduce the average
server-to-server latency. The procedure will be iteratively executing until all the processes
are mapped to the available cores.

In the operation of the OPM, suppose M processes need to be mapped with Q available
cores in the FOSquare architecture (M < Q). The value of the parameter loop denotes the
number of iterations for the process grouping. While the value of the parameter count
denotes the number of mapping. The detailed operating producers of the OPM algorithm
are described below.

In the above mentioned operation of the OPM Algorithm 1, step 2—step 6 are the
procedures to group the processes that have the largest communication packets. When the
value of loop increases by 1, the size of g/°?} increases 2 times. More specifically, size(g/*”;)
= 2007, that is to say, 2/ denotes the number of processes in g/} Therefore, the value of
mu" should be an exponential of 2, otherwise, it is truncated to meet the criteria. After
finding out the group pair set g®*"; that groups m“*" processes with largest number
of communicated packets from a total of M processes. Algorithm 1 step 7 completes the
mapping procedure.

Algorithm 1 OPM

Initializing:

Let S denotes the set of the M processes, S = {51, 52, ..., su }, and set g%; =s;, 1 < i < M. Then we have S = {g’1, g%, ..., g%wm}-

loop =0, count = 1.

1: Find out the maximum number of available cores m

count in one rack, and go to step 6.

2: Find out group pair set P = {gl""” i gl""” ]-} with the max communication packets in S.

3: Delete nodes pair P in S (S = S\ {g"*;, gl""pj})

4: If S is not empty, go to step 2; else, loop++.

5: Combine each group pair as a single group, re-calculate set S = {g/°P1, g/, ... , gloP;} (b = M/2/0oP),

6: If (size(gl""pk) == m@t) oq to step 7; otherwise, go to step 2.

7: Map the m@“™ processes in g/ having the largest number of communication packets to the m" cores (1 < k < M/2/0P);

8: Delete process set g/, in S (S=S\g

loop count

1) and also change the status of the mapped m cores into busy cores, count++.

9: If S is empty, end; otherwise, go to 1;

The following example demonstrates the partial operating of Algorithm OPM with the
communication patterns given in Table 3 when m! and M equal 4 and 8, respectively. First,
as shown in Table 3, it is found that the g°; and g, have the maximum communication
packets number of 10. Then, the steps 2 to 4 are repeatedly executed until set S is empty.
The grouping pairs are shown in Table 4. Secondly, the group pairs {g’1, g%}, {g"s, g°7},
{g"3, g%4} and {g%, g°s} are mapped to node g';, g'», g'3 and g'y, respectively. And the
communication packet number of those four groups are shown in Table 5 which is obtained
from Table 3. The size of the g'; is 2, which is not equal to m. Then we go to step 2 to
continue the procedures. At last, we can easily find that group g!; and g!, should be
grouped together to g?; with 16 communication packets, while group g'; and g4 will be
also grouped together to g2, with 16 communication packets. Now the size of the g?; is 4,
which meet the requirement of ending of the procedures (m! = 4), and the grouping for the
first mapping of m! processes finishes.
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Table 3. Communication packets between processes.

Processes 1 2 3 4 5 6 7 8
1 4 2 4
2 6 2 4
3 2 2 3 4
4 3 4
5 4 2 6 2
6 4 2 2
7 4 4 2
8 4 2 2

Table 4. The processes pairs with maximum communication packets.

Group Pairs Packets Number Group Pairs Packets Number
[1,2] 10 [5,7] 10
(3,41 6 [6,8] 4

Table 5. The communication packets after grouping.

Groups 1 2 3 4
1 8 4
2 8 6
3 4 8
4 4 8

Finally, we get group g21 = {gll, glz} = {gol, goz, g05, g07} = {s1, Sp, S5, s7}. Therefore,
processes 1, 2, 5, and 7 are mapped to the 4 available cores inside one rack, while processes
3,4, 6, and 7 are mapped during the follow-up operation of the OPM algorithm.

4. Results and Discussion

In this section, we present the simulation results with the proposed OPM mechanism
for four different applications CG, MG, MILC, and MINI_MD in FOSquare and Leaf-
Spine under three scenarios. Figures 6-9 show the average latency obtained for each
application with OPM algorithm in FOSquare and Leaf-Spine. The latency is the average
server-to-server latency for all packets. The overall communication time including both
latency and bandwidth/serialization contributions are considered. The results shown in
Figures 6-9 indicate an improved latency performance in both the FOSquare and Leaf-
Spine architectures as the available core number increases. The reason is that when the
number of available cores increases, the freedom to allocate processes also enlarges. Under
the 16 available cores scenarios, the latency of FOSquare is 28.1%, 13.6%, 25.2%, and
10.9% less than that of Leaf-Spine for the application CG, MG, MILC, and MINI_MD,
respectively. Moreover, even under 64 available core scenarios, numerical analyses indicate
that FOSquare provides 5.1% less latency than Leaf-Spine for the MILC application.
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Figure 6. CG application Latency.
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Figure 7. MG application Latency.
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Figure 8. MILC application Latency.
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Figure 9. MINI_MD application Latency.

5. Conclusions

We propose and investigate a novel HPC interconnecting architecture FOSquare based
on buffer-less FOS with fast flow control. The number of supporting servers in FOSquare
scales as N2. Besides, FOSquare allows for future proof scaling up the operating bitrate
of servers due to the data rate/format transparency of the adopted optical switching
technology. Benefiting from the operation of optical flow control, the requirement of
optical buffers inside the FOS is eliminated. Moreover, with multi-paths existing for the
communication server pairs, the FOSquare HPC architecture support a natural network
fault-tolerance.

An OPM algorithm is also presented to group the most related processes (considering
traffic status) and allocate cores inside a rack. Based on the HPC application traces,
we numerically assess the system latency performance of FOSquare and Leaf-Spine in
OMNeT++. Under the 16 available cores scenarios, the latency of FOSquare is 28.1%, 13.6%,
25.2%, and 10.9% less than Leaf-Spine for the application CG, MG, MILC, and MINI_MD,
respectively. Therefore, the efficiency of the OPM algorithm and the high performance
of the proposed architecture are verified, providing a promising solution to meet the
high-throughput, low-latency and cost-efficient requirements for the HPC interconnecting.
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