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Abstract: A surface integral equation (SIE) method is applied in order to analyze electromagnetic
scattering by bounded arbitrarily shaped three-dimensional objects with the SHDB boundary
condition. SHDB is a generalization of SH (Soft-and-Hard) and DB boundary conditions (at the
DB boundary, the normal components of the D and B flux densities vanish). The SHDB boundary
condition is a general linear boundary condition that contains two scalar equations that involve both
the tangential and normal components of the electromagnetic fields. The multiplication of these scalar
equations with two orthogonal vectors transforms them into a vector form that can be combined
with the tangential field integral equations. The resulting equations are discretized and converted to
a matrix equation with standard method of moments (MoM). As an example of use of the method,
we investigate scattering by an SHDB circular disk and demonstrate that the SHDB boundary allows
for an efficient way to control the polarization of the wave that is reflected from the surface. We also
discuss perspectives into different levels of materialization and realization of SHDB boundaries.

Keywords: electromagnetic scattering; general linear boundary conditions; numerical analysis;
Soft-and-Hard/DB (SHDB) boundary; surface integral equation (SIE)

1. Introduction

Boundary conditions are very useful models for defining the field behavior on the boundary of an
object. With these conditions, a complex field problem can be significantly simplified, since they avoid
considering the fields inside the object. In electromagnetics, the most common examples of boundary
conditions are the perfect electric conductor (PEC) and perfect magnetic conductor (PMC) conditions.
These conditions state that the tangential component of the electric or magnetic field vanishes on
the boundary. The PEC and PMC can be generalized to the impedance boundary condition (IBC),
which presents a relation of the tangential electric and magnetic fields with an impedance dyadic [1].
The so-called Soft-and-Hard (SH) boundary [2], and generalized SH (GSH) boundary [3], are special
cases of the IBC, as well as the perfect electromagnetic conductor (PEMC) [4].

All of these boundary conditions are expressed in terms of the tangential field components. But it
is also possible to formulate boundary conditions for the normal field components. An example is
the DB boundary condition which requires the normal components of the electric and magnetic flux
densities to vanish on the boundary [5]. Recently, an even more general linear and local boundary
condition (GBC) has been introduced which generalizes all above-mentioned boundary conditions [6].
This boundary condition not only has a non-conventional form which contains both the tangential and
normal components of the fields, but also exhibits novel electromagnetic properties.

The surface integral equation (SIE) method is a powerful method for numerically analyzing
electromagnetic scattering by arbitrarily shaped objects with boundary conditions in an open unbounded
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region. The SIE method for the conventional boundary conditions, such as PEC, PMC, and isotropic
IBC [7,8], has been well established. The SIE methodology has also been developed for anisotropic
IBC [9,10], as well as for DB [11], SH [12], and GSH [13] boundary conditions. In all of these cases,
the boundary condition contains either the tangential or normal field components, but not both.

Recently, we have proposed an SIE method for the Soft-and-Hard/DB (SHDB) boundary condition [14].
The SHDB condition is a special case of the GBC. In particular, it can be seen as a generalization of the DB
and SH conditions [15]. To our knowledge, this is the first numerical method that has been developed for
an electromagnetic boundary condition involving both the tangential and normal field components.

In this paper, we review the SIE method for the SHDB boundary condition and then apply it to a
new interesting scattering problem. We demonstrate with numerical experiments that the polarization
of the reflected wave from a circular disk can be controlled by adequately modifying the boundary
condition on its surface. We conclude the analysis with a discussion on the possible avenues for
realizing an SHDB boundary.

2. General Linear Boundary Condition

With boundary conditions, electromagnetic scattering and radiation problems can be mathematically
formulated as boundary-value problems for Maxwell’s equations of time-harmonic fields. In electromagnetics,
the so-called general boundary condition (GBC) is the most general linear and local boundary condition [1,6]

α1n · cB + β1n · cη0D + a1t · E + b1t · η0H = 0 (1)

α2n · cB + β2n · cη0D + a2t · E + b2t · η0H = 0. (2)

This condition combines the tangential field components with the normal field components on the
boundary S, the surface of the object. In (1) and (2), E, H, D, and B represent the electric field,
magnetic field, electric flux density, and magnetic flux density, α1, α2, β1, β2 are four dimensionless
scalars, a1t, a2t, b1t, b2t are four dimensionless tangential vectors on S, n is the exterior unit normal
vector of S, c = 1/

√
ε0µ0, η0 =

√
µ0/ε0, with ε0 and µ0, the permittivity and permeability of the

background medium.
In this paper, we study the following special case of Equations (1) and (2)

Tdn · cB + Tsat · E = 0 (3)

Tdn · cD− Tsat · H = 0. (4)

Here, at is a unit tangential vector on S, and Td and Ts are scalar constants. Because the choice Td = 0
and Ts 6= 0 returns the SH boundary condition, and Td 6= 0 and Ts = 0 leads to the DB boundary
condition, Equations (3) and (4) can be regarded as the generalization of the SH and DB boundary
conditions. This condition is called the Soft-and-Hard/DB (SHDB) boundary condition [15], and it
arises very naturally from the four-dimensional coordinate-free formalism [16].

3. Surface Integral Equation Method for SHDB

Let us consider the time-harmonic electromagnetic scattering by a bounded object with the
SHDB boundary condition. The time factor is e−iωt and the object is assumed to be immersed in
a homogeneous lossless medium. The surface equivalence principle [17] is applied to express the
scattered electromagnetic fields in terms of the equivalent surface current densities J = n× H and
M = −n× E defined on the surface S. For that, we need the Green’s function of the background
medium, G, and the following two surface integral operators [18]

T [X](r) = ik0

∫
S

X(r′)G(r, r′)dS′ +
i

k0
∇
∫

S
∇′s · X(r′)G(r, r′)dS′, (5)
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K[X](r) = −
∫

S
X(r′)×∇G(r, r′)dS′. (6)

Here, k0 is the wavenumber of the background medium and ∇s· denotes the surface divergence of a
tangential vector field, defined on S.

Let γtF denote the tangential component of a vector field F on S and I [F] = F be the identity
operator. Starting from the surface integral representation of the scattered fields, for given incident
fields, Ei, Hi, the tangential field integral equations can be formulated, as follows [19]

−γtT [η0 J] +
(

γtK+
1
2

n× I
)
[M] = γtEi (7)

(
−γtK−

1
2

n× I
)
[η0 J]−γtT [M] = η0γtHi. (8)

Here, integrals including derivatives of the Green’s functions are defined on the surface as principal
value integrals, and the wave impedance of the background, η0, is used in order to scale the electric
current and the magnetic field integral Equation (8). In the following, we use the matrix representation
of Equations (7) and (8) −γtT γtK+

1
2

n× I

−γtK−
1
2

n× I −γtT


η0 J

M

 =

 γtEi

η0γtHi

 . (9)

As a next step, we add the SHDB boundary conditions to integral Equations (9). In order to allow
for combining scalar boundary conditions (3) and (4) with vector integral Equations (9), we modify the
original form of the SHDB boundary condition. Because the field integral equations are formulated in
terms of J and M, we first rewrite Equations (3) and (4), as

iTd∇s ·M + Tsk0n× at ·M = 0 (10)

iTd∇s · η0 J + Tsk0n× at · η0 J = 0 (11)

using the well-known identities

n · B =
1

iω
∇s ·M, n · D =

1
iω
∇s · J. (12)

Subsequently, we transform (10) and (11) to a vector form. Multiplying Equations (10) and (11)
with two orthogonal tangential vectors at and bt (= n× at), and combining the resulting equations
together, we obtain

bt [iTd (∇s · η0 J) + Tsk0 (bt · η0 J)]− (n× bt) [iTd (∇s ·M) + Tsk0 (bt ·M)] = 0 (13)

(n× bt) [iTd (∇s · η0 J) + Tsk0 (bt · η0 J)] + bt [iTd (∇s ·M) + Tsk0 (bt ·M)]=0. (14)

Combining the boundary condition Equations (13) and (14) with the integral Equations (9) gives the
SIE formulation for scattering by an object with the SHDB boundary condition

−γtT γtK+
1
2

n× I

−γtK−
1
2

n× I −γtT

bt [iTd∇s ·+Tsk0bt·] − (n×bt) [iTd∇s ·+Tsk0bt·]

(n×bt) [iTd∇s ·+Tsk0bt·] bt [iTd∇s ·+Tsk0bt·]


η0 J

M

=


γtEi

η0γtHi

0

0


. (15)
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These equations are exactly the same as Equation (22) in [14], on which the theoretical foundations of
the present paper are resting. Equation (15) is converted to a matrix equation while using the standard
method of moments (MoM) with Galerkin’s testing and Rao–Wilton–Glisson (RWG) functions [20].
In this process, the surface of an object is first discretized with planar triangles. Subsequently, both the
electric and magnetic surface currents are expanded with the RWG basis functions, and the equations
are tested with the same RWG functions. Because the RWG functions are associated with the edges
of the mesh, the number of the degrees of freedom of the discretized matrix equation is twice the
number of the edges. The matrix due to (15) contains more rows than columns. In other words, it is a
non-square matrix and we call (15) the non-square integral equation (NSIE) formulation. The Pseudo
inverse of the non-square matrix is calculated to find the unknown coefficients of the basis function
approximations of the electric and magnetic currents. Once these coefficients are available, they can be
used in order to compute the scattered fields at any point outside the surface.

We note that a square matrix could be obtained by adding the field integral equations and the
boundary conditions together. This would simplify the solution of the matrix equation. However,
since this formulation has been found to lead to numerically unstable solutions [14], here we only use
the NSIE formulation.

4. Numerical Results

We consider numerical examples in order to verify the results of the proposed NSIE formulation.
We compute electromagnetic scattering by a disk with a surface characterized by the SHDB boundary
condition. The diameter of the disk is 3λ and the thickness is 0.04λ, where λ is the wavelength of an
incident electromagnetic wave in the background medium. The SHDB boundary condition is defined
on the surface of the disk, as follows. Let (x, y, z) be three orthogonal unit vectors with x× y = z.
On the top and bottom surfaces of the disk, which are parallel with the x-y plane, the angle between at

and x axis is β, as shown in Figure 1. On the side surface of the disk, the direction of at is parallel to
z axis.

The disk is illuminated by a plane wave with a frequency of 300 MHz. The directions of the
incident wave ui and the incident electric field Ei are both parallel with the x-z plane, as illustrated in
Figure 1. Hence, the x-z plane is in the following, called an E plane. The angle between −ui and the
z axis is denoted by θi. The surface of the disk is meshed by planar triangles with an average edge
length of λ/10, giving 6120 edges. The number of the unknowns is twice the number of the edges.

Figure 1. A Soft-and-Hard/DB (SHDB) disk with a diameter of 3λ and a thickness of 0.04λ. The green
lines indicate the direction of the vector at on the surface of the disk. Vectors ui and Ei show the
directions of the incident wave and the incident electric field.
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4.1. Special Cases of DB and SH Surfaces

First, we calculate scattering by the disk with the boundary condition parameters Td = 1, Ts = 0
(DB surface) and Td = 0, Ts = 1 (SH surface) and with a normally incident plane wave. The angle β,
which defines the vector at, is set to value 20◦. Figure 2 shows the bistatic radar cross sections (RCSs) in
the E plane (x-z plane). The results for Td = 1, Ts = 0 computed by the NSIE formulation are compared
with the results of the SIE method developed for the DB boundary condition [11]. The results of these
two independent approaches agree well with each other, as shown in Figure 2.
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Figure 2. Bistatic radar cross sections (RCS) for the SHDB disk shown in Figure 1 at the frequency
of 300 MHz with the incident direction ui = −z. (a) Td = 1, Ts = 0 (DB surface). (b) Td = 0, Ts = 1
(SH surface).

We compare the results of the NSIE with the results of the physical optics (PO) method in order
to have an independent solution for verification in the SH case. In the PO method, we employ the
reflection dyadics of the SHDB boundary [6] in order to determine the surface currents caused by
the wave reflection on the illuminated region. The results of the NSIE and PO agree well, except for
|θ| > 45◦, as can be seen in Figure 2b. This disagreement on large θ values is due to the lack of the
edge diffraction of the PO method, which makes PO ineffective in providing a reliable benchmark
against the numerical NSIE results in this region.

We compare the accuracy of the PO and SIE method in the case of wave interaction with PEC
objects in order to provide justification for this reasoning. Figure 3a shows the bistatic RCSs in the
E plane of a PEC sphere with a radius of 1.5 m under a frequency of 300 MHz. The results that are
obtained by PO and SIE are compared with the analytical Mie solution. It is clear that the accuracy of
the SIE method is very good, while the PO method fails to give accurate results. Furthermore, the RCS
of a PEC disk in the same case as in Figure 2b is also calculated, and the results are shown in Figure 3b.
The results are similar to the deviations in Figure 2b: a discrepancy between PO and SIE for PEC disk
is observed when |θ| > 45◦. Hence, we have shown that PO fails to provide accurate results in this
region, and can conclude that the disagreement between the NSIE and PO results in Figure 2b results
from imperfections of the PO method.

Figure 4 displays the electric and magnetic surface current distributions on the top surface of the disk
computed with the NSIE. For the DB case, the electric current is parallel with the x axis, and the magnetic
current is parallel with the y axis. For the SH case, the electric and magnetic current are both parallel with
at. We have also verified that by changing the direction of at, the distribution and the direction of the
surface currents for the DB case will not change, while the direction of the surface currents for the SH case
follows the direction of at. Thus, we may conclude that the proposed NSIE method gives solutions that
agree with our physical intuition of the currents on the DB and SH surfaces.
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Figure 3. Bistatic RCS for perfect electric conductor (PEC) targes at the frequency of 300 MHz. (a) Bistatic
RCS in the E plane for a PEC sphere with a radius of 1.5λ. (b) Bistatic RCS in the E plane for a PEC disk.
The size of the PEC disk and the incident field are the same as in Figure 2b.

(a) (b)

(c) (d)

Figure 4. Surface current distributions of the SHDB disk shown in Figure 1 at the frequency of 300 MHz
for an incident wave with ui = −z. (a) Real{η0 J} for Td = 1, Ts = 0 (DB surface). (b) Real{M} for
Td = 1, Ts = 0 (DB surface). (c) Real {η0 J} for Td = 0, Ts = 1 (SH surface). (d) Real {M} for Td = 0,
Ts = 1 (SH surface).

4.2. SHDB Disk, Oblique Incidence Angle

Next we compute scattering by the SHDB disk under oblique incidence. To this end, we first
calculate and analyze the co- and cross-polarized reflection coefficients, Rco and Rcross, of an infinite
plane. The plane has the same SHDB condition as the top surface of the disk in Figure 1.
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Let (ur,θr,ϕr) be a set of orthogonal unit vectors, where ur =
(

I − 2zz
)
· ui, I is the unit dyadic,

ϕr = z× ur/|z× ur| and θr = ϕr × ur. Splitting the reflected electric field of an infinite planar plane
as Er = Er

vθ
r + Er

hϕ
r, the co- and cross-polarized reflection coefficients are given by [14]

Rco =
Er

v
‖Ei‖ =

(Ts cos θi cos β)2 − (Ts sin β + Td sin θi)2

(Td+Ts sin θi sin β)2+(T2
s −T2

d )(cos θi)2 (16)

Rcross =
Er

h
‖Ei‖ =

−2
(
Ts cos θi cos β

) (
Ts sin β + Td sin θi)

(Td+Ts sin θi sin β)2+(T2
s −T2

d )(cos θi)2
. (17)

Although the reflection coefficients Rco and Rcross are for an infinite plane, they can be used in
order to evaluate and analyze the numerical results of the PO and NSIE methods for the finite-sized
disk that is shown in Figure 1. For the SHDB boundary with Td = 1, Ts = 1, in Figure 5, we plot the
values of Rco and Rcross as functions of β under the oblique incidence with θi = 45◦. From the results
shown in Figure 5, we observe that the polarization of a plane wave reflected from the SHDB boundary
with Td = 1, Ts = 1 will not change when β = 90◦ and it will be reversed when β = 0◦. We also notice
that the co- and cross-polarized reflected waves have the same value as β = 38.7◦.
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Figure 5. Components of the reflection dyadic of an infinite SHDB plane with Td = Ts = 1 for a plane
wave incident at θi = 45◦ as functions of β.

Next, we calculate the RCS of the disk with Td = 1, Ts = 1, under the oblique incidence with
θi = 45◦. The results shown in the E plane for β = 0◦, 38.7◦, and 90◦ are plotted in Figure 6a–c. It can
be observed that, as β = 0◦ the cross-polarized RCSs are much larger than the co-polarized ones,
while the co-polarized RCSs are much larger than the cross-polarized ones when β = 90◦. In the case
β = 38.7◦, the co- and cross-polarized RCSs have the same value at the point of the specular reflection
angle θ = −θi = −45◦. In Figure 6d, we plot the RCS at θ = −45◦, as β is increased from 0◦ to 180◦.
This result shows a continuous change of the polarization of the scattered field with respect to β. It is
worth noting that, since the reflection dyadic of electric field and magnetic field on the SHDB boundary
are exactly the same [14], the polarization of incident field has no effect on the co- and cross-polarized
RCS results.

From the results that are shown in Figure 5, we may conclude that the numerical solutions that
are computed with the NSIE are qualitatively consistent with the analytical ones for the infinite plane,
thus providing additional corroboration for the proposed SIE formulation for objects with the SHDB
boundary condition. We also notice that, by rotating the disk, the polarization of the reflected wave
can be changed, as desired. This exhibits a potential application of an SHDB boundary, where the disk
behaves as a polarization transformer.
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Figure 6. Bistatic RCS of the disk in Figure 1 with Ts = Td = 1 illuminated by a plane wave with
θi = 45◦ at the frequency of 300 MHz. The results are shown in the x-z plane. (a) β = 0◦. (b) β = 38.7◦.
(c) β = 90◦. (d) Bistatic RCS at θ = −45◦ as a function of β.

5. Perspectives into Realization of the SHDB Boundary

As the computational analysis in the previous section shows, scatterers that are coated with an
SHDB boundary offer promising prospects into the modification and transformation of the reflected
fields, polarization engineering, and further scenarios of wave manipulation. A natural follow-up
question concerns the possibilities to materialize and realize such boundaries and, ultimately, to fabricate
surfaces mimicking those.

While the approximate realization of certain boundary conditions in electromagnetics is fairly
straightforward (for example, a surface of a good conductor like copper (Cu) can well emulate a PEC
over a wide frequency range), a search for the realization of more complex boundary conditions can be
much more elaborated. Different levels can be distinguished in the materialization process, as shown
in Figure 7.

The surface on which a given boundary condition holds also determines the limits of the spatial
domain where the fields are supported. Nothing exists on the other side of this boundary. In contrast
to this mathematical idealization, the real-world materialization for the boundary is an interface
against a material medium. However, such an interface can only approximately simulate the given
boundary condition. This is because a material medium always allows interaction with electric and
magnetic fields that penetrate through the interface, although this effect can be attenuated by making
the material parameter contrasts extremely large over the interface, like in the case of modeling PEC
boundaries by good conductors [21].

The question about materialization of boundary conditions becomes more demanding in the
SHDB case, at least for two reasons: as Equations (3) and (4) show, the conditions are (a) anisotropic
and (b) they intercouple the tangential and normal components of the fields.
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Boundary condition

Interface towards a medium with constitutive material dyadics

Effective medium as a collection of (multi)polarizabilities

True physical structure

Figure 7. Levels of materialization of a given boundary: the medium whose surface imitates the
boundary condition is described by a set of electromagnetic constitutive material parameters. On the
other hand, the ultimate physical material itself can be modeled as a collection of polarizable particles
whose electric and magnetic dipole moments effectively homogenize into these constitutive dyadics.

The SH surface in microwave engineering is a well-known example of realizing an
anisotropic boundary [22]. A corrugated conducting surface, where the narrow corrugations are
quarter-wavelength deep, acts as a short-circuit for both the electric and magnetic field components
in the direction of the corrugations. For example, in optimizing the performance of microwave
horn antennas, such a structure has proven to be useful [23,24]. To reach for higher frequencies,
another possibility for mimicking an anisotropic boundary is to fabricate a composite in which aligned
polarizable inclusions would short-circuit the fields in one of the in-plane directions. The inclusions
should be tailored [25] in the manner that they attenuate both the electric and magnetic field
components in this direction. This strategy might pave the way towards an SH realization at terahertz
and infrared frequencies.

For boundaries forcing restrictions on the normal components of the fields, the fundamental
conditions are defined by the DB boundary, in which the normal components of both the electric and
magnetic flux densities must vanish. Such conditions are as primary as PEC conditions due to their
parameter-free character. The PMC (perfect magnetic conductor) boundary [26] is another example of
a condition that does not involve any free parameter. One possible materialization of the DB boundary
is a dielectric–magnetic, strongly uniaxially anisotropic medium, where both the axial permittivity
and permeability components vanish [27]. A recent experimental metasurface realization of the DB
boundary [28] utilizes compact DB-acting elements that are arranged in a regular manner within unit
cells, forming a single-layer lattice.

To realize an SHDB boundary—and, in particular, to reach the bottom layer in Figure 7—requires
further efforts. It turns out that, unlike in the realization of some of the more traditional boundary
conditions, where the effective material parameters can be dielectric, conducting, or magnetic, in the
SHDB realization, magnetoelectric coupling is necessary. In other words, the effective medium with
which to mimic SHDB condition has to be bianisotropic. The need for bianistropy can be readily seen
from the character of the boundary relations (3) and (4) that intercouple electric and magnetic field
quantities in a non-conventional manner. The surface of the so-called skewon–axion medium [15]
has been shown to reproduce the SHDB boundary conditions. In fact, the skewon–axion medium
spans a very wide range of material possibilities: its full description requires 16 scalar parameters [29].
The characterization of an electromagnetic boundary contains less degrees of freedom than what are
needed for the constitutive description of a sample of three-dimensional material. Therefore, there can
be several different material realizations for a given boundary condition. In [30], a pseudochiral
structure has been suggested as another example of bianisotropic materialization of the SHDB surface.
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6. Conclusions

A surface integral equation (SIE) method is presented for electromagnetic scattering by arbitrarily
shaped three-dimensional objects with the Soft-and-Hard/DB (SHDB) boundary condition. In the
proposed method, the boundary condition is first expressed in terms of the surface currents, and it
is then transformed to a vector form. This form can be combined with the tangential field integral
equations and discretized while using the method of moments (MoM) and RWG functions.

The response of a circular disk with the SHDB boundary condition is analyzed in order to verify
the performance of the proposed non-square integral equation (NSIE) formulation, and also to study
the effect of the SHDB condition on the wave reflection. The results show that the SHDB boundary can
be used to manipulate the polarization properties of the wave reflected from it, in a manner that is
consistent with the theoretical analysis and results of the physical optics (PO) method.

The particular boundary condition under study (SHDB) is rather complex, but it is not the most
general linear and local boundary condition in electromagnetics. On the other hand, the proposed
NSIE-based numerical method is expressed in a universal form that can also be applied for more
general boundary conditions than SHDB. Another perspective that is related to complex boundary
conditions is their realization with existing “ordinary” materials. This aspect was discussed in the
framework of different levels of the materialization and the realization of the SHDB boundary.
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