
photonics
hv

Article

A Computational Study on Performance
Improvement of THz Signal from a Grating
Photoconductive Antenna

Jia Yi Chia *, Khwanchai Tantiwanichapan, Rungroj Jintamethasawat, Asmar Sathukarn,
Woraprach Kusolthossakul and Noppadon Nuntawong

National Electronics and Computer Technology Center (NECTEC), 112 Thailand Science Park,
Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand;
khwanchai.tantiwanichapan@nectec.or.th (K.T.); rungroj.jintamethasawat@nectec.or.th (R.J.);
asmar.sathukarn@nectec.or.th (A.S.); woraprach.kus@ncr.nstda.or.th (W.K.);
noppadon.nuntawong@nectec.or.th (N.N.)
* Correspondence: jiayi.chia@nectec.or.th

Received: 1 October 2020; Accepted: 26 October 2020; Published: 11 November 2020
����������
�������

Abstract: A diffractive grating is a well-known optical component and is extensively used in many
applications. This research work explores application of the diffractive grating in a photoconductive
antenna (PCA) of a terahertz time domain spectroscopy (THz-TDS) system, by utilizing benefits
of a sub-wavelength grating structure. The grating PCA structure was modeled and simulated
by COMSOL Multiphysics software (COMSOL, Inc., Burlington, MA, USA). Performance of the
proposed PCA design is studied in terms of its induced photocurrent. The effects of geometrical
parameters of the grating are also investigated and analyzed through its optical and electrical
responses. Thanks to the increase in absorption of the incident laser’s electric field, the simulation
results show a 63% increment of the induced photocurrent in the grating PCA, compared with the
conventional planar PCA.

Keywords: diffractive grating; anti-reflection; THz time domain spectroscopy; photoconductive antenna

1. Introduction

A grating is a periodic array of lines, slits, grooves, or other variations that split and diffract
light into several beams travelling in different directions. One example of the natural phenomenon
caused by the surface grating is the structural coloration in various animals [1,2]. However, the first
manmade grating was reported in 1785 by Rittenhouse and a major breakthrough was achieved in
1821 by Fraunhofer in both fabrication and optical characterization of diffractive gratings. Since then,
there have been many types of diffractive gratings designed for a wide range of applications, such as an
amplitude grating, a blazed grating, an echelle grating, a laminar grating, and an interference grating [3].
A diffractive grating is recognized as one of the essential components in the spectroscopy systems.
At the same time, it is also utilized in laser systems, astronomical applications, and synchrotron
radiation beamlines [4].

A subwavelength grating, also known as a surface-relief grating or an anti-reflection grating, is one
kind of diffractive grating whose period is smaller than the illuminating wavelength. Unlike a typical
diffractive grating, the subwavelength grating allows only the reflected and transmitted zeroth-order
modes to propagate, while higher diffraction orders are evanescent [5,6]. Besides being birefringent,
the optical properties, including its refractive index, of a subwavelength grating could be engineered
by varying grating parameters [7,8]. As a result, these grating were used as an anti-reflection surface,
a polarization-selective device, and a guided-mode resonance filter [9]. Recently, one of the applications
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of the subwavelength grating is to improve the efficiency of photovoltaic devices, such as solar
cell [10–12]. In this work, we explore a new application of an anti-reflective subwavelength grating by
incorporating its structure in a photoconductive antenna (PCA) of a terahertz time domain spectroscopy
(THz-TDS) system.

A PCA is an optoelectronic device which could be employed as both emitter and detector in a
THz-TDS system [13]. Their components and functions are shown in Figure 1. The PCAs based THz-TDS
system has an advantage of being able to operate at room temperature, while still achieving a coherent
detection. These allow us to obtain broadband, high signal-to-noise ratio (SNR) signals containing both
amplitude and phase information. While THz-TDS systems serve as potential equipment for future
research and applications [14], the main drawback of the PCA is its low optical-to-THz conversion
efficiency, thus limiting the applications only in examining thin or low-absorbing specimens.
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Figure 1. Schematic diagram of photoconductive antenna (PCA) as (a) an emitter and (b) a detector in
a terahertz time domain spectroscopy (THz-TDS) system.

In recent decades, the significant advancement in nanotechnology has brought attention to the
study of the nanostructured PCAs in order to improve their performance. Some examples are metallic
nanoislands, plasmonic contact electrodes, and plasmonic nanostructures on the PCA structure [15–24].
Researchers have proved that the optical-to-THz conversion efficiency of the plasmonic based PCA
greatly increases due to the local field enhancement and the reduction in thermal and carrier screening
effects [25,26]. Another approach in improving the PCA output power is by depositing an anti-reflection
coating, such as silicon nitride, titanium oxide, aluminum oxide, and zinc oxide nanorods, on the PCA
surface [27–31]. By estimation, a PCA on GaAs substrate with a perfect anti-reflection surface can
totally suppress Fresnel reflection thus result in a 48% higher absorption and consequently enhance
the THz power. Similarly, the anti-reflection effect of a PCA could be achieved by incorporating
a grating structure into the photoconductive substrate. Compared to the anti-reflection coatings,
a subwavelength grating has an advantage as the spatial distribution of the electric field could be
optimized by engineering its geometrical parameters. Furthermore, it could also avoid the adhesion
problem and other limitations induced from the exotic coating materials.

In this work, a new design of PCA consisting of the antenna electrodes deposited on a
subwavelength grating low-temperature grown GaAs (LT-GaAs) substrate is proposed. The optical
induced photocurrent of the proposed structure is simulated by using COMSOL Multiphysics, a
commercially available finite element method (FEM) solver. The geometrical parameters of a grating
PCA, such as period (Λ), filling factor (F), and depth (D), were varied and investigated through their
electrical and optical responses. Based on the simulation results, this new design would improve the
optical-to-THz efficiency up to 63%, compared to a conventional PCA. Besides, the proposed design
also has an advantage in terms of fabrication as the fabrication techniques of both grating and antenna
electrodes are already well-explored and formulated. In this article, Section 2 explains the theory
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supporting this work, Section 3 shows the developed simulation model, Section 4 discusses the results,
and conclusions of the work is given in Section 5.

2. Theory

The effective medium theory (EMT) is applied to describe the interaction of light with a
subwavelength grating as the grating structure (as illustrated in Figure 2) can be well approximated
as a homogeneous uniaxial layer posing an effective refraction index, neff [32,33]. The effective index
is affected by the grating parameters, the polarization of the incident light, and the refractive index
of the surrounding medium. If polarization is not taken into account, neff of the grating structure is
represented by

neff = n1 + F·(n2 − n1), (1)

where n1 and n2 are the refractive indices of the surrounding medium and the grating material,
respectively. The filling factor, F = W/Λ, represents the volume fraction of the material with index n2
whereas W and Λ are the grating slab width and the grating period, respectively.
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Figure 2. The grating structure and the parameters used in calculating the effective refractive index,
neff. The grating slabs are illustrated by the gray blocks.

Equations (2) and (3) are used in estimating the neff of the grating in the case where the incident
light is polarized.

neff,|| = [(1 − F)·n1
2 + F·n2

2]1/2, (2)

neff,⊥ = [(1 − F)·n1
−2 + F·n2

−2]−1/2, (3)

where neff,|| and neff,⊥ are the effective indices where the incident electric field vector is parallel and
perpendicular to the grating slabs, respectively.

The following mathematical equations describe how the PCA performs. First, the electric field
distribution in the simulation entity can be described and derived (in frequency domain) from
Maxwell’s equations:

∇ × µr
−1 (∇ × E) − k0

2 (εr − jσ/(ωε0)) E = 0, (4)

where E is the complex electric field vector. µr, εr, and σ are the relative magnetic permeability,
electrical permittivity, and electrical conductivity of the material, respectively. k0, ε0, and ω are the
free-space propagation constant, the free-space permittivity, and the angular frequency of the incident
wave, respectively. Note that εr and σ are based on Drude-Lorentz model, which includes the interband
transition with Lorentz oscillation.

The incident electric field (4) with the total power P is absorbed by the substrate and then free
carriers are generated. Assuming that the laser has a Gaussian shape in a temporal dimension,
the generation rate RGEN can be defined as the following proportionality relation:

RGEN(x,y,z,t) ∝ P·α(x,y,z)·exp((t − tc)2/(wt
2))·(hf − Eg)1/2, (5)
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where α is the spatially-dependent effective photon absorption coefficient of the substrate, tc is the
center of the Gaussian peak, wt is the Gaussian width of the laser pulse, h is Planck’s constant, f is the
incident frequency, and Eg is the bandgap of the semiconductor substrate.

Although the laser illumination is uniform across the substrate, this does not imply that the
generation rate is also constant due to the structure of the substrate. The refractive index mismatch
between the substrate and air could cause the absorption and reflection of the incident electric field,
which could change the electric field power and generation rate subsequently.

Once free carriers are generated, they will move along the direction of the bias electric field.
The carrier dynamics can be solved by using Poisson’s Equation (6) and the continuity equations for
electrons and holes, in time domain (7) and (8).

∇·(εr∇V) = q(n − p + NA − ND), (6)

∂n/∂t = 1/q∇·Jn + (RGEN − RREC), (7)

∂p/∂t = −1/q∇·JP + (RGEN − RREC), (8)

where V represents the voltage distribution in the substrate, n and p are the electron and hole
concentration, q is the electron charge, NA and ND are the acceptor and donor ion concentration, Jn and
Jp are the electron and hole current density, and RGEN and RREC are the generation and recombination
rates, respectively, of both electrons and holes. Note that these rates are the same for both electrons and
holes, as the generation/recombination of one carrier will induce the same effect for the opposite charge.

The current density of electrons and holes can be calculated by the drift-diffusion equations as:

Jn = nqµn∇(V + VDC) + qDn∇n, (9)

Jp = pqµp∇(V + VDC) - qDp∇p, (10)

where µn and µp are electron and hole mobilities, Dn and Dp are electron and hole diffusion coefficients,
and VDC represents a bias voltage. When the effective mass of the hole is much larger than the effective
mass of the electron (which is usually the case), electron carriers will be much more sensitive to the
external stimuli including substrate structure. The THz field, ETHz, can be approximated from the
magnitude of electron current density, ‖Jn‖, by the following relation [34]:

ETHz ∝ δ‖Jn‖/δt. (11)

Note that changing the substrate structure could potentially induce the change of Jn which is
affected by the generation rate, as seen from Equations (6)–(8). Therefore, the THz field intensity also
depends on the structure of substrate.

3. Simulation Model and Methods

In this study, an FEM was applied to simulate a time-dependent current generated in a 3D grating
PCA structure. In our approach, a commercial FEM-based computation tool, COMSOL Multiphysics
Version 5.4 was used. The Semiconductor and Wave Optics modules were utilized and coupled
to study the optical and electrical responses of a PCA. A single period of the grating PCA was
modeled and solved by using periodic condition, as it would greatly reduce the computational burden.
The incident laser field was specified in the Wave Optics module, and the bias voltage was defined in
the Semiconductor module.

Figure 3 illustrates the proposed grating THz emitter structure and the developed simulation
model. The geometrical parameters of the model are summarized in Table 1. As defined previously,
F is the ratio of W to Λ. There are two materials defined in the simulation model, i.e., GaAs (blue)
domains and air (transparent) domains, with their material properties imported from an existing
library of the simulation software. To be specific, the intrinsic properties of GaAs were used, where µn
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and µp were equal to 8500 cm2/V·s and 400 cm2/V·s, respectively. No doping profile is added to the
material; hence, NA and ND are equal to zero. To ensure numerical stability, the coarsest mesh was set
as 6 elements per GaAs refractive index per wavelength.
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Figure 3. The schematic diagram of (a) the proposed periodic grating PCA and (b) a reduced structure
for simulation purposes. Yellow color represents the photoconductive substrate, LT-GaAs, while gray
color illustrates the electrodes of PCA. (c) The developed simulation model captured from the COMSOL
Multiphysics Version 5.4 software.

Table 1. The geometrical parameters of the grating PCA.

Parameter Value

Grating period, Λ 0.5 µm
Grating depth, D 0.5 µm
Filling factor, F 0.5
Substrate height, H 1 µm
Substrate length, L 10 µm
Photoconductive gap, G 5 µm

The incident wave was defined as a periodic port at the air surface with a wavelength of 780 nm,
a peak power of 10 mW, and a Gaussian time profile of 100 fs pulse width with 300 fs delay time. In the
port setting, the electric field mode was selected, and the incident wave was set to be perpendicular to
the grating groove by enabling only the z-component of the electric field, Ez. A continuity periodic
condition was set for the side walls of the grating in parallel with the x-axis to make the electric field
equal on both the source and destination boundaries. This was done to simulate the behaviors of
other grating periods without significantly increasing computation. The antenna was defined as two
ideal ohmic contacts with a bias voltage of 20 V. A Shockey-Read-Hall (SRH) model trap-assisted
recombination with an ultrashort lifetime of 1 ps was added to imitate the well-known material
behavior of PCA, LT-GaAs. The Optical Transitions node in the interface configured the coupling
between two interfaces to compute the carrier generation and recombination rates.

By using a frequency-transient study in time domain, the photocurrent generated in grating PCA
model was computed in a range of 5 ps with a time step of 20 fs. In order to observe the grating effect,
the absorbance, reflectance, and transmittance were measured at the port on top and bottom of the
designed PCA. A conventional planar PCA was modeled by setting F to 1 and compared with the
proposed grating PCA structure. The parametric study of the grating PCA was carried out by varying
Λ, D, and F. Note that only one parameter was varied at a time, while the other two were fixed.

4. Result and Discussion

The THz signal generated by a PCA emitter is indirectly observed via induced photocurrent
from a simulation as mentioned earlier in this study. Figure 4 shows the computational results of the
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simulated grating and planar PCA models. For both PCAs, the magnitude of electric field (i.e., norm)
of a 780 nm-incident pulse, probed at the center of excitation port, shows a maximum amplitude of
approximately 2 MV/m with a peak position at 300 fs. The induced transient photocurrent drastically
increases at a rate approximately proportional to the optical pulse and decreases afterward by the
effects of trap-assisted recombination. In both PCAs, there is no significant difference in the pulse width
of the photocurrent as it is determined by the recombination lifetime and the photoconductive gap
between the electrodes. Based on simulation results, the calculated peak photocurrent of the grating
PCA is 25.75 µA, which is approximately 50% larger than that of the planar PCA (peaked at 17.19 µA).

Photonics 2020, 7, x FOR PEER REVIEW 6 of 12 

 

drastically increases at a rate approximately proportional to the optical pulse, and decreases 

afterward by the effects of trap-assisted recombination. In both PCAs, there is no significant 

difference in the pulse width of the photocurrent as it is determined by the recombination lifetime 

and the photoconductive gap between the electrodes. Based on simulation results, the calculated 

peak photocurrent of the grating PCA is 25.75 µA, which is approximately 50% larger than that of 

the planar PCA (peaked at 17.19 µA). 

 

 

Figure 4. The probed electric field norm at the center of the excitation port (solid gray) and the 

induced currents generated at the terminal of the planar (dashed blue) and grating (dashed red) 

PCAs. 

The enhancement of the induced photocurrent is explained through the increase in generated 

carrier concentration, n, in the grating PCA. Figure 5 shows the normalized total free electron 

carriers in both PCA models with respect to time. Observe that their rise times are similar: the peak 

amplitudes are located at approximately t = 400 fs, which is shortly after the peak amplitude of 

incident wave. This is due to the same photocarrier generation time in both PCAs. Figure 5 suggests 

that the grating PCA yields 32% more free electron carriers compared to that of the planar PCA. By 

comparing Figure 5 to the photocurrent in Figure 4, the decay of the photocurrent appears to 

correspond to the changes in n. 

 

 

Figure 5. The temporal behavior of the normalized total number of electron carrier observed in the 

grating PCA (blue) and planar PCA (red). 

Figure 4. The probed electric field norm at the center of the excitation port (solid gray) and the induced
currents generated at the terminal of the planar (dashed blue) and grating (dashed red) PCAs.

The enhancement of the induced photocurrent is explained through the increase in generated
carrier concentration, n, in the grating PCA. Figure 5 shows the normalized total free electron carriers
in both PCA models with respect to time. Observe that their rise times are similar: the peak amplitudes
are located at approximately t = 400 fs, which is shortly after the peak amplitude of incident wave.
This is due to the same photocarrier generation time in both PCAs. Figure 5 suggests that the grating
PCA yields 32% more free electron carriers compared to that of the planar PCA. By comparing Figure 5
to the photocurrent in Figure 4, the decay of the photocurrent appears to correspond to the changes in n.
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As explained in Section 2, the electrical responses of the PCA are results from its optical response.
The optical response of the simulated PCA is illustrated by the electric field distribution in the model.
Figure 6 shows the spatial distribution of the z component of the electric field, Ez, in the planar and
the grating PCA models. For both structures, a higher magnitude of Ez is found in the air domains
compared to the substrate. Unlike the planar PCA, a diffraction pattern appears in the grating structure.
Based on the results, a higher intensity of Ez with a maximum magnitude around 1.69 MV/m is found
in the grating PCA substrate, compared to the planar PCA. The maximum magnitude of Ez in the
planar PCA is 0.74 MV/m. The results indicate that the planar PCA has a lower optical absorbance,
despite its larger active area.
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time point, t = 300 fs. The geometrical parameters listed in Table 1 apply to both grating and planar
PCAs, except F = 1, which is used for the planar PCA.

The grating PCA yields a higher photocurrent compared to the planar PCA because of
their corresponding absorbance. Here, the optical property of a grating structure is investigated.
The absorption in LT-GaAs and the reflection at the interface can be explained by the following Fresnel’s
reflection equation:

R = [(n2 − n1)/(n2 + n1)]2, (12)

A = 1 − R, (13)

where A is the absorbance, and R is the reflectance at the interface. By substituting n1 = 1 (air) and
n2 = 3.685 (LT-GaAs at 780 nm), the reflectance and absorbance of a planar PCA are 0.328 and 0.672,
respectively. By using Equation (3), where the electric field is perpendicular to the grating slabs, neff,⊥ of
a grating PCA is equal to 1.3648 for a grating structure with F = 0.5 (as shown in Figure 7). Note that
the values of n1 and n2 used in the calculation are the same as those in COMSOL simulation model,
however only the real part of the refractive index is used in the calculation. Table 2 lists the reflectance
and absorbance obtained by a calculation and a simulation. Both results show that the grating PCA
has a smaller reflectance and a larger absorbance than those of the planar PCA. These results confirm a
higher laser absorbance due to the anti-reflection effect from neff in the grating structure.

The effects of Λ in the grating PCA are investigated by varying the value of Λ from 0.25 µm to
2.0 µm. To ensure the same peak intensity applied, for all cases, the power of the incident laser is
normalized by the area of the air domain, i.e., a larger Λ structure is excited with a higher laser power.
Figure 8 represents the induced photocurrent per laser illuminating area in the grating PCAs and the
corresponding planar structures. Apparently, the photocurrent of a planar PCA is not influenced by the
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parameter Λ. As such, the value of photocurrent per area is ranging from 6.85 A/mm2 to 6.88 A/mm2.
Based on the simulation, the resulting photocurrent of a grating PCA is always higher than that of the
planar PCA. Contrary to the planar PCA, Λ greatly affects the THz output signal of a grating PCA,
especially the cases of Λ smaller than the incident laser wavelength. The increment factor is defined
as a ratio of the induced photocurrent in the grating PCA to that of the planar PCA. For the cases of
Λ ≤ 780 nm, the increment factor is ranging from 1.43 to 1.63. The increment factor when Λ > 780
nm is ranging from 1.18 to 1.31. This indicates that a smaller Λ structure can better enhance the THz
emission of a PCA.Photonics 2020, 7, x FOR PEER REVIEW 8 of 12 
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Table 2. The optical properties of a grating PCA and a planar PCA.

Reflectance Absorbance

Structure Simulation Calculation Simulation Calculation

Planar PCA 0.329 0.328 0.615 0.672
Grating PCA 0.029 0.230 0.851 0.770
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Figure 8. The simulated photocurrent in the planar PCA (red circle) and grating PCA (blue triangle)
against grating period Λ. The planar PCA refers to F = 1 (done by setting W = Λ). For the planar PCA,
the induced photocurrent per illuminating area is almost constant.

Next, the effects of parameter F in a Λ = 0.5 µm grating PCA are investigated by varying F in
Table 1, from 0.1 to 0.9, with a step size of 0.1. Cases of F = 0 and F = 1 are the planar PCA with a
substrate thickness of 1.0 µm and 1.5 µm, respectively. Figure 9 shows the photocurrent and the optical
absorbance of the grating PCA with all values of F. The simulation results show that the case of F = 0.5
exhibits the best absorbance of 0.851 of the incident wave. The optical absorbance of 0.831 at F = 0.7 is
slightly less than that at F = 0.5, and it has the highest photocurrent among all studied cases, 27.46 µA.
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Compared to the planar PCA (F = 1), all the grating PCAs, except at F = 0.1, exhibit a significantly
better absorbance and, thus, photocurrent, with the increment factors of 1.37 to 1.60.
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Figure 9. The photocurrent in the grating PCA (blue square) and the planar PCA (red square) with
various F and their corresponding optical absorbance (blue cross for grating PCA and red cross for
planar PCA). Note that the case of F = 0 corresponds to the planar PCA with a thickness of H, while F = 1
refers to the planar PCA with a total thickness of H + D.

The last parameter of our interest, D, is studied for the grating structure by varying D in Table 1,
from 0 µm to 0.7 µm, where 0 µm is the planar PCA with a thickness of H only. Note that Λ = 0.5 µm
and F = 0.5 are used here. According to Figure 10, for the planar PCA, the photocurrent tends to
increase with respect to the increase of the LT-GaAs substrate thickness. This increment becomes less
significant when D is large enough. For example, there is only 0.007 µA difference between D = 0.6 µm
and D = 0.7 µm, whereas there is 0.59 µA difference between D = 0 µm and D = 0.1 µm. For the grating
PCA, there is always an apparent improvement in the induced current compared to that of the planar
PCA, especially when D ≥ 0.5 µm. The increment factor for D ≥ 0.5 µm is observed to range from 1.10
to 1.50.
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and their corresponding optical absorbance (blue cross for grating PCA and red cross for planar PCA).
Note that change in D implies change in the total thickness (D + H).
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Nonetheless, the increase in D for a grating PCA shows a non-descriptive trend in the simulated
photocurrent, unlike the planar PCA. However, we can see a strong correlation between the photocurrent
and the absorbance of a grating. This confirms that the increase in the photocurrent is due to the
increment in the incident wave absorption. Still, the results show that the optical properties of a grating
PCA are greatly influenced by the geometrical structure of grating. The earlier research work has
proved that the reflected intensity of a dielectric surface-relief grating strongly depends on the groove
depth [35].

5. Conclusions

By incorporating a subwavelength grating structure into a terahertz photoconductive antenna
(PCA), a novel application of a diffractive grating was demonstrated. A simulation model was
developed by using COMSOL Multiphysics software to investigate the optical and electrical responses
of the proposed grating PCA structure. The geometrical parameters period (Λ), depth (D), and filling
factor (F) of the grating PCA were varied and their effects on THz signal were investigated. The results
show a 1.63 times higher photocurrent in the grating PCA compared with that in the conventional
planar PCA. Combining the optical response and the electrical response, a grating PCA exhibits a
higher photon absorption and leads to more carrier generation in the materials, which ultimately
results in a higher photocurrent. Further experimental verification is still needed as a future work to
ensure the feasibility of the proposed idea and the obtained simulation results.
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