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Abstract: The NEPHELE hybrid electro-optical datacenter network (DCN) architecture is proposed as
a dynamic network solution to provide high capacity, scalability, and cost efficiency in comparison to
the existing DCN infrastructures. The details of the NEPHELE DCN architecture and its various key
parts are introduced, and the performance of its implementation is evaluated through an end-to-end
NEPHELE demonstrator, which was built at the National Technical University of Athens. Several
communication scenarios are demonstrated in real time, exploiting a scalable optical data-plane
architecture with a software-defined network (SDN) control plane capable of slotted operation for
dynamic allocation of network resources. Real-time end-to-end functionality and integration of
various software and hardware components are verified in a six-host prototype datacenter cluster.

Keywords: optical networking; optical switching; dynamic resource allocation; datacenter architecture;
software-defined networking; demonstrator

1. Introduction

Today, datacenters (DC) are the heart of our online applications and Internet of things (IoT) services,
handling vast amounts of digital information. The continuous enrichment of these online services
and applications opens new vistas in user experience and sparks demand in bandwidth and speed.
More and more value-added digital services spanning from virtual reality (VR) and high-definition
(HD) video streaming to cloud storage and sensor networks, forming the IoT, are sprouting all over
the globe, burdening the internet hubs with heavy digital load. In the 5G era, all these activities are
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becoming more and more bandwidth hungry since the users demand instant and on-the-go access
at any time. As a result, the datacenter networks (DCNs) should be capable of providing ultra-high
capacity interconnects for a huge number of nodes and hosts, low latency to fulfil time-critical services,
and high-reliability performance to reduce service interruption time. Therefore, this profound effect
emerges as an impact on the datacenter operation, driving worldwide datacenter network IP (Internet
Protocol) traffic on a steep growth curve reaching 25% annually [1].

Since the traffic within a DCN is much higher than the incoming/outgoing traffic [1], DCNs
are facing remarkable challenges regarding resource utilization, scalability, and management agility.
To successfully handle this soaring demand and avoid any possible capacity crunch and the relentless
increase of power consumption, DCN operators and equipment providers are struggling to upgrade
the existing infrastructures. Current state-of-the-art intra-DCNs are based on electronic switches
interconnected in fat-tree or folded-clos topologies using fibers, with electro-opto-electrical conversion
at each node [2]. However, fat-tree topologies tend to underutilize resources and at the same time
require a multitude of cables, fibers, and switches. Furthermore, within a conventional electrically
switched DCN, as the size of the network scales and servers require more bandwidth, the switches
must double their bandwidth every few years. The use of a large number of electrical packet switches
contributes hugely to the energy consumption of the whole system (32-port 400-GbE switches consume
almost 1000 W when fully populated with optical transceivers) [3]. It should be highlighted that
roughly 90% of this energy consumption is independent of the load and, thus, savings are impossible
from any load balancing/scheduling method. Finally, upgradability is a big issue for electrical networks
since upgrading the communication rate of the servers requires replacing all the switches of the
network. Note here that the optical transceivers that are needed to interconnect the electrical switches
add up to a considerable capital expenditure, as well as significant power consumption [4].

Optical switching technologies are gaining traction as a potential vehicle to address the
above-mentioned challenging requirements. Deployment of photonic components could offer network
scalability, due to their inherent speed, energy efficiency, and transparency to protocol and bitrate.
Several proposals based on optical technologies [5] were introduced as effective solutions within DCNs,
such as space switching (e.g., using micro-electro-mechanical systems—MEMS or semiconductor optical
amplifiers—SOAs [6,7]), wavelength switching (through combination of tunable lasers with arrayed
waveguide grating routers—AWGRs [8,9]), or a combination thereof (e.g., using wavelength-selective
switches—WSSs [10]). One of the key challenges currently pertaining to optical datacenter networks
is the combination of scalability and fast reconfigurability. To this end, several efforts promote the
integration of optical switching into control and orchestration frameworks, so-called software-defined
networking (SDN) [11,12]. Indeed, SDN platforms in combination with orchestration algorithms
provide dynamicity and scalability in DCNs and enhance the benefits of the optical switches.

During the last decade, several works proposed hybrid electrical/optical and all optical DCN
concepts, and a detailed survey can be found in Reference [13]. An enhancement to the current DCNs,
named c-Through, was presented in Reference [14]. The ToR switches in c-Through are connected to
the legacy electrical network, as well as to an optical circuit switching network. The optical network is
used to connect pairs of racks with high-bandwidth demands based on decisions taken by a traffic
monitoring system that measures the bandwidth requirements. Helios, a hybrid electrical/optical
network based on wavelength division multiplexing (WDM), was proposed in Reference [15]. In Helios,
the circuits created by the optical switches are used for elephant flows (high bandwidth, slowly changing
communication), which is limited by the ms reconfiguration time of the employed MEMS switches.
Other works proposed DC interconnects completely lacking electrical switches, such as Proteus [16],
an all-optical DCN architecture based on a combination of wavelength selective switches (WSSs)
and MEMS. The key idea of Proteus is to use direct optical connections for the elephant flows and
multi-hop connections for the shot-lived mice flows. In Reference [17], the authors introduced the
Mordia microsecond switch to the DCN and studied the gains and issues for microsecond switching.
They proposed a microsecond-latency control plane based on a circuit scheduling approach called
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Traffic Matrix Scheduling (TMS). However, the scalability of Mordia is limited as it uses a single
wavelength division multiplexing (WDM) ring whose capacity can accommodate only a few racks,
while deployed resource allocation algorithms exhibit high complexity and cannot scale to large DCs.
In Cboss [18], the authors proposed a DCN architecture based on a silicon photonics Wavelength
Dropper, fast tunable lasers, and an SDN-based controller. Cboss consists of a WDM time-slotted ring
for data transmission and a separate control channel to enable SDN functionality. Another all-optical
DCN architecture, named OPSquare, was published in Reference [19], which presented a flat DCN
topology with the capability for distributed control plane functionality. In Rotornet [20] and Opera [21],
the authors proposed removing the need for resource allocation algorithms and instead shaping the
traffic to the network’s state. In Rotornet, the ToR switches are connected to an optical network
for transmission of the elephant flows and to an electrical network for the rest of the traffic. Opera
proposes the removal of the electrical network and follows a direct versus multi-hop transmission
scheme for the elephant and the mice flows, respectively. The identification of “elephant” flows is a
crucial functionality for many of the hybrid and all-optical DCN proposals, and several works focused
on this [22–24].

NEPHELE [25] is a recently completed European project that developed a dynamic end-to-end
optical network infrastructure for large-scale and disaggregated datacenters [26]. In this context,
NEPHELE combines optical switching benefits with SDN control and orchestration to beat current
datacenter challenges. To achieve this and following a vertical development approach, NEPHELE is
expanding from the datacenter architecture to the overlaying control plane, in order to deliver a fully
functional networking solution. NEPHELE brings two ambitious innovations.

Firstly, the NEPHELE data plane architecture leverages commercial off-the-shelf (COTS) photonic
components in combination with slotted time division multiple access (TDMA) operation to enable
dynamic and efficient sharing of resources [27,28].

Secondly, an SDN orchestration and control framework is responsible for the management of all the
underlying data plane elements, extending the open-source SDN platforms with TDMA functionalities.
From this angle, NEPHELE’s framework is capable of dynamically assigning network resources directly
at the optical layer [29]. Multiple algorithmic add-ons focusing on the fast resource allocation were
developed and integrated to the SDN platform [30].

The rest of this manuscript is organized as follows: Section 2 summarizes the NEPHELE
architecture, the data plane, and the control plane. In Section 3, we introduce the NEPHELE
demonstrator [31,32] assembly, which was built at the Photonics Communications Research Laboratory
in the National Technical University of Athens, while its performance is assessed through several
real-time and end-to-end communication scenarios presented in Section 4. Finally, Section 5 concludes
the paper.

2. The NEPHELE Network Architecture

The proper operation of the NEPHELE DCN is based on an architecture where two tiers are
collaborating and coexisting seamlessly: the data plane and the control plane. In this section, we present
an overview of the NEPHELE architecture, highlighting the key innovations and functionalities of
the network.

2.1. Data Plane Overview

The NEPHELE network adopts a flat and scalable topology that utilizes active and passive optical
components to overcome the shortcomings of hierarchical topologies that are broadly used in electrical
DCN architectures. As shown in Figure 1, NEPHELE consists of two layers of switches: the ToR
(top-of-rack) and the pod switches. This way, the NEPHELE topology serves efficiently both the
north–south and east–west communication, which is an important advantage compared to conventional
DC topologies. In addition, in NEPHELE, the required number of network modules scales linearly
with the end-nodes, while the fat-tree network scales super-linearly requiring the addition of switches
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at all levels and the addition of extra levels once all ports are connected. The reference architecture of
the NEPHELE network, which assumes 32K supported ports, was calculated to be about two times
more expensive than the equivalent three-level fat-tree network based on current component prices
and projections for volume production. Nevertheless, the cost difference decreases as the number of
supported ports increases, because the cost of the NEPHELE network increases linearly as opposed
to the super-linear cost increase of the fat tree. Accordingly, for 256K ports, the projected cost of the
NEPHELE network is the same as the cost of an equivalent (four-level) fat tree. It is worth highlighting
that the energy consumption of the reference NEPHELE network (32K supported ports) is less than
half of the equivalent fat tree, and the benefits improve further as the size of the network increases [26].
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Figure 1. Overview of NEPHELE data plane network architecture.

The NEPHELE network architecture relies on pods, which in a sense are small datacenters,
accommodating several racks. Each rack is regulated by a top-of-rack (ToR) switch and consists of
several hosts (i.e., disaggregated storage and compute resources, hereafter called “innovation zones”).
The ToRs are connected to the pod switch following the star topology structure. Network scalability
is achieved by interconnecting multiple pods in a dense wavelength division multiplexing (DWDM)
multiple-fiber ring. Moreover, multiple parallel NEPHELE planes interconnecting the pods, as shown
in Figure 2, further scale the overall throughput of the network. The NEPHELE optical plane refers to
the ensemble of a NEPHELE multi-fiber ring along with its corresponding pod and ToR interfaces.
Each optical plane is connected to a different port of each ToR.

The NEPHELE data plane operates in a slotted time division multiple access (TDMA) manner.
The NEPHELE slot duration is 200 µs with additional 10 µs as guard time. The guard time was defined
by the response of the non-ideal DC-coupled electronics and the lock time of the FPGA receiver, while
the slot duration was specified at 200 µs in order to provide 95% network utilization. Furthermore,
the slotted operation facilitates the dynamic resource allocation of the NEPHELE network, offering
dynamic reconfiguration with sub-wavelength granularity. The scheduling (resource allocation) process
is realized in a periodic manner. The time is divided in scheduling periods, with each period consisting
of 80 slots (16 ms). At the end of each scheduling period, the scheduler calculates the configuration
of the network for each slot of the next scheduling period. The control plane and scheduling are
discussed in Section 2.2. The following subsections provide an overview of the functionalities of
the data plane elements that compose the NEPHELE network. More details on the NEPHELE data
plane architecture can be found in Reference [26] along with network dimensioning studies, whereas a
preliminary validation of the ToR and pod switches is presented in [28,33].
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2.1.1. NEPHELE Pod Switch

The NEPHELE pod switch distinguishes the inter- and intra-pod traffic and is based on two
types of active optoelectronic photonic modules: a wavelength-selective switch (WSS) based on the
“demultiplex, switch, and multiplex” approach and a 1 × 2 optical fast switch. The optical fast switches
utilize the breakthrough OptoCeramic™ electro-optic materials developed by BATi for a variety of
light control applications, and its nominal switching time is faster than 50 ns. A schematic of the
pod switch is given in Figure 2. In the upstream direction (from the hosts to the optical network),
the 1 × 2 switches direct the traffic either to another ToR of the same pod (intra-pod) or to the WDM
rings (inter-pod). In both cases, W ×W arrayed waveguide grating routers (AWGR) are used to route
the signals to the appropriate destination. In the downstream direction (from the optical network
to the hosts), the WSS drops wavelengths from the rings to the appropriate pods. The wavelengths
are routed to the destination ToR through AWGRs. The combination of these modules with several
passive filtering photonic elements within the network allows wavelength reuse among pods, enabling
network scalability beyond the typical wavelength count of DWDM systems. The configuration of
the active components of the pod is decided by the SDN controller of the network (Section 2.2) and
was realized by Field Programmable Gate Arrays (FPGAs) during the experiments described in the
sections below.

2.1.2. The NEPHELE Top-of-Rack Switch (ToR)

Each NEPHELE top-of-rack switch (ToR) interconnects the hosts in the datacenter racks, as well
as to the higher network layer, handled by the pods. To support the slotted operation of the NEPHELE
optical switching fabric, we developed functionality extenders of a commercial electrical ToR switch
(Figure 3). The extenders are developed on FPGA boards and they are placed on the “south” (between
the electrical switch and the servers) and on the “north” (between the electrical switch and the optical
network) of a commercial electrical switch (Mellanox SX1024). This way, in a future NEPHELE DC,
the innovation zones and the applications running on them will remain transparent to the optical
network restrictions, while the NEPHELE ToR switch will undertake their seamless integration with the
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South FPGA (S-FPGA) Extender

The south FPGA resides between the servers and the electrical ToR switch. It receives the
Ethernet frames generated from the servers in the innovation zones, parses the headers, and stores
them in VOQs (virtual output queues) per destination ToR and input port. In order to efficiently
utilize the available memory, the VOQs are dynamically created depending on the incoming traffic.
The south FPGA forwards chunks of VLAN (virtual local area network)-tagged Ethernet frames with
the same ToR destination (i.e., from the same VOQ) to the Ethernet switch. The south FPGA has
a bidirectional communication channel with the control plane. It notifies the SDN controller and,
therefore, the scheduler about the status of its VOQs in a periodic manner. In the opposite direction,
the SDN controller sends the following instructions: (a) which VOQ will be emptied for each of the
upcoming slots, and (b) a VLAN tag for each slot (which via the electrical ToR switch will define the
outgoing port/plane of transmission on the optical network).

Legacy Electrical Switch

In the electrical switch, we use two different schemes of switching, depending on the direction of
the traffic. The frames received from the south FPGA and, thus, with direction from the servers to
the optical network (upstream) are switched based on their VLAN tag. The VLAN tag was inserted
in the south FPGA according to the SDN controller’s instructions to steer the chunks of Ethernet
frames to the appropriate NEPHELE plane. In the opposite direction, from the optical network to
the servers (downstream), the switching is based on the destination MAC/IP address. This way,
the frames that arrive at the ToR switch from the optical fabric are forwarded to the appropriate
server/innovation zones.

North FPGA (N-FPGA) Extender

As described in the previous subsections, the north FPGA receives the chunks of Ethernet frames
from the electrical switch. Its role is to handle the interfacing with the optics and to realize the slotted
operation. The north FPGA includes a slot-sized FIFO (First-in, first-out) to fine-tune the timing on
which data are sent on the optical network. The chunks of Ethernet frames are encapsulated in the
NEPHELE frame; we added an ~8-µs-long preamble to facilitate the clock and the data recovery (CDR)
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locking on the receiver, a delimiter, and a short header with management fields. On the receiving
side, the Ethernet frames are decapsulated from the NEPHELE frame and they are forwarded to the
electrical switch.

The key building block of the NEPHELE top-of-rack (ToR) switch is the wavelength-tunable
transmitter (Tx), which consists of an FPGA-controlled tunable laser, an MZI modulator, and an RF
driver [33]. The tunable Tx is responsible for imprinting the 10 Gb/s electrical data onto a selectable
optical carrier (wavelength). The transmitter behaves in bursts and obeys the TDMA operation.
The wavelength that each north FPGA uses in each slot is dictated by the SDN controller according to
the destination ToR.

2.2. Control Plane Overview

The NEPHELE control and orchestration framework is applied on both the intra-DCN and the
inter-DC domain. This means that the control plane is based on a centralized inter-domain network
orchestrator, named NIDO [34] (NEPHELE inter-domain network orchestrator), which coordinates
at multiple NEPHELE DCNs and the intermediate interconnection nodes to achieve end-to-end
resource allocation [35]. More specifically, NIDO orchestrates the actions of lower-layer intra-domain
SDN controllers, namely, OCEANIA [36] (Optical Electrical Application Aware data center network
controller) for NEPHELE DCNs and JULIUS [37] for inter-DC communication, as depicted in Figure 4.
This hierarchical approach enables changing the intra-domain controller and/or the related network
technology of any domain (DC, core, metro, access network).

The intra-NEPHELE DCN is controlled through the OCEANIA controller, an SDN controller
that extends the open-source OpenDaylight controller (Lithium version). Furthermore, OCEANIA
works in-line with SDN applications, algorithms, and OpenFlow protocol extensions to efficiently
operate a NEPHELE DCN. It caters for the dynamic establishment, re-configuration, and tear-down of
intra-DC connections by optimizing the allocation of the space (planes) and time (time-slots) resources.
In the development of the NEPHELE prototype, we achieved the integration of the OCEANIA SDN
controller with the NEPHELE data plane at the southbound and the NEPHELE inter-DC orchestrator
(NIDO) at the northbound. The OCEANIA controller was demonstrated successfully in Reference [29].
At the SDN application level, new resource allocation (scheduling) algorithms were implemented to
enable an efficient and fully automated path allocation.
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The OCEANIA controller presents common characteristics with SDN controllers adopted in
the context of optical DCNs [38–40]. At the southbound of the controller, OCEANIA adopts a
similar abstraction approach for the data plane technologies, which allows the northbound SDN
applications to work in a technology-agnostic manner. Moreover, OCEANIA implements a common
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set of functionalities exposed through a REST-based (Representational state transfer) Application
Programming Interface (API) toward the Cloud Management Platform, to enable the dynamic set-up
and adjustment of lightpaths as integrated parts of the cloud service provisioning process. However,
we can identify two key differentiators of OCEANIA controller. In terms of internal information models,
OCEANIA adopts a NEPHELE-specific modeling of the optical resources, based on the possibility
of allocating resources at the space and time level. This model is also reflected on the OpenFlow
protocol extensions adopted between the OCEANIA and the SDN Agents of ToR and pod switches to
configure the optical devices. Moreover, OCEANIA implements scheduling algorithms specifically
designed for the NEPHELE DCN topology, based on loops of pods interconnected to ToRs and the
related granularity enabled for the configuration of optical resources.

Extra effort was put to develop scheduling algorithms that would be efficient in large DCNs but
also perform fast calculations to enable rapid network reconfiguration [30,41]. The NEPHELE data
plane operates in a synchronous slotted time division multiple access (TDMA) manner. To enable
efficient utilization of the network resources, a central scheduler dynamically assigns timeslots and
creates end-to-end light-paths based on the traffic requirements. However, making the scheduling
decisions on a per-timeslot basis, for hundreds or even thousands of end-nodes, would require high
communication and processing latency. It is more efficient to perform resource allocation periodically,
so that scheduling decisions are made for periods of T timeslots.

More specifically, the ToR switches periodically report the status of their queues to the controller.
The controller translates the status of the queues into ToR-to-ToR communication requests and
constructs the traffic matrix (TM). The scheduling algorithm takes as input the communication requests
of the TM and allocates the network’s resources (optical planes and wavelengths) to source–destination
ToR pairs in a per timeslot basis. The resource allocation problem is essentially a matrix decomposition
problem and can be solved optimally using the Birkhoff–von Neumann decomposition. Even though
this approach ensures maximum utilization of the network’s resources, the complexity of the optimal
algorithm prohibits real-time execution [30]. In the context of NEPHELE, several scheduling approaches
were proposed and evaluated: from linear, sublinear, and randomized greedy heuristics [30] to parallel
implementation on FPGAs [41]. Note here that two different resource allocation approaches were
proposed [30]: (a) offline and (b) incremental. The offline algorithms compute the solution from scratch
based only on the new input TM, while the incremental ones update the solution of the previous
scheduling period based on the traffic changes. For the demonstration scenarios presented in the
upcoming sections, we used the offline linear greedy algorithm.

Regarding the TDMA network’s throughput, a detailed study can be found in Reference [30],
with special focus to the NEPHELE network and its variations. The maximum network throughput
is defined as the maximum offered load at which the queues and the latency are finite. In short,
the normalized and greedy heuristics scheduling approaches achieved a normalized throughput higher
than 85% for a variety of scenarios (traffic locality, architecture variations, etc.).

3. The NEPHELE Demonstrator Assembly

The NEPHELE demonstrator set-up was built step-by-step at the Photonics Communications
Research Laboratory in the National Technical University of Athens [42]. Photos of the demonstrator
during the preparation period are shown in Figure 5 and the implemented set-up is graphically
depicted in the schematic of Figure 6. In this set-up, two NEPHELE optical planes with two pods are
emulated. More specifically, pod 1 accommodates a server with two independent 10 Gb/s Ethernet
interfaces/hosts (E1 and E2) through ToR 1 and a dummy ToR switch (ToR 0) for monitoring purposes.
On the other hand, pod 2 handles two servers, each one accommodating two hosts through ToR 2 (E3
and E4) and ToR 3 (E5 and E6).

The NEPHELE demonstrator was assembled according to the NEPHELE architectural principles,
in lab-scale dimensions, for the purposes of the demonstration (1st supplementary vide). Each of
the NEPHELE ToR switches is equipped with two tunable transmitters (Tx) and an equal number
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of optical receivers (Rx), as depicted in Figure 7. In this context, the demonstrator is composed of
three fully equipped ToR switches, i.e., six transmitter and receiver assemblies that were developed,
tested, and used for the demo [27,28,33]. Finally, a partially functional receiver was connected to the
“dummy” ToR 0, which is in pod 1 and it was used for displaying purposes.Photonics 2020, 7, 44 9 of 23 
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Figure 8a shows a detailed schematic of the internal connections between the ToR switch and
the hosts. Starting the description from the bottom to the top, three Dell servers were used as hosts
inside the racks, serving as the innovation zones. Each of the servers can produce 10 Gb/s Ethernet
traffic and they are connected to the south FPGA (S-FPGA) by means of two 10 Gbps SFP interfaces
(Small form-factor pluggable transceiver) [43]. The interfaces are independent and, as a result, they
can emulate different hosts. Indeed, server 1 located in pod 1, handled by ToR1, is connected to the
S-FPGA by E1 and E2 Ethernet interfaces. After that, the traffic is forwarded to the Mellanox Ethernet
switch, which sends the frames to the available north FPGA (N-FPGA) for transmission. The N-FPGAs
control the tunable Tx and encapsulate the NEPHELE frames (200 µs duration, including 10 µs guard
time). In the Tx, the NEPHELE frames (in the electrical domain) are amplified in an Radio Frequency
(RF) driver and, afterward, they are introduced to a Mach–Zehnder modulator. The optical carrier
is provided by a tunable laser assembled on a custom carrier, which is also fully controlled by the
N-FPGA. The tunable laser is a Finisar S7500 MG-Y laser which is controlled by five input currents
applied to five corresponding sections: Semiconductor Optical Amplifier (SOA), gain, phase, left
reflector, and right reflector section. To enable fast wavelength tuning, the laser was assembled on a
custom board with impedance matched RF interfaces. The three driving currents were provided to
the board by a current digital-to-analog converter evaluation module embedded in an FPGA, as an
extension. The tuning speed of the tunable laser was measured in the range of 17–23 ns [28] for all 80
wavelengths of the ITU grid, well within the NEPHELE specifications. The reception of the NEPHELE
flows follows the opposite vertical direction.

From the physical layer perspective, the communication between the servers in the NEPHELE
network is achieved by using different wavelengths to route the traffic, leveraging the combined effect
of the fast tunable lasers and the AWGRs. On the other hand, regarding the network/protocol tier,
IP addresses are assigned to each Ethernet interface. Table 1 shows the wavelengths and IP addresses
that correspond to each interface according to the hosting pod and ToR.

With respect to the control plane, the SDN controller and the scheduler of the DC are running on
a remote machine that is connected to the NEPHELE testbed via a 1 Gbps local area network. The SDN
controller is connected with the SDN agents, which run on desktops that are also connected to the
north and south FPGAs (through the Peripheral Component Interconnect Express (PCIe) interface).
The control plane’s instructions are calculated, transferred, and enforced by the FPGAs in real time for
the NEPHELE DC demonstration.
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Table 1. Wavelengths and IP addresses that correspond to each interface according to the hosting pod
and ToR.

Destination ToR Located
Pod Wavelengthλ (nm) Interface IP Address

ToR 1 1 1546.917
E1 10.1.1.1

E2 10.1.1.129

ToR 2 2 1547.715
E3 10.2.2.1

E4 10.2.2.129

ToR 3 2 1548.515
E5 10.2.3.1

E6 10.2.3.129

ToR 4 1 1549.315 Dummy ToR

A “Day” in the Life of a NEPHELE Packet

The current subsection gives a high-level description of a packet’s journey in the NEPHELE
network, aiming to provide a better understanding of the end-to-end data transmission. Each end-host
is assigned with a static IP (Internet Protocol) address using DHCP (Dynamic Host Configuration
Protocol) or OpenFlow. Each rack is an IP subnet; thus, the IP addresses of all the hosts in the rack
begin with the same prefix (we use 24-bit prefix). The host address within the IP subnet is the index of
the NIC (Network Interface Card) within the ToR.

Ethernet frames are transmitted from the NIC/host to the input ports of the ToR (ToR1 in Figure 9)
through the S-FPGA. These frames carry the DMAC (Destination Media Access Control) address of the
destination host. Static ARP (Address Resolution Protocol) can be used for mapping the destination
host IP address to MAC address. The static ARP tables should be provided by the SDN controller.
The frames sent from the hosts reach the ToR and are stored in buffers sorted by input port and
destination ToR pair. These buffers for a specific input port are drawn in Figure 9 within the InP1
box. The schedule provided by the SDN controller (2nd supplementary video) and held by the ToR is
executed slot after slot. The SDN controller’s instructions for each slot dictate which buffer (Input Port,
Destination ToR) to send at the current time, the wavelength to be used, and through which plane
the frame will be routed. If there are frames in that buffer, they are sent to the ToR Ethernet switch
after they are tagged with a VLAN tag that matches the destination plane defined by the schedule.
The ToR Ethernet switch forwarding inter-ToR traffic is statically configured using OpenFlow. Each
VLAN tag is mapped to a different “north port” connected to a pod switch. In this way, the incoming
VLAN-tagged frames to the Ethernet switch are forwarded to the correct plane.

On their way to the tuneable laser that drives the pod switch on that plane, the Ethernet frames
are stripped from the VLAN tag and are encapsulated in a NEPHELE frame. Note that the entire
ToR switch cannot be classified as a VOQ switch since frames are being stored per input port per
destination ToR switch (to consider this as a VOQ switch, the output ports should be the ToRs and not
the planes as in our case). The pod switch is also controlled by an OpenFlow agent and is performing
its pre-programmed schedule. Each of the schedule slots defines the state of the fast switch and the
WSS (for each color). According to the current slot, the pod 1 is aware whether this frame concerns
inter-pod or intra-pod traffic. In the case of inter-pod traffic, the frame is routed via the 1 × 2 fast
switch and the AWGR toward the optical ring.

In Figure 9 inter-pod communication is illustrated and pod 2 is instructed to drop the wavelength
that carries the data from ToR1 in the slot that the communication takes place. The arriving frames
are stripped of their NEPHELE header before they reach the Ethernet switch on the destination ToR2.
The Ethernet switch in ToR2 is statically configured by OpenFlow to forward intra-ToR traffic using
the DMAC that is incorporated in the Eth header. In this way, the Ethernet frames are forwarded to the
right port (NIC) depending on the DMAC. Optionally, the forwarding could be realized using the IP
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address of the destination NIC. The same forwarding rules of the Ethernet switch allow the forwarding
of the intra-ToR traffic within ToR1.Photonics 2020, 7, 44 12 of 23 
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4. End-to-End Communication Scenarios and Real-Time Demo Results

In this section, we present the results of the end-to-end real-time operation of the NEPHELE demo
DCN. More specifically, the intra-NEPHELE demo DCN communication scenarios are presented in
Section 4.1, while an inter-NEPHELE Demo DCN interconnection between the Athens demo and the
Pisa testbed in Italy is presented in Section 4.2.

4.1. Intra-Datacenter Communication

The intra-DC communication section consists of the communication scenarios that are taking
place within the mini NEPHELE DCN. Taking into account the NEPHELE demonstrator of Figure 6,
the scenarios are categorized as follows: intra-ToR, intra-pod, and inter-pod communication scenarios,
depending on the location of the communicating hosts within the DCN.

4.1.1. Intra-ToR Scenario

The first scenario demonstrated was the intra-ToR traffic case. In this scenario, the Ethernet traffic
remains inside the same rack and, as a result, the northbound part of the ToR switch is not involved.
Figure 10a shows the block diagram of the demo set-up, and the blue arrows indicate the traffic flow
paths, from the E3 to E4 Ethernet interface within the ToR 2.

In Figure 10 b,c the nload command is depicted running simultaneously in all the involved
host-servers. In this way, the incoming and outgoing traffic on each server is monitored. More
specifically, in Figure 10b, the communication between server E3 and E4 is shown; server E3 (10.2.2.1)
is sending data traffic to server E4 (10.2.2.129). The bandwidth achieved in this case is almost 1.3 Gbit/s.
In Figure 10c, the traffic follows the same path but more slots are allocated by the NEPHELE scheduling
engine and, as a result, the bandwidth is increased by a factor of almost two. In the described scenario,
no optical part of the pod switch is used. The traffic is handled by the south part of the ToR switch,
since the involved hosts belong to the same rack.
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4.1.2. Intra-Pod Scenario

The second scenario implemented in the demo was focused on the intra-pod communication.
In this scenario, the two ToRs, which reside within the pod 2, are establishing a communication path.
The generated traffic originates from E3 host of ToR 2, and its destination is the E5 host that belongs to
ToR 3. The experiment was carried out with three different traffic patterns: 20, 40, and 70 slots of the
total 80 of the NEPHELE scheduling period. In this way, the bandwidth is consecutively increased.
The commands for increasing the allocated slots are sent by the SDN controller to the FPGAs that
enforce the instructions in real time.

This experiment involves three data plane modules: two ToR switches and one pod switch.
On Figure 11a, a schematic diagram of the traffic route through the data plane is presented. Following
the blue arrows, the frames originating from server E3 are first buffered in the S-FPGA of ToR 2. After
that, the traffic is routed through the Mellanox Ethernet switch, which selects the right N-FPGA as the
destination gateway to the optical rings of the NEPHELE network.

The tunable transmitter driven by the N-FPGA of ToR 2 is tuned to transmit the traffic enrolled
in the correct wavelength according to the destination ToR; in this case, λ3 = 1548.515 nm (Table 1).
The transmitter is followed by a 1 × 2 optical switch which is responsible for handling the frames in
accordance with their destination place (intra-pod or inter-pod). In this case, the 1 × 2 optical switch,
which is driven according to the schedule by the N-FPGA, routes the frames to the output that routes to
the same pod. The cyclic 8 × 8 AWG passively forwards the frames to the fiber that reaches the receiver
embedded to the N-FPGA of ToR 3. It is important to mention that, due to the system optimization in
the optical path (and in all intra-pod optical paths), there is no need for optical amplification.

After the successful optical reception of the NEPHELE frames by the N-FPGA of ToR 3, the extracted
Ethernet frames are forwarded to the Mellanox switch, which in turn routes the Ethernet frames to the
correct S-FPGA using the destination’s preregistered media access control (MAC) address. The S-FPGA
forwards, without any additional delay or processing, the Ethernet frames to the destination E5.

The “monitor” images at the bottom of Figure 11b–d show screenshots of the NEPHELE
frames traveling through the network taken by means of a real-time oscilloscope. In these figures,
the screenshots represent different percentages of slot allocation. It is useful to repeat that the NEPHELE
scheduling period is divided into 80 slots (200 µs each slot) with a guard time (10 µs) between them.
Apparently, the increase in slots that are allocated for a specific connection results in a direct increase
of the available bandwidth between the two endpoints. Figure 11b–d presents the nload command
running on all the involved servers. The bandwidth scales according to the slot allocation.
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Figure 11. (a) The data-plane structure of the intra-pod scenario. The NEPHELE frames follow the route
highlighted with the blue arrows. (b–d) Screenshots of the NEPHELE frames sent from ToR2 server E3
(10.2.2.1) and received by ToR3 server E5 (10.2.3.1). (b) In this case, 25% of the scheduling period (20
slots out of 80 slots) is occupied for the communication path between ToR2 and ToR3 achieving 1.8
Gbit/s bandwidth. (c) In this half of the scheduling period, 40 slots out of 80 slots are occupied for the
communication path between ToR2 and ToR3 achieving 3.6 Gb/s bandwidth. (d) In this case, 87.5% of
the scheduling period (70 slots out of 80 slots) is occupied for the communication path between ToR2
and ToR3 achieving 6.4 Gbit/s bandwidth.

4.1.3. Inter-Pod Scenario I

The experimental set-up used for the inter-pod communication is shown in Figure 12 (for this
section, we assume only the light-blue arrows in the figure, while the dark-blue ones correspond to
the scenario in Section 4.1.4). In this case, server E1 which resides inside ToR 1 of pod 1 establishes
connection with server E3 which is connected to ToR 2 of pod 2. Thus, in this scenario, two pod
switches and two ToR switches are involved. Moreover, the implemented traffic pattern includes 60
out of the 80 slots, which is the total NEPHELE scheduling period.

The tunable transmitter is tuned to emit the wavelength which will reach ToR 2, i.e., the wavelength
λ2 = 1547.715 nm. The transmitted traffic passes through all the optical components of two consequent
pod switches: 1 × 2 switch (intra-, inter-), 8 × 8 AWGR, EDFA, WSS, 8 × 8 AWGR, and a coupler.

Figure 13 depicts the NEPHELE packets screenshots taken by means of a real-time oscilloscope
and a constant slot allocation (60 out of 80 slots). In addition, it presents the nload command running
on the servers and shows that the achieved bandwidth between E1 and E3 is 5.12 Gbit/s.
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Figure 13. The NEPHELE packets sent from the E1 (10.1.1.1) ToR1 and received by the E3 (10.2.2.1) ToR2.
In this case, 75% of the scheduling period (60 slots out of 80 slots) is occupied for the communication
path between ToR1 and ToR2 achieving 5.12 Gb/s bandwidth.

4.1.4. Inter-Pod Scenario II

In this scenario, the traffic follows an inter-pod route as well. In this case, however, the server
of ToR1, which resides inside pod 1, sends traffic to two different ToRs in pod 2. More specifically,
server E1 (ToR 1-pod 1) generates and sends traffic to server E3 (ToR 2-pod 2) and E5 (ToR 3-pod 2)
alternatingly. The source server (E1) transmits Ethernet frames for both destinations concurrently, while
the scheduling commands, sent by the SDN controller, impose the slot allocation for the scheduling
period. The experimental set-up for the inter-pod scenario with two destination ToRs is depicted in
Figure 12. The traffic originating from the E1 interface is optically transmitted by Tx1 of ToR 1 and it is
forwarded into the optical ring of plane 1 by means of a 1 × 2 optical switch (intra- or inter-pod) and an
8 × 8 AWGR. As mentioned above, the tunable transmitter Tx1 creates two traffic flows enrolled in two
wavelengths alternatingly according to the targeted ToR; λ2 = 1547.715 nm for ToR 2 and λ3 = 1548.515
nm for ToR 3. An optical amplifier (EDFA) is used to compensate for the optical losses between the
two pods.
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The wavelength-selective switch (WSS) of pod 2, which is the responsible module for dropping
specific wavelengths from the WDM rings, forwards the optical flows towards its ToRs according to the
SDN controller’s commands. The switches inside the WSS are driven by the N-FPGA with TTL signals.
An additional passive AWGR, as shown in Figure 12, finally routes the traffic to ToR 2 and ToR 3.

The green trace depicted in Figure 14 d represents the NEPHELE frames that reach ToR 2, and the
blue one represents the corresponding frames which are received by ToR 3. It is obvious that the
NEPHELE traffic is divided into two equal parts for each destination and, more specifically, 25% of
the scheduling period (20 slots out of 80) is occupied for each of the two ToRs (Figure 14a–c). Finally,
the bandwidth reached almost 1.4 Gb/s at both servers E3 and E5, as shown in Figure 14.
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Figure 14. (a) Server E1 (10.1.1.1) is sending data traffic to (b) server E3 (10.2.2.1) and (c) server E5
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4.1.5. Combined Intra-Pod and Inter-Pod Communication Scenarios

The following sections present additional, more complex scenarios that were tested on the
developed innovative NEPHELE mini-datacenter testbed. Extra functionalities were implemented in
order to confirm the system stability despite the additional complexity.

To begin with, the scenarios that are presented in the next sections were carried out on the same
demo testbed (Figure 15a) with a main difference from the previous ones; communication between the
ToRs takes place from the northbound interfaces of each ToR switch as depicted in Figure 15b, since the
end-to-end real time communication was proven in previous sections. This means that the modules
located vertically below the north FPGAs are not involved in these experiments.
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Figure 15. (a) The experimental set-up used for the evaluation of the combined Intra-pod and inter-pod
scenarios. (b) The northbound data plane interfaces schematic of the ToR switches.

More specifically, the N-FGPA generates “dummy” NEPHELE frames filled with pseudorandom
binary sequence (PRBS) instead of Ethernet data. This dummy traffic meets all the specifications of the
NEPHELE architecture with respect to timing and rate. Furthermore, the north FPGA generates and
provides the control signals (TTL) for the optical modules which are involved: 1 × 2 optical switches
for the intra- and inter-pod communication and 1 × 2 WSS (the “demultiplex, switch, and multiplex”
approach of the WSS module includes multiple 1 × 2 optical switches).
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Combined Scenario I

The first scenario which combines intra-pod and inter-pod traffic is shown in Figure 16a. According
to this, ToR 1 of pod 1 sends traffic to the ToR 0 of pod 1 (intra-pod communication) and to ToR 2 and
ToR 3 of pod 2 (inter-pod communication). Hence, the tunable transmitter of ToR 1 is set to transmit 16
repeated NEPHELE frames enrolled in different wavelengths (in λ4, λ2, and λ3) as shown in Figure 16b.
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Figure 16. (a) Combined scenario I. (b) The repeating sequence of NEPHELE frames in three wavelengths
produced by the tunable Tx of ToR 1: eight frames in λ4, four in λ2, and four in λ3. (c–f) Screenshots of
the received NEPHELE frames to each ToR receiver; the red trace corresponds to the ToR 0 receiver,
while blue trace corresponds to the ToR 2 receiver, and the green trace corresponds to the ToR 3 receiver.

Figure 16c–f portrays the screenshots captured after the receivers by means of a real-time
oscilloscope. The oscilloscope’s channels are connected to each of the three photoreceivers; the red
trace corresponds to ToR 0, the blue one corresponds to ToR 2, and the green one corresponds to ToR 3.
In all the screenshots (c–f), the orange trace represents the driving signal that is applied to the 1 × 2
optical switch which distinguishes the intra- and inter-pod traffic in pod 1. In addition, the white
traces in (d–f) screenshots represent the driving signal for the 1 × 2 optical switches which are located
inside the WSS of pod 2 and correspond to λ2 and λ3.

Combined Scenario II

The second combined scenario that was implemented is presented in Figure 17a. As shown, ToR 1
of pod 1 transmits NEPHELE frames to ToR 2 and ToR 3 of pod 2 (inter-pod communication). At the
same time and synchronously, the transmitter of ToR 2 sends traffic to ToR 3 (intra-pod communication).
As a result, the receiver of ToR 3 receives traffic from both ToR 1 and ToR 2.

The traffic generated by ToR 1 (pod 1) and ToR 2 (pod 2) is depicted in Figure 17b. The tunable
transmitter of ToR 1 is able to produce a sequence of NEPHELE frames at λ2 and λ3. Similarly, the ToR
2 transmitter is programmed to generate NEPHELE frames at λ3 with an empty slot between them in
order to avoid any possible conflict with λ3 frames transmitted by ToR1.

Combinations of the above-mentioned traffic flows are presented in the screenshots (c–f) of
Figure 17. Firstly, Figure 17c shows the NEPHELE frames at λ3 that reach ToR 3 and are transmitted
by ToR 2, without any other transmitted traffic. Afterward, the transmitter of ToR 1 starts sending
NEPHELE frames at λ2 and λ3 as observed in Figure 17d. In this case, the 1 × 2 switch of pod 1 forwards
the traffic to the inter-pod path and the WSS of pod 2 drops the two wavelengths. The next two
screenshots (Figure 17e–f) show cases in which the WSS of pod 2 drops some of the frames at λ3.
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Figure 17. (a) Schematic for the combined intra-pod and inter-pod scenario II. (b) Repeating sequence
of NEPHELE frames transmitted by ToR 1 and ToR 2 simultaneously and synchronously at λ2 and λ3.
(c–f) Screenshots of the received NEPHELE frames to ToR 2 and ToR 3 receivers; blue and green traces
represent the receivers at ToR 2 and ToR 3, respectively.

Combined Scenario III

The third and final scenario that was carried out on the NEPHELE demo testbed is a combination
of the two previous scenarios, and it is shown in the schematic of Figure 18a. The traffic produced
by ToR1 is both intra-pod (ToR 0-pod 1) and inter-pod (ToR 2 and ToR 3-pod 2). In the meantime,
ToR 2 generates another intra-pod traffic flow, but this time inside pod 2 by transmitting NEPHELE
frames with the destination as ToR 3. In addition, three wavelengths are involved (λ2, λ3, and λ4) in
this scenario and, obviously, the two transmitters are synchronized.
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Figure 18. (a) Schematic for the combined intra-pod and inter-pod scenario III. (b) Repeating sequence
of NEPHELE frames transmitted by ToR 1 and ToR 2 simultaneously and synchronously at λ4, λ2 and λ3.
(c–f) Screenshots of the received NEPHELE frames to each ToR receiver; the red trace corresponds to the
dummy ToR receiver, the blue trace corresponds to the ToR 2 receiver, and the green trace corresponds
to the ToR 3 receiver.

The traffic that is generated by the two tunable transmitters is depicted in Figure 18b.
The transmitter of ToR 1 (pod 1) creates a sequence of NEPHELE frames enrolled in λ4, λ2, and λ3. As it
happened in the previous combined scenario, the ToR 2 (pod 2) transmitter is programmed to generate
NEPHELE frames in λ3 with an empty slot between them.

Figure 18c–f represents the screenshots of the NEPHELE frames that reach the three destination
ToRs. The red frames represent the ones at λ4 that are received by the ToR 0 Rx. Similarly, the blue
and green traces show the frames that arrive to ToR 2 and ToR 3, respectively. It is important to
mention that, in all screenshots, the two transmitters are set to emit the sequences shown in Figure 18b.
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In addition, the dotted red waveform indicates the separation of intra- and inter-pod traffic of pod 1.
White arrows and transmitter labels are highlighted on the following figures, indicating the origin of
each packet. More specifically, in Figure 18c,d the frames transmitted by ToR 2 (intra-pod inside pod 2)
are shown in the green waveform. Additionally, the orange trace and the black bullets highlighted in
Figure 18 represent the WSS on/off state for λ3 and the frames transmitted by ToR 1, respectively.

4.2. Inter-Datacenter Communication—Pisa and Athens Testbed Communication

In order to verify the capability of the NEPHELE framework to control heterogeneous technologies,
we validated it in a multi-site inter-DC testbed deployed at IRT Testbed (Interoute) and NTUA (National
Technical University of Athens) facilities, in Pisa Italy and Athens Greece, respectively. The environment
includes two DCNs emulated by Mininet, connected through an inter-DC network (also emulated) to
a third physical DCN, based on the NEPHELE data plane. The emulated networks are running in
virtual machines (VMs) placed in the IRT testbed, while the physical NEPHELE DCN is located at the
NTUA premises (see Figure 19a). The two sites are interconnected through a VPN tunnel instantiated
between two hosts acting as gateways, with the VPN playing the role of an inter-domain link.
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This environment combines physical and emulated network domains and allows us to verify the
correct cooperation between control and data plane for both intra-DC and inter-DC scenarios. Moreover,
we are also able to demonstrate the applicability of the NEPHELE system to scenarios involving multiple
network domains deploying different technologies, a key feature for the backward compatibility of the
NEPHELE solution and its possible deployment in existing multi-DC infrastructures.

The experiment is triggered through the NIDO Graphical User Interface (GUI) sending a request for
an end-to-end path between an emulated server located in the IRT testbed and a physical server in the
NTUA testbed (3rd supplementary video). At the control plane level, the interaction between NIDO and
the SDN controllers OCEANIA and JULIUS, as well as the exchange of OpenFlow messages between the
controllers and the data plane, are executed and the end-to-end connection is successfully established.

In order to verify the actual connectivity between the two servers, we use the iPerf tool to generate
traffic between the servers and we verify the exchanged traffic using the tcpdump tool. Although
the bandwidth reported (4.91 Mbit/s, Figure 19b) is very low for NEPHELE standards, the traffic is
transported through the VPN over the public internet; thus, the actual transfer rate is not a significant
indication of the performance of the physical DCN infrastructure.

Finally, the industrial demonstrator of NEPHELE complementing the demonstrator in Athens
and the NEPHELE technologies is depicted in Figure 19c.
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5. Discussion

The NEPHELE DC network [26] is a dynamic optical infrastructure that leverages optical
switching and SDN control and orchestration. For the proof-of-concept demonstrator presented in
this paper, we implemented a variety of novel functionalities and interfaces across the Open Systems
Interconnection (OSI) networking layers. In the SDN controller (and the SDN agents), we extended
prominent SDN platforms with TDMA functionality, adding the capability to dynamically assign
network resources directly at the optical layer. In addition, fast resource allocation (scheduling)
algorithms were integrated to the SDN platform. On the data plane, the functionalities of commercial
Ethernet switches were extended with FPGAs. The FPGAs were programmed to perform several novel
functionalities such as (1) communication with the extended SDN platform, (2) buffering and traffic
handling for adjusting Ethernet traffic to the TDMA scheme according to the SDN commands, and (3)
interfacing with the optical network and the control of the optical components (tunable lasers, optical
switches, etc.). On the physical layer, our work focused on the optimization of the link quality while
introducing novel optical components in an architecture that can scale to thousands of end-nodes.
The most challenging part, however, was the integration and the interfacing of the different technologies
and innovations. The integration process revealed challenges that will also be relevant for the wider
adoption of optical switching. Several of these challenges were addressed during the project, leading
to the successful real-time system operation. From our point of view, further collaboration across
the broader community covering different networking layers is needed to make optical switching a
commercial technology. Optical switching is a paradigm shift and, to exploit its full potential, we will
need to make radical changes to the networking environment. An important part of the network, which
was not studied in NEPHELE, is the application layer. Making the applications and the developers
aware of the slotted operation and its implications will be essential for creating efficient end-to-end
optically switched networks.

6. Conclusions

We presented several real-time communication scenarios carried out on the NEPHELE optical
network demonstrator. End-to-end communication was successfully achieved between the hosts of the
prototype datacenter cluster. SDN and orchestration frameworks supervised the slotted operation
of the optical network with remarkable synchronization, facilitated by the FPGA boards. NEPHELE
demos proved with emphasis the project’s concept and put the NEPHELE architecture in a prominent
position as an ambitious solution for future DCNs.

Supplementary Materials: Videos of the NEPHELE DCN live demonstrator are available online at https:
//youtu.be/bJYhRsNwPMU, https://youtu.be/J9GbZEtnPFc, and https://youtu.be/n9mC5NH4IGA.
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