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Abstract: We numerically studied the chaotic dynamics of a laser diode (LD) system with optical
injection, where a chaotic signal, which is generated by an LD with optical feedback, is applied to
the drive current of the master LD. To quantify the orbital instability of the slave LD, the Lyapunov
exponent was calculated as a function of the optical injection ratio between the master and slave
LDs and the optical feedback ratio of the applied signal. We found that the Lyapunov exponent
was increased and the orbital instability was enhanced by applying a chaotic signal when the
inherent system without the applied signal was in a “window”. Next, we investigated the orbital
instability of the slave LD in terms of statistical and dynamical quantities of the applied chaotic signal.
The maximal value of the Lyapunov exponent for a certain range of the injection ratio was calculated
and we showed that a chaotic pulsation is suitable for enhancing the orbital instability of the LD
system. We then investigated chaos synchronization between the LDs. It is concluded that the orbital
instability of an LD with optical injection can be enhanced by applying chaotic pulsation without
chaos synchronization.
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1. Introduction

Since the chaotic oscillation of a laser diode (LD) [1–7] has a high frequency and broad bandwidth,
its potential applications, such as physical random bit generation [8–11], reservoir computing [12–14],
decision-making [15], and chaotic communication [16–19], have been widely studied. In these
applications, more chaotic oscillation can contribute to increasing the performance, for example,
randomness in random bit generation, a high bit rate in security in chaotic communication. Various
methods of generating chaotic oscillation with a broad bandwidth and large chaotic property have been
studied, for example, using a master–slave LD system with frequency detuning [20,21], an external
feedback system with dual feedback [22], or an external feedback system with random feedback [23].

We previously proposed a method using a master–slave LD system with a random signal applied
to the drive current of the LDs [24]. In the optical injection system, which consists of master and
slave LDs, various dynamics of the slave LD appear. For a small optical injection ratio, the slave laser
oscillates stably, periodically or quasi-periodically. Then, the dynamics develop into a chaotic state with
increasing optical injection ratio, and periodic oscillation is observed between chaotic states, which is
called a “window”. In a window, the chaotic dynamics are concealed. We have shown numerically
that the chaotic dynamics are revealed by applying a pseudorandom signal to the drive current of
the master LD, and the chaotic property, that is, the orbital instability of the slave LD, is enhanced by
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increasing the standard deviation of the applied random signal. The orbital instability of a chaotic
system can be controlled by applying a statistical random signal to a deterministic chaotic system.

In this work, a deterministic chaotic signal is adopted as the applied signal. We numerically
investigate an optical injection system with unidirectional coupling from a master LD to a slave LD by
applying a signal, which is generated by the chaos source LD with external optical feedback, to the
drive current of the master LD. First, we compare the system with an applied chaotic signal and the
system with an applied random signal having the same mean and standard deviation as the chaotic
signal. It is shown that, in the window, the chaotic dynamics of the slave LD are revealed by the
applied chaotic signal as well as the applied pseudorandom signal. Moreover, the applied chaotic
signal more greatly enhances the orbital instability of the slave LD than the applied pseudorandom
signal. Next, to explore the factor causing the enhanced orbital instability of the slave LD, we estimate
the orbital instability of the slave LD in terms of statistical and dynamical quantities of the applied
chaotic signal. Then, we discuss the suitable conditions of the applied chaotic signal for enhancing the
orbital instability of the LD system, and the chaos synchronization between the applied signal and
LD system.

2. Chaotic Laser System and Lyapunov Exponent

We consider the optical injection system consisting of two laser diodes (LDs), that is, a master LD
(LD1) and a slave LD (LD2) in Figure 1a, which are driven by a DC source. The optical coupling from
LD2 to LD1 is restricted by an optical isolator (ISO) and the coupling ratio is controlled by a variable
attenuator (VA). An external signal is electronically applied to the drive current of LD1, which is
generated by an external applied signal source, and the amplification of the applied signal is controlled
by a variable electric attenuator and an amplifier. In the following sections, we consider three kinds of
applied signals, that is, a chaotic signal, a pseudorandom signal and a DC. The applied pseudorandom
signal, and applied DC are generated by a signal generator, and the chaotic signal is generated by
an external chaos source LD (LD0) with optical feedback whose ratio is controlled by VA (Figure 1b).
The chaotic signal is detected and converted into electric signal by a photo detector (PD). Since actual
electric circuits have a frequency response and a cutoff frequency, impacts of the frequency band of the
applied signal are needed to consider like Refs. [24,25]. In this work, we ignore the frequency response
of the electric circuit to focus on the impacts of chaotic signal. The dynamics of LD0, LD1 and LD2 are
described by the following rate equations [26,27]:

dA1(t)
dt

=
1
2

GNn1(t)A1(t), (1)

dφ1(t)
dt

=
1
2

αGNn1(t), (2)

dn1(t)
dt

= [1 + g · C(t)](p− 1)Jth − γn1(t)− [Γ + GNn1(t)]A2
1(t), (3)

dA2(t)
dt

=
1
2

GNn2(t)A2(t) + κinj A1(t− τinj) cos[ωτinj + φ2(t)− φ1(t− τinj)], (4)

dφ2(t)
dt

=
1
2

αGNn2(t)− κinj
A1(t− τinj)

A2(t)
sin[ωτinj + φ2(t)− φ1(t− τinj)], (5)

dn2(t)
dt

= (p− 1)Jth2 − γn2(t)− [Γ + GNn2(t)]A2
2(t), (6)
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dA0(t)
dt

=
1
2

GNn0(t)A0(t) + κfb A0(t− τfb) cos[ωτfb + φ0(t)− φ0(t− τfb)], (7)

dφ0(t)
dt

=
1
2

αGNn0(t)− κfb
A0(t− τfb)

A0(t)
sin[ωτfb + φ0(t)− φ0(t− τfb)], (8)

dn0(t)
dt

= (p− 1)Jth − γn0(t)− [Γ + GNn0(t)]A2
0(t), (9)

where A(t), φ(t), and n(t) are the amplitude, the phase of the laser field, and the carrier number
above the value for the solitary LD, respectively. The subscripts 1, 2, and 0 denote LD1, LD2, and LD0,
respectively. GN is the differential optical gain, α is the linewidth enhancement factor, γ is the carrier
decay rate, and Γ is the cavity decay rate. The angular frequency of the solitary LD is described as
ω = 2πc/λ, where c is the velocity of light and λ is the wavelength. The drive current of the system
without an applied signal is expressed as pJth.

Equations (1)–(3) describe the dynamics of LD1. The external signal is applied to ensure that
the drive current of LD1 is above the threshold [1 + g · C(t)](p− 1)Jth, where A0 is the amplitude of
LD0, g is the amplification coefficient, and C(t) = a · A0(t)2 represents the applied signal for LD1,
which is normalized by the parameter a. Equations (4)–(6) describe the dynamics of LD2, which has
the optical injection from LD1. The second terms on the right side of Equations (4) and (5) describe
the optical injection from LD1 to LD2. A1(t− τinj) and φ1(t− τinj) are the amplitude and phase of
the laser field injected into LD2 from LD1, respectively. Equations (7)–(9) describe the dynamics of
LD0, which has the optical feedback. The second terms on the right side of Equations (7) and (9)
describe the optical feedback for LD0. A0(t − τfb) and φ0(t − τfb) are the amplitude and phase of
the laser field fed back from the external cavity to LD0, respectively. τinj is the injection time from
LD1 to LD2, and τfb is the round-trip time of the external cavity for LD0. The injection and feedback
coefficients are expressed as κinj = (1− r2

0)rinj/r0τin and κfb = (1− r2
0)rfb/r0τin, respectively, where

rinj is the injection ratio of the output injected into LD2 to the output of LD1, rfb is the feedback ratio
of the output fed back from the external cavity to LD0, and τin is the round-trip time in the inner
cavity. In our simulation using the Runge–Kutta method, where the step size is 1ps, the following
values are assigned to the parameters, which are taken from Ref. [26]: GN = 2.142× 104[s−1], α = 5.0,
λ = 635[nm], c = 3.0× 108[m/s], γ = 0.909[ns−1], Γ = 0.357[ps−1], r0 = 0.556, τin = 8.0[ps−1],
Nsol = 1.708× 108, τfb = 5.0[ns] and τinj = 5.0[ns]. The initial values A(0) and n(0) are the convergent
values of the solitary LD, and φ(0) = 0 is utilized. Then, the pseudorandom signal is generated by the
Mersenne Twister random number generator [28] and Box–Muller transform [29].
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Figure 1. Schematic diagram of the optical injection LD system with an applied chaotic signal which
consists of (a) master-slave LD system and (b) applied signal source.
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In this study, the maximal Lyapunov exponent is estimated to quantify the orbital instability
of the chaotic LD. We describe how to estimate the maximal Lyapunov exponent by linear stability
analysis [30–32]. When we estimate the Lyapunov exponent of LD2, the small variations δA2(t), δφ2(t)
and δn2(t) of the dynamic variables of Equations (4)–(6) from the reference orbit, respectively written
as As2(t), (ωs2(t)− ω)t and ns2(t), are considered. Since LD2 is the optical injection system, δA2(t),
δφ2(t), and δn2(t) for LD2 satisfy 

dδA2(t)
dt

dδφ2(t)
dt

dδn2(t)
dt


= Jinj


δA2(t)

δφ2(t)

δn2(t)

 . (10)

Here, Jinj is the Jacobian matrix of order 3× 3, and is given in the Appendix A. In this work, the time
delay terms, A1(t− τinj) and φ1(t− τinj), are dealt with as external parameters since these parameters
are not the dynamic variables of LD2 but those of LD1; in other words, the dynamics of LD2 is
approximated using only three variables of LD2. On the other hand, when we estimate the Lyapunov
exponent of LD0, since LD0 is the optical feedback system, the small variations δA0(t), δφ0(t), δn0(t),
A0(t− τfb) and φ0(t− τfb) of Equations (7)–(9) from the reference orbit, respectively written as As0(t),
(ωs0(t)−ω)t, ns0(t), As0(t− τfb) and (ωs0(t− τfb)−ω)(t− τfb), are considered. Then, δA0(t), δφ0(t),
δn0(t), δA0(t− τfb) and δφ0(t− τfb) satisfy



dδA0(t)
dt

dδφ0(t)
dt

dδn0(t)
dt


= Jfb



δA0(t)

δφ0(t)

δn0(t)

δA0(t− τfb)

δφ0(t− τfb)


, (11)

where Jfb is the Jacobian matrix of order 3× 5, and is given in the Appendix A. These equations
are calculated numerically using the Runge–Kutta method, where the step size is 1 ps, and the

norm Dj =

√
∑t

(
δ2

Ai(t) + δ2
φi(t) + δ2

ni(t)
)

(i = 0, 2 j = 1, 2, 3, · · · ) is calculated by the method in

Refs. [33,34]. The subscript j indicates the time section [(j− 1)τ, jτ) and the term in the square root is
the summation in the range of [(j− 1)τ, jτ), where τ indicates the injection time τinj for LD2 or the
feedback time τfb for LD0. Since the norm between the chaotic orbit and the reference orbit is gradually
large and the local approximation can not be used, we initialize and replace the small variation δAi(jτ),
δφi(jτ) and δni(jτ) with δAi(jτ)/Dj, δφi(jτ)/Dj and δni(jτ)/Dj, respectively, at intervals of τ. The rate
of increase in the norm is considered and the Lyapunov exponent is represented by

λLSA =
1

Nτ

N

∑
j=1

ln
Dj+1

Dj
. (12)

We use the discrete optical outputs Ai(t), φi(t) and ni(t) (i = 0, 1, 2), which are sampled
at intervals of 10 ps over 5 µs. Here, to show the robustness of λLSA against initial conditions,
we investigate λLSA plotted against length of time series for the calculation of λLSA . We consider the
LD used in the figure of Section 3.2, which has the parameters rinj = 0.06 and rfb = 0.10 as a typical
example, and show the mean of λLSA in Figure 2. The error bars represent the standard deviations.
The number of this population is a thousand and the initial value of A2(t) are given randomly in the
range of [0.9× A2(0), 1.1× A2(0)]. As the length increases, λLSA converges and the standard deviation
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sufficiently becomes small; for example, the standard deviation for 5 µs is 0.025. In this work, we adopt
5 µs as the length of time series, and the results shown in the following figures are not means but
values which are obtained by a single calculation. Then, in the following numerical simulations, some
λLSA diverge when A2 → 0 or A0 → 0 and are not shown in the following figures.

Figure 2. Mean of Lyapunov exponent plotted against length of time series for numerical simulation.
The error bars represent standard deviations.

3. Orbital Instability of Chaotic Laser Diode with Chaotic Applied Signal

3.1. Mean and Standard Deviation of Applied Signal

In this section, we investigate the orbital instability of LD2 by applying a chaotic signal to the
drive current of LD1. The chaotic signal is normalized to a value of [0, 1] using the parameter a in
Equation (3). The Lyapunov exponent λLSA is plotted against the optical injection ratio rinj in Figure 3.
In Figure 3a, the black circles and red squares indicate λLSA of LD2 without any applied signal and
with an applied chaotic signal for g = 5.0 and rfb = 0.05, respectively. The mean and standard
deviation of the applied chaotic signal are 0.113 and 0.080, respectively. The gray plots are the extrema
of the intensity of LD2 without any applied signal, which shows the bifurcation diagram. When LD2
has no applied signal, for small rinj, LD2 oscillates stably or periodically and the corresponding λLSA
is nonpositive. With increasing rinj, the intensity of LD2 has a large number of extrema and the
dynamics are chaotic, with positive λLSA. Then, a large window is observed between the chaotic
states around rinj ∼ 0.10 and small windows are observed for some other rinj, where LD2 oscillates
periodically and the corresponding λLSA is nonpositive. However, chaotic dynamics appear upon
applying a chaotic signal to the drive current of LD1, and λLSA > 0, as shown by the red squares in
Figure 3a. This phenomenon is similar to that observed when by applying a pseudorandom signal
in Ref. [24]. In addition, it seems that the red squares in Figure 3a shift slightly away from the black
circles in the negative direction of rinj.

Next, we consider the applications of a pseudorandom signal with a mean of 0.113 and standard
deviation of 0.080, which are the same values as those of the applied chaotic signal, and DC with
C(t) = 0.113. In Figure 3a, the blue diamonds and purple triangles indicate λLSA of LD2 with the
pseudorandom signal and with the applied DC, respectively. Since the mean of the drive current
increases by the applied signal for both plots, the chaotic dynamics of the injection system are enhanced
and the plots are shifted away from the black circles in the negative direction of rinj. When the applied
signal is a DC but not a pseudorandom signal, windows are observed.
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In Figure 4, we confirm that the distribution of λLSA is shifted away from the intrinsic distribution
in the negative direction of rinj by applying a signal to the drive current of LD1, which is a DC and
pseudorandom signal with a standard deviation of 0.10 in Figure 4a,b, respectively. The black circles,
red squares, blue diamonds, and purple triangles indicate g · C(t) = 0, 0.10, 0.50 and 1.00, respectively.
The gray plots show the bifurcation diagram for the intrinsic system without the applied signal.
With increasing applied signal, the shift of the plots increases. Thus, the orbital instability is sensitive
to the mean of the applied signal for the DC or pseudorandom signal.

However, the orbital instability is not always sensitive to the mean of the applied signal for
a chaotic signal. In Figure 3b, we show λLSA for the system with the chaotic applied signal of rfb = 0.20,
where the mean and standard deviation of the signal are 0.108 and 0.102, respectively. The black circles,
red squares, blue diamonds, and purple triangles indicate the injection system without any applied
signal, with the chaotic signal, with the pseudorandom signal with a mean of 0.108, and standard
deviation of 0.102, and with DC with a mean of 0.108, respectively. The plots for the system with
the applied pseudorandom signal and the applied DC are shifted away from the black circles in the
negative direction of rinj. Since the mean of the applied signal is larger than that in Figure 3a, the shift
of the plots is larger. On the other hand, when the chaotic signal is applied, the plots are shifted
away from the black circles in the positive direction of rinj. Therefore, it is considered that the factor
contributing to the enhanced orbital instability is not the mean or standard deviation but another factor.

(a)

(b)

Figure 3. Bifurcation diagram and Lyapunov exponent plotted against injection ratio when
(a) rfb = 0.05 and (b) rfb = 0.20. The black circles, red squares, blue diamonds, and purple triangles
indicate the system without the applied signal, with the applied chaotic signal, with the pseudorandom
signal, and with applied DC, respectively. The gray plots are the local maximal values of the intensity
of LD2 without the applied signal.
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(a)

(b)

Figure 4. Bifurcation diagram and Lyapunov exponent plotted against injection ratio with (a) applied
DC and (b) applied pseudorandom signal. The black circles, red squares, blue diamonds, and purple
triangles indicate g · C(t) = 0, 0.10, 0.50 and 1.00, respectively. The gray plots are the local maximal
values of the intensity of LD2 without the applied signal.

3.2. Optical Feedback Ratio and Optical Injection Ratio

Here, to consider the effect of the applied chaotic signal, we show the orbital instability of the
system with the applied chaotic signal as a function of the optical feedback ratio rfb of LD0 and the
optical injection ratio rinj from LD1 to LD2. Figure 5 shows λLSA plotted against rfb and rinj. According
to the previous discussion, the mean of the applied signal may contribute to the orbital instability of
LD2. Thus, all the applied signals in this subsection are normalized by the parameter a in Equation (3),
and the mean of the applied signal is fixed as g · C(t) = 0.5 and 5.0, shown in Figure 5a,b, respectively.
When the amplitude of the applied chaotic signal is small, rfb makes a small contribution to λLSA for
small rinj (Figure 5a). With increasing rinj, when rfb is large, λLSA increases gradually. For larger rfb,
λLSA has a peak around rinj ∼ 0.14. On the other hand, when the amplitude of the applied chaotic
signal is large, rfb makes a larger contribution to λLSA (Figure 5b) than that in Figure 5a. The window
around rinj ∼ 0.10, which is observed in the inherent system without the applied signal, is not observed,
the peak around rinj ∼ 0.05 is shifted in the positive direction of rinj and the peak around rinj ∼ 0.14
gradually becomes large.



Photonics 2020, 7, 25 8 of 15

Figure 5c shows the maximal value of λLSA in the range of 0 < rinj ≤ 0.20 and the corresponding
optical injection ratio r′inj plotted against rfb for g · C(t) = 0.5. When rfb ≤ 0.04, λLSA has the maximal
value at r′inj ∼ 0.058. On the other hand, when rfb ≥ 0.04, λLSA depends on rfb, and 0.10 ≤ r′inj ≤ 0.15,
where the window is observed in the inherent system without the applied signal. Similarly, we shows
the maximal value of λLSA in the range of 0 < rinj ≤ 0.20 and the corresponding optical injection ratio
r′inj plotted against rfb for g · C(t) = 5.0. When rfb ≤ 0.03, λLSA has the maximal value at r′inj ∼ 0.037.
Then, the maximal value of λLSA depends on rfb. Since the maximal value of λLSA gradually increases
and saturates with increasing rfb, it is controlled by rfb of the applied chaotic signal. In the next section,
we discuss some quantities of the applied signal to study the conditions of the applied signal that
cause large orbital instability of LD2.

(a)

(b)

(c)

(d)

Figure 5. Lyapunov exponent of the system with the applied chaotic signal as a function of the feedback
ratio of LD0 and the injection ratio from LD1 to LD2 when (a) g · C(t) = 0.5 and (b) g · C(t) = 5.0,
and maximal value of Lyapunov exponent in the range of 0 < rinj ≤ 0.20 and corresponding optical
injection ratio r′inj as a function of rfb when (c) g · C(t) = 0.5 and (d) g · C(t) = 5.0.

4. Orbital Instability against Statistical and Dynamical Quantities of Applied Signal

First, we study the applied chaotic signal, which is generated by LD0 with optical feedback.
Figure 6 shows the extrema of the intensity of LD0 and the Lyapunov exponent λLSA plotted against
the optical feedback ratio rfb. Different symbols are used for different ranges of rfb, that is, purple
down-pointing triangles, blue up-pointing triangles, green diamonds, orange squares, and red circles
indicate λLSA for 0 < rfb ≤ 0.040, 0.040 < rfb ≤ 0.080, 0.080 < rfb ≤ 0.120, 0.120 < rfb ≤ 0.160 and
0.160 < rfb ≤ 0.200, respectively. In the range of 0 < rfb ≤ 0.040, the fluctuation of the intensity is
small and λLSA is small. With increasing rfb, λLSA inceases for 0.040 < rfb ≤ 0.120 and gradually
decreases for 0.120 < rfb.
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Figure 6. Bifurcation diagram and Lyapunov exponent of LD0. Purple down-pointing triangles, blue
up-pointing triangles, green diamonds, orange squares, and red circles indicate λLSA for 0 < rfb ≤ 0.040,
0.040 < rfb ≤ 0.080, 0.080 < rfb ≤ 0.120, 0.120 < rfb ≤ 0.160 and 0.160 < rfb ≤ 0.200, respectively. The
gray plots are the local maximal values of the intensity of LD0.

Next, we study the orbital instability of LD2 with the applied chaotic signal for statistical and
dynamical quantities of the applied chaotic signal to show the characteristics of the applied chaotic
signal that can control the orbital instability of LD2. The maximal values of λLSA of LD2 in the
range of 0 < rinj ≤ 0.20 for certain rfb of LD0 are calculated and plotted against the standard
deviation, skewness, kurtosis, Lyapunov exponent, bandwidth, and mode of the histogram of LD0
in Figure 7. The symbols correspond to those in Figure 6. In the range where the orbital instability
of the applied signal is small (0 < rfb ≤ 0.040), the maximal value of λLSA does not vary with rfb
(purple down-pointing triangles in Figure 7). We then consider the range of 0.040 < rfb ≤ 0.200
where the orbital instability of the applied chaotic signal is sufficiently large. The correlation between
the maximal value of λLSA and the standard deviation of the applied signal is low in Figure 7a. On
the other hand, in Figure 7b–d, the maximal value of λLSA is nonlinear with the skewness, kurtosis,
and Lyapunov exponent of the applied signal in the range of 0.040 < rfb ≤ 0.200, respectively. The plots
for 0.040 < rfb ≤ 0.160 and 0.160 < rfb ≤ 0.200 have different gradients: thus, it is difficult to identify
λLSA from the statistical quantities. However, in Figure 7e–f, the maximal value of λLSA is linear to
the bandwidth and mode of the histogram of the applied signal in the range of 0.040 < rfb ≤ 0.200.
Therefore, we can identify λLSA from these quantities. Since the large bandwidth and small mode of
the histogram of the applied signal contribute to the large Lyapunov exponent, the orbital instability
of LD2 can be enhanced by applying a chaotic pulsation having a broad bandwidth.
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(a) (b)

(c) (d)

(e) (f)

Figure 7. Maximal value of Lyapunov exponent in the range of 0 < rinj ≤ 0.20 plotted against
(a) standard deviation, (b) skewness, (c) kurtosis, (d) Lyapunov exponent, (e) bandwidth, and (f) mode
of histogram of LD0.

Next, we discuss the shift of the maximal value of λLSA upon applying the chaotic signal in
Figure 5. We consider the optical injection ratio r′inj0, which is r′inj for the inherent system without
the applied signal, and introduce the difference ∆r = r′inj − r′inj0. Figure 8 shows ∆r plotted against
statistical and dynamical quantities of the applied chaotic signal, that is, the standard deviation,
skewness, kurtosis, Lyapunov exponent, bandwidth, and mode of the histogram of LD0 as in Figure 7.
In the range where the orbital instability of the applied signal is small (0 < rfb ≤ 0.040), ∆r is small for
most plots. However, in the range of 0 < rfb ≤ 0.010, the orbital instability of LD2 is reduced since LD0
oscillates periodically or quasi-periodically. Since an additional optical injection is needed to obtain
similar orbital instability, ∆r becomes large. In the range of 0.040 < rfb ≤ 0.160, the orbital instability
of LD2 is enhanced in the range of 0.09 / rinj / 0.13, where a window can be observed in the inherent
system, and the plots are concentrated around ∆r ∼ 0.07.

The correlation between ∆r and the standard deviation, skewness and kurtosis of the applied
signal is low in Figure 8a–c, respectively. In Figure 8e,f, ∆r is nonlinear to the bandwidth and mode
of the histogram of the applied signal in the range of 0.040 < rfb ≤ 0.200, respectively. The plots for
0.040 < rfb ≤ 0.160 and 0.160 < rfb ≤ 0.200 have different gradients. On the other hand, ∆r seems to
depend on the Lyapunov exponent of the applied signal in the range of 0.040 < rfb ≤ 0.200 (Figure 8d).
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(a) (b)

(c) (d)

(e) (f)

Figure 8. Optical injection ratio where the Lyapunov exponent is maximum in the range of
0 < rinj ≤ 0.20 plotted against (a) standard deviation, (b) skewness, (c) kurtosis, (d) Lyapunov exponent,
(e) bandwidth, and (f) mode of histogram of LD0.

Finally, we discuss the chaos synchronization between LDs. For example, we assume the
application of the present system to chaotic secure communication that is a digital scheme by using
a difference of the orbital instability of chaotic LD [18]. The scheme is hardware-dependent, where the
key to communication is based on the parameter of the LD system. LD1 and LD2 act as the transmitter
and receiver LDs, respectively. Then, LD0 is the driver used to control the dynamics of LD1 and the
message is modulated by LD0 and applied to LD1. The orbital instability of LD2 is controlled by
LD0 through LD1 and corresponds to the digit. The proper receiver quantifies from only the optical
intensity of LD2 at a certain interval, for example, using the method in Ref. [32], and compares the
quantified orbital instability with the predetermined threshold to decide the digit. Since the dynamics
of LD2 are decided by the parameters of three LDs, it is difficult for eavesdroppers to decode the digit
with only the transmitting signal. However, if LD2 synchronizes with the other LDs, the eavesdropper
can estimate the digit from the transmitting signal. Thus, we investigate the chaos synchronization
between LD2 and the other LDs. In Figure 9, we calculate the correlation coefficient between the LDs
plotted against rfb and rinj to quantify the chaos synchronization. Figure 9a,b show the correlation
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coefficients between LD0 and LD2 and between LD1 and LD2, respectively. The correlation coefficient
is expressed as

ρi2 = max
∆t

〈
(Ii(t)− 〈Ii〉)(I2(t + ∆t)− 〈I2〉)

〉√〈
(Ii(t)− 〈Ii〉)2

〉〈
(I2(t + ∆t)− 〈I2〉)2

〉 , (13)

where Ii and I2 indicate the optical outputs of LDi (i = 0, 1) and LD2, respectively, and 〈·〉 indicates the
ensemble average. The roundtrip time of the external cavity τfb and the trip time of the injection light
from LD1 to LD2 τinj, have the same value, and the correlation coefficient is calculated in the range
−10τfb ≤ ∆t ≤ 10τfb. Figure 9c,d show the maximal value of ρ02 and ρ12 in the range of 0 < rinj ≤ 0.20
and the corresponding optical injection ratio r′′inj plotted against rfb. In Figure 9a,c, the correlation
coefficient ρ02 between LD0 and LD2 is small in the entire range and the maximum is 0.11, showing
that LD2 does not synchronize with LD0. On the other hand, as shown in Figure 9b,d, the correlation
coefficient ρ12 between LD1 and LD2 is larger than that in Figure 9a. For all rfb, the correlation
coefficient is small in the range of rinj ≤ 0.05. With increasing rinj, the correlation coefficient becomes
larger since the orbital instability of LD2 is enhanced (rinj ∼ 0.05). With further increase of rinj,
the correlation coefficient becomes small again in the range of rinj ≥ 0.10, where a window can be
observed in the inherent system. Since the maximal correlation coefficient between LD1 and LD2 is
0.40, chaos synchronization between LD1 and LD2 is not achieved. Therefore, it is concluded that the
orbital instability of LD2 can be controlled by varying the parameters of LD0, which generates the
applied chaotic signal, without chaos synchronization between the LDs.

(a)

(b)

0

0.1

0.2

0.3

0.4

(c)

(d)

Ρ02

Figure 9. Correlation coefficient as a function of the feedback ratio of LD0 and the injection ratio from
LD1 to LD2: (a) between LD0 and LD2 and (b) between LD1 and LD2, and maximal value of correlation
coefficient in the range of 0 < rinj ≤ 0.20 and corresponding optical injection ratio r′′inj as a function of
rfb: (c) between LD0 and LD2 and (d) between LD1 and LD2.
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5. Conclusions

We numerically studied the orbital instability of a chaotic laser diode (LD) system with optical
injection, which consists of the master LD (LD1) and slave LD (LD2). The drive current of LD1 is
modulated by the chaotic applied signal, which is generated by LD0 with optical feedback. First,
we showed that chaotic behavior in the window is actualized by applying the chaotic signal as well as
a pseudorandom signal. The optical injection ratio required to oscillate LD2 chaotically is decreased by
applying the pseudorandom signal or DC but increased by applying the chaotic signal.

Next, we investigated the maximal value of the Lyapunov exponent of LD2 in the range of
0 < rinj ≤ 0.20 as a function of the optical feedback ratio of LD0 and the optical injection ratio from
LD1 to LD2. When the amplitude of the applied chaotic signal is sufficiently large and the inherent
system without the applied chaotic signal is in the window, the Lyapunov exponent of LD2 can be
controlled by varying the optical feedback ratio of LD0.

Then, we discussed the effect of statistical and dynamical quantities of the applied chaotic
signal on the orbital instability of LD2. The bandwidth and mode of the histogram of the applied
chaotic signal are linear to the maximal value of the Lyapunov exponent of LD2. It was shown that
the orbital instability of LD2 can be enhanced efficiently by applying a chaotic pulsation having
a broad bandwidth.

Finally, we investigate the chaos synchronization between LDs. The LDs do not synchronize with
each other. It was shown that the orbital instability of the chaotic LD can be controlled without chaos
synchronization. Since it is difficult to estimate the dynamics of LD0 from the optical intensity of LD1,
the characteristics is useful to the application of chaotic LD like a secure communication.
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Appendix A. Jacobian Matrix

The Jacobian matrix on the right side of Equation (10) is defined as

Jinj =



∂ fA2

∂A2

∂ fA2

∂φ2

∂ fA2

∂n2

∂ fφ2

∂A2

∂ fφ2

∂φ2

∂ fφ2

∂n2

∂ fn2

∂A2

∂ fn2

∂φ2

∂ fn2

∂n2


, (A1)

where fA2, fφ2, and fn2 indicate the function for the right side of Equations (4)–(5), respectively. Then,
the matrix used in our work described by

Jinj =


1
2

GNn2(t) −κinj A1(t− τinj)Sinj(t)
1
2

GN A2(t)

κinj
A1(t− τinj)

A2
2(t)

Sinj(t) −κinj
A1(t− τinj)

A2(t)
Cinj(t)

1
2

αGN

−2[Γ + GNn2(t)]A2(t) 0 −γ− GN A2
2(t)

 . (A2)
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Here, Sinj(t) = sin[ωτinj + φ2(t)− φ1(t− τinj)] and Cinj(t) = cos[ωτinj + φ2(t)− φ1(t− τinj)]. Similarly,
since the matrix on the right side of Equation (11) is defined as

Jfb =



∂ fA0

∂A0

∂ fA0

∂φ0

∂ fA0

∂n0

∂ fA0

∂Afb

∂ fA0

∂φfb

∂ fφ0

∂A0

∂ fφ0

∂φ0

∂ fφ0

∂n0

∂ fφ0

∂Afb

∂ fφ0

∂φfb

∂ fn0

∂A0

∂ fn0

∂φ0

∂ fn0

∂n0

∂ fn0

∂Afb

∂ fn0

∂φfb


, (A3)

where fA0, fφ0 and fn0 indicate the function for the right side of Equations (7)–(9), respectively,
the matrix used in our work described by

Jfb =

1
2

GNn0(t) −κfb A0(t− τfb)Sfb(t)
1
2

GN A0(t) κfbCfb(t) κfb A0(t− τfb)Sfb(t)

κfb
A0(t− τfb)

A2
0(t)

Sfb(t) −κfb
A0(t− τfb)

A0(t)
Cfb(t)

1
2

αGN − κfb

A0(t)
Sfb(t) κfb

A0(t− τfb)

A0(t)
Cfb(t)

−2[Γ + GNn0(t)]A0(t) 0 −γ− GN A2
0(t) 0 0


. (A4)

Here, Sfb(t) = sin[ωτfb + φ0(t)− φ0(t− τfb)] and Cfb(t) = cos[ωτfb + φ0(t)− φ0(t− τfb)].
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