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Abstract: The rate equations for two delay-coupled quantum cascade lasers are investigated
analytically in the limit of weak coupling and small frequency detuning. We mathematically derive
two coupled Adler delay differential equations for the phases of the two electrical fields and show
that these equations are no longer valid if the ratio of the two pump parameters is below a critical
power of the coupling constant. We analyze this particular case and derive new equations for a
single optically injected laser where the delay is no longer present in the arguments of the dependent
variables. Our analysis is motivated by the observations of Bogris et al. (IEEE J. Sel. Top. Quant.
El. 23, 1500107 (2017)), who found better sensing performance using two coupled quantum cascade
lasers when one laser was operating close to the threshold.

Keywords: two delay-coupled lasers; weak coupling limit; optically injected laser

1. Introduction

Compact quantum cascade lasers (QCLs) emitting in the midwave infrared (mid-IR) are the
leading semiconductor laser sources for such applications as absorption spectroscopy in the molecular
fingerprint region [1,2]. Mid-IR spectroscopy has led to new applications in biology and medicine
such as breath analysis, the investigation of serum, noninvasive glucose monitoring in bulk tissue, and
the combination of spectroscopy and microscopy of tissue thin sections for rapid histopathology [3].
Other applications include environmental sensing and pollution monitoring, industrial process control,
and security [4,5].

Recently, a novel gas sensor relying on a pair of mutually injecting QCLs has been analyzed
both experimentally and numerically [6–8]. The sensing performances of the coupled QCLs have
been examined in terms of the injection power, bias currents of the lasers, and their spectral detuning.
High sensitivity is observed if one of the two lasers is biased around the threshold. The main objective
of this paper is to explain these observations by analyzing the rate equations appropriate for two
coupled QCLs. As we shall demonstrate, allowing one laser to operate close to its threshold contributes
to larger domains of stable phase locked states. Physically, the transient response of the intensity of
one laser slows down near its threshold, while the intensity of the second laser is keeping its fast
time scale. Consequently, the fast laser quickly approaches a quasi-steady state regime, and the long
time dynamics of the laser system is controlled by the slow laser. In other words, the coupled QCLs
is becoming an injected laser problem where the fast and slow lasers are acting as master and slave,
respectively. In a different setting, two coupled QCL cavities separated by a gap of 3 µm were studied
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as a monolithic integrated photodetector [9]. An integrated detector is used for spatial sensing of the
light intensity, and its control is again achieved by changing the applied bias.

The dynamics of two mutually delay-coupled semiconductor lasers (SLs), in a face-to-face
configuration, has been a topic of active research [10–14]. The time delay results from the finite
propagation time of the light from one laser to the other one. Of primary interest are the conditions
for stable locking, and systematic studies have been undertaken in order to explore the effects of
key parameters. These led to striking comparisons between experimental and numerical bifurcation
diagrams [15–21]. Most often, the time delay is relatively large compared to the photon lifetime (21 to a
51 mm gap between the lasers) [16–18]. However, systems of two coupled lasers in photonic integrated
circuits have recently been investigated (1–2 mm gap) [11,12]. They revive previous theoretical
investigations of the short coupling regime [22].

In a different optical setting, two laterally coupled semiconductor lasers (no delay) also raised the
interest of researchers for the presence of exceptional points (EPs) in parameter space [23–25]. An EP is
a point where two (or more) eigenvalues simultaneously coalesce. One key difference between EPs
and conventional degeneracies is their higher sensitivity to perturbations. This particular property of
EPs has been proposed for use in sensor applications [26,27].

QCLs, based on intersubband transitions in semiconductor quantum wells, are characterized
by ultrafast (picosecond) carrier lifetimes. An important consequence of this unique property is the
absence of relaxation oscillations (RO) in the transient response of these devices. For conventional
interband diode lasers (IDLs), the ROs are generating undesirable intensity oscillations for quite low
feedback amplitudes. By contrast, dynamical instabilities for QCLs are only possible if the delayed
feedback is strong enough [28,29].

For two coupled lasers operating at close, but distinct optical frequencies, the desired regime is
when the lasers operate in a continuous wave (CW) with their frequency and phase mutually locked.
They are called one color states [30] or compound laser modes (CLMs) [19,22]. To the best of our
knowledge, phase locked states of two delay-coupled SLs have been investigated theoretically with equal or
nearly equal pump parameters. However, the individual laser pump rates are experimentally controlled
variables, and the effects of unequal pumps have been studied for two SLs without delays [23–27,31].

The organization of the paper is as follows. Section 2 introduces the rate equations for two coupled
QCLs, as well as their asymptotic approximation, valid in the limit of weak coupling, weak frequency
detuning, and arbitrary pump parameters. It consists of two delay coupled Adler equations for
the phases of the fields. The CLMs are then investigated in Section 3 in terms of their frequencies.
As functions of the detuning, these frequencies appear as close orbits in the bifurcation diagram. As the
pump parameter of one laser comes close to threshold (P2 → 0), these orbits overlap progressively
larger domains of detuning. In Section 4, the limit P2/P1 → 0 is analyzed in detail taking into account
that our problem now depends on two small parameters, namely P2/P1 and the small coupling rate.
A new asymptotic analysis of the original laser equations is performed and leads to equations for
an optically injected single mode laser where the delay no longer appears in the arguments of the
dependent variables. The stability of the locked states is then analyzed. If one laser is operating slightly
below the threshold, as in the experiments in [7], the locked state is always stable. Last, we discuss in
Section 5 the impact of our results for conventional IDL lasers.

2. Dimensionless Equations

The response of a QCL subject to a delayed feedback is analyzed using rate equations formulated
in [32–34] on the basis of a three level model. In [28], it was shown that these equations for a QCL
subject to delayed optical feedback can be reduced to the classical Lang and Kobayashi (LK) equations
derived for IDLs. The LK equations consist of the rate equations for a conventional SL supplemented
by a term describing the optical feedback of the electrical field. Two key parameters control the
dynamical stability of the laser, namely the ratio of the carrier to photon lifetimes T and the linewidth
enhancement factor α. For a QCL, T is typically an O(1) quantity compared to the large O(103) value of
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an IDL. Moreover, α = 0− 1 for a QCL is relatively small compared to the IDL α = 2.5− 3.5. These two
essential properties of a QCL explain the observed high tolerance with respect to optical feedback.
Mathematically, we therefore consider two coupled LK equations as the rate equations for two QCLs
coupled face-to-face. We use the formulation detailed in [19]. Specifically, the evolution equations are
in terms of the optical fields Ejopt = Rj exp(iφj + iωjt) where ωj is the optical angular frequency of
laser j and the carrier densities Nj (j = 1, 2). Introducing the frequency detuning ∆ = ω2 −ω1 and the
averaged frequency ω = (ω1 + ω2)/2, φ1 = ∆t/2 + Φ1, and φ2 = −∆t/2 + Φ2, it is mathematically
convenient to reformulate the two fields as:

E1opt = R1 exp(i
∆t
2

+ iΦ1 + iω1t) = R1 exp(iΦ1 + iωt), (1)

E2opt = R2 exp(−i
∆t
2

+ iΦ2 + iω2t) = R2 exp(iΦ2 + iωt). (2)

The rate equations for the amplitudes Rj, phases Φj, and densities Nj are then given by [31]

R′1 = N1R1 + εR2(t− τ) cos(θ + Φ2(t− τ)−Φ1 − C), (3)

Φ′1 = −∆
2
+ αN1 + ε

R2(t− τ)

R1
sin(θ + Φ2(t− τ)−Φ1 − C), (4)

TN′1 = P1 − N1 − (1 + 2N1)R2
1, (5)

R′2 = N2R2 + εR1(t− τ) cos(θ + Φ1(t− τ)−Φ2 − C), (6)

Φ′2 =
∆
2
+ αN2 + ε

R1(t− τ)

R2
sin(θ + Φ1(t− τ)−Φ2 − C), (7)

TN′2 = P2 − N2 − (1 + 2N2)R2
2. (8)

In these equations, time t is measured in units of the photon lifetime τp ∼ 10−11s. Prime means
differentiation with respect to t. P1 = O(1) and P2 = O(1) are the pump parameters measuring the
amount of electrical current used to activate the individual lasers. The complex mutual coupling is
accounted for by ε exp(iθ). τ and C ≡ ωτ represent the delay time and the (mean) induced phase,
respectively. The distance L between the lasers is a few centimeters, which then implies that the delay
τ ≡ (L/c)/τp, where c is the speed of light, is around 10. From Equation (3) with R1 = O(1) and
R2 = O(1), we note that N1 needs to be an O(ε) small quantity in order to balance the first two terms in the
right hand side of Equation (3). Similarly, balancing all three terms in the right hand side of Equation (4)
requires that the detuning |∆| is small like ε. The same conclusions apply for Equations (6) and (7).

We analyze Equations (3)–(8) assuming weak coupling (ε << 1) and small detuning (∆ = O(ε)).
The analysis leads to the following two coupled Adler delay differential equations for the phase of the
electrical fields (see Section 1 of the Supplementary File):

dΦ1

dt
= −∆

2
+ ε

√
P2

P1
(1 + α2) sin(θ0 + Φ2(t− τ)−Φ1), (9)

dΦ2

dt
=

∆
2
+ ε

√
P1

P2
(1 + α2) sin(θ0 + Φ1(t− τ)−Φ2) (10)

where
θ0 ≡ θ − C− arctan(α). (11)

These equations were formulated in [8], using the theory developed in [31] for the zero delay
case. They were also the starting point of the investigations in [35]. We mathematically rederived those
equations in a more systematic way by using an asymptotic method where ∆ is scaled with respect to
ε. This analysis is necessary as we later consider the case of one laser operating close to its threshold
for which Equations (9) and (10) are no longer valid.
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Equations (9) and (10) with P1 = P2 and θ0 = 0 have been studied in detail [15,36,37].
Particular attention has been devoted to (1) constant phase solutions (Φ1, Φ2) = (0, σ) [36],
(2) compound laser modes (Φ1, Φ2) = (ωt, ωt + σ) [19,36], and (3) time-periodic unbounded solutions
(Φ1, Φ2) = (C/2 + Φ(t),−C/2 + Φ(t)) with < dΦ/dt >= cst [15].

It is worthwhile to briefly review the case of zero delay, which was analyzed in detail [38–40]
since the pioneering work of Winful and Wang [41], who considered the case of zero detuning (∆ = 0),
equal pumps (P1 = P2), coupling phase θ = π/2, and -α replacing α in Equations (4) and (7). If τ = 0,
Equations (9) and (10) can be combined into a single equation for σ ≡ Φ2 −Φ1 given by:

dσ

dt
= ∆ + ε

√
1 + α2

[√
P1

P2
sin(θ0 − σ)−

√
P2

P1
sin(θ0 + σ)

]
. (12)

The steady states are the phase locked states. They are shown in Figure 1 for equal and non-equal
pump values. We observe that the size of the locking domain increases as one of the pumps comes
closer to its threshold, a feature for which we again see if the delay is not zero.
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Figure 1. Frequency-locked states in the case of zero delay. σ = Φ2 −Φ1 is shown as a function of ∆
(−π < Φ < π). Full and broken lines correspond to stable and unstable branches. θ0 = π/4, ε = 0.02,
α = 1, P1 = 1, and the value of P2 is indicated in the figure.

3. Compound Laser Modes

The compound laser modes or CLMs are the basic solutions of our problem. They are the solutions
of Equations (9) and (10) of the form:

Φ1 = ωt, Φ2 = ωt + σ. (13)

From Equations (1) and (2), we understand that after coupling, the optical frequency ωop is given by:

ωop = ω + ω. (14)

Inserting Equation (13) into Equations (9) and (10) leads to two equations for ω and σ given by:

ω = −∆
2
+ ε

√
P2

P1
(1 + α2) sin(θ0 −ωτ + σ), (15)

ω =
∆
2
+ ε

√
P1

P2
(1 + α2) sin(θ0 −ωτ − σ). (16)
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Expanding the trigonometric functions, Equations (15) and (16) are rewritten as:(
ω +

∆
2

)
1

ε
√

P2
P1
(1 + α2)

=

(
sin(θ0 −ωτ) cos(σ)
+ cos(θ0 −ωτ) sin(σ)

)
, (17)

(
ω− ∆

2

)
1

ε
√

P1
P2
(1 + α2)

=

(
sin(θ0 −ωτ) cos(σ)
− cos(θ0 −ωτ) sin(σ)

)
. (18)

From Equations (17) and (18), we determine cos(σ) and sin(σ):

cos(σ) =
1

2 sin(θ0 −ωτ)ε
√
(1 + α2)

 (
ω + ∆

2

)√
P1
P2

+
(

ω− ∆
2

)√
P2
P1

 , (19)

sin(σ) =
1

2 cos(θ0 −ωτ)ε
√
(1 + α2)

 (
ω + ∆

2

)√
P1
P2

−
(

ω− ∆
2

)√
P2
P1

 . (20)

3.1. Equal Pumps

Before we consider the effect of unequal pump parameters, it is worthwhile to first analyze the
case of equal pumps. The expression Equations (19) and (20) are considerably simplified as:

cos(σ) =
ω

sin(θ0 −ωτ)ε
√
(1 + α2)

, (21)

sin(σ) =
∆

2 cos(θ0 −ωτ)ε
√
(1 + α2)

(22)

and provide a solution in parametric form. We first extract σ = σ(ω) from Equation (21):

σ = arccos

(
ω

sin(θ0 −ωτ)ε
√
(1 + α2)

)
(23)

and then compute ∆ = ∆(ω) using Equation (22):

∆ = 2 cos(θ0 −ωτ)ε
√
(1 + α2) sin(σ). (24)

If τ = 0, the expression Equation (24) tells us that the locking domain verifies the inequality:

|∆| ≤ 2ε
√
(1 + α2) cos(θ0). (25)

The expression Equation (25) is in agreement with Equation (36) in [31]. Figure 2 represents ωτ

and σ as functions of ∆τ. The values of the dimensionless parameters are based on the following values
of the original parameters for the photon lifetime τph, the delay τe, the feedback rate εe, and the detuning

|∆e| : τph = 7.5× 10−12s, τe = 10−10s, εe = 2.8× 109 s−1, and 0 < |∆e |
2π ≤ 109 s−1. The dimensionless

parameters are then obtained as τ ≡ τe/τph = 13.33, ε ≡ εe× τph = 0.021, and |∆| ≡ |∆e| × τph ≤ 0.047.
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Figure 2. compound laser mode (CLM) frequencies ωτ and phase difference σ for the case P1 = P2.
They are determined from the parametric solution Equations (23) and (24). The fixed parameters are
θ0 = π/4, τ = 13.33, ε = 0.021, and α = 1. The extrema of ωτ are ωτ− = −0.32 and ωτ+ = 0.22. The
extrema of ∆τ are the limit points ∆τ = ±∆τLP = ±0.58.The interval [−∆τLP, ∆τLP] is the locking
range, i.e., the detuning range where the lasers lock their frequencies.

Figure 3 shows ωτ as a function of ∆τ for different values of θ0. The different orbits are bounded
by limit points located at ∆τ = ±∆τLP. These points mark the extreme detuning values where the
two coupled lasers lock to each other. Figure 4 shows ∆τLP > 0 as a function of θ0 for the interval
0 ≤ θ0 ≤ π. ∆τLP is the largest at θ0 = 0 and π. It motivates examining the limit θ0 → 0. Figure 3 with
θ0 = 0.01 suggests that the nearly flat CLM orbit is bounded by two limit points appearing close to
ωτ = 0. Therefore, the locking condition Equation (25) evaluated at θ0 = 0 applies for this case.
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Figure 3. CLM frequencies for the case P1 = P2 and for different values of θ0 (indicated in the figure).
The fixed parameters are τ = 13.33, ε = 0.021, and α = 1. As we decrease θ0 from π/2, the double
orbits progressively change into a single orbit.
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Figure 4. The limit point ∆τLP > 0 is shown as a function of θ0. The maximum appears at θ0 = 0 and
π and is given by ∆τLP = ετ

√
1 + α2.

3.2. Unequal Pumps

We are now ready to explore the case of unequal pumps. Using Equations (19) and (20),
we eliminate the trigonometric functions of σ and obtain the following equation for ω:

1
sin2(θ0−ωτ)

 ω
(√

P1
P2

+
√

P2
P1

)
+∆

2

(√
P1
P2
−
√

P2
P1

)
2

+ 1
cos2(θ0−ωτ)

 ω
(√

P1
P2
−
√

P2
P1

)
+∆

2

(√
P1
P2

+
√

P2
P1

)
2


= 4ε2(1 + α2). (26)

Equation (26) is equivalent to a quadratic equation for ∆ given by:

∆2

4

(
F2
−C1 + F2

+C2

)
+ ∆ωF+F−(C1 + C2) + ω2(F2

+C1 + F2
−C2)− 4ε2(1 + α2) = 0 (27)

where:

F± ≡

√
P1

P2
±

√
P2

P1
, C1 ≡

1
sin2(θ0 −ωτ)

, and C2 ≡
1

cos2(θ0 −ωτ)
. (28)

We only need to explore the domain 0 ≤ θ0 ≤ π since C1 and C2 remain unchanged with −ωτ

replacing ωτ and θ1 = 2π − θ0 replacing θ0. Figure 5 illustrates the case of small values of P2/P1.

The CLM orbits are now close to the line ωτ = −∆τ/2 and are bounded by two critical values of
ωτ = ω±τ. They delimit the domain of real solutions of the quadratic Equation (27). We note that the
CLM orbit increases in size as P2/P1 → 0. An analysis of the discriminant of Equation (27) allows us to
determine ω±τ (see Section 2 of the Supplementary Materials File). They delimit the domain of real
solutions for ∆ = ∆(ω). Note that they are not the values of ωτ corresponding to the limits points
±∆τLP, but are very close if P2/P1 → 0. Figure 6 shows ω±τ as functions of P2/P1. In implicit form,
x ≡ P2/P1 = x(ωτ) satisfies the quadratic equation:

x2 + x
[
−2 cos(2(θ0 −ωτ))− 4ω2

ε2(1 + α2)

]
+ 1 = 0. (29)
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Figure 5. CLMs for small values of P2/P1. P1 = 1, and the value of P2 is indicated in the figure.
The fixed parameters are τ = 13.33, ε = 0.021, θ0 = π/4, and α = 1.
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Figure 6. The extrema ωτ± as functions of x = P2/P1 are obtained by solving the quadratic
Equation (29). Their approximations as x → 0 are given by Equation (30) (dotted red lines). The fixed
parameters are τ = 13.33, ε = 0.021, θ0 = π/4, and α = 1. The horizontal dotted lines mark the values
of ωτ− = −0.36 and ωτ+ = 0.22 at x = 1 (P1 = P2) previously documented in Figure 2.

As seen in Figure 6, |ω±τ| → ∞ as x → 0. From Equation (29) and assuming ω2 = O(x−1),
we find the limit:

ω±τ → ± ετ

2

√
(1 + α2)

P1

P2
as x → 0. (30)

The corresponding values of ∆τ are given by ∆τ± = −2ω±. Therefore, the size of the CLM orbits
satisfies the inequality:

|∆| ≤ ε

√
(1 + α2)

P1

P2
, (P2/P1 → 0) (31)

Moreover, solving the quadratic Equation (27) and then taking the limit P2/P1 → 0 lead to:

∆→ −2ω± 4P2

P1

√
4

C1C2
(ω+ −ω) (ω−ω−). (32)
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In summary, we have determined the CLMs and their limits as P2/P1 → 0. Because of the square
roots in Equation (28), the ratio P2/P1 needs to be positive. Therefore, we cannot explore the case of
Laser 2 slightly below the threshold, and a different asymptotic analysis is needed where the ratio
P2/P1 is scaled with respect to ε.

We did not analyze the stability of the CLMs for arbitrary values of the pump parameters.
However, we know that, because of the absence of relaxation oscillations, Hopf bifurcation instabilities
are possible only for large delays [28,29]. This is not the case here. In the limit P2/P1 small, we
note from Equations (9) and (10) that |Φ1| freely increases while Φ2 satisfies a single Adler equation.
In Section 3 of the Supplementary Material File, we show that a Hopf bifurcation is not possible.
Branches of CLMs are either stable or unstable, and their changes of stability occur at the limit points
∆τLP (saddle node bifurcation points).

4. The Limit of Small Ratios of the Two Pumps

In Section 4 of the Supplementary File, we examine the limit P2/P1 → 0+ and find that our
previous theory becomes invalid as soon as:

P2 = O(ε2/3). (33)

In other words, the two coupled phase Equations (9) and (10) failed to describe the correct
dynamics of the mutually injected lasers if P2 is comparable to ε2/3 or smaller. Section 4 of the
Supplementary Material File describes a new asymptotic analysis taking into account the scaling
Equation (33). We find R1 =

√
P1 and Φ1 = −∆

2 t, in the first approximation, while R2 and Φ2 ≡
Φ2 +

∆
2 t satisfy the equations for an optically injected laser:

dR2

dt
= (P2 − R2

2)R2 + ε
√

P1 cos(θ1 −Φ2), (34)

dΦ2

dt
= ∆ + α(P2 − R2

2) +
ε
√

P1

R2
sin(θ1 −Φ2) (35)

where:
θ1 ≡ θ +

∆
2

τ −ω1τ. (36)

The delay τ does not explicitly appear in the arguments of the dependent variables, but its effect
appears in the expression of θ1. Using Equations (1) and (2), the leading expressions of the optical
fields are:

E1opt =
√

P1 exp(iω1t) and E2opt = R2 exp(iω1t + Φ2). (37)

where ω1 is the optical frequency of Laser 1. The expression Equation (37) clearly indicates that Laser
1 and Laser 2 are operating as master and slave lasers, respectively. Equations (34) and (35) are the
equations of an optically injected Class A laser with parameter α [42,43].

The steady state solution for the intensity R2
2 satisfies:

(P2 − R2
2)

2R2
2 +

[
∆ + α(P2 − R2

2)
]2

R2
2 = ε2P1. (38)

From Equation (38), we extract the solution in implicit form:

∆± = −α(P2 − R2
2)±

√
F (39)

where:

F ≡ ε2P1

R2
2
− (P2 − R2

2)
2 ≥ 0. (40)

The two branches of solution ∆ = ∆±(R2
2) are shown in Figure 7.
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Figure 7. Steady state solution Equation (39). The broken straight line ∆ = −α(P2 − R2
2) delimits the

branches ∆−(R2
2) and ∆+(R2

2). The parameters are ε = 0.021, α = 1, P1 = 1, and P2 = 0.1.

From Equations (34) and (35), we determine the linearized equations for the steady state
Equation (39) and obtain the following characteristic equation for the growth rate λ:

λ2 − Aλ + B = 0 (41)

where:

A ≡ 2(P2 − 2R2
2), (42)

B ≡ (P2 − 3R2
2)(P2 − R2

2)− 2αR2
2(∆ + α(P2 − R2

2))

+(∆ + α(P2 − R2
2))

2. (43)

The stability conditions are thus given by:

B > 0 and A < 0. (44)

We next analyze these two conditions. Using Equation (39), we computed d∆±/dR2
2 and

found that:

B = ∓2R2
2

[
ε2P1

R2
2
− (P2 − R2

2)
2

]−1/2
d∆±
dR2

2
. (45)

The expression Equation (45) relates B to the slope of the steady state branches of solutions,
namely d∆±/dR2

2. B > 0 for ∆ = ∆− because d∆−/dR2
2 > 0 (see Figure 7). On the other hand, B > 0

for only parts of the branch ∆ = ∆+ ,verifying the inequality d∆+/dR2
2 < 0 (see Figure 7). The critical

points for B = 0 correspond to saddle node bifurcation points characterized by a zero eigenvalue and
a negative or positive real eigenvalue. The condition A < 0 requires that R2

2 > P2/2. The critical points
R2

2 = P2/2 are Hopf bifurcation points provided that B > 0.
Figure 8 shows typical bifurcation diagrams. Note from Equation (42) that the stability condition

A < 0 is always satisfied if P2 ≤ 0, meaning no Hopf bifurcation instabilities. Figure 9 illustrates this
case showing a complete branch of stable steady states.
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Figure 8. Top: Stability diagram in terms of the pump strength P2 and detuning ∆. The domain of a
stable steady states is delimited by two Hopf bifurcation lines. They verify the scaling law |∆H | → ∞
as P2 → 0. The region c exhibits the coexistence of three steady states. The regions denoted by U
correspond to an unstable steady state. Bottom: Bifurcation diagram for the intensity R2

2 as a function
of ∆. The parameters are ε = 0.021, α = 1, P1 = 1, and the value of P2 is indicated in the figure; H and
SNdenote Hopf bifurcation and saddle node bifurcation points, respectively.
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Figure 9. Same values of the parameters as for Figure 8 except P2 = 0.

5. Discussion

In summary, we presented a rigorous asymptotic derivation of two coupled Adler delay
differential equations in the limit of weak coupling and low detunings. This analysis was necessary in
order to evaluate their mathematical validity as the ratio P2/P1 was progressively decreased. It also
suggested an alternative theory when the coupled Adler equations failed to provide the correct
dynamics. This was the case if P2/P1 was small like ε2/3 or smaller, where ε was the coupling strength.

Particular attention was devoted to describe analytically the locking width. The latter strongly
depended on both the coupling strength and delay induced phases and increased in size as P2/P1 → 0.
For very low values of P2/P1, a new asymptotic analysis led to the equations of an optically injected
Class A laser [44]. Laser 1 and Laser 2 were acting as master and slave lasers, respectively.
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The analysis developed in this paper also applies for IDLs, but requires then taking into account
the relaxation oscillations exhibited by the solitary lasers. If we define the relaxation oscillation
frequency as ω =

√
2P1/T where T ∼ 102–103 is the ratio of the carrier to photon lifetimes, we verify

that the derivation of the two delayed Adler phase equations described in this paper remains valid
provided ω2 >> ε. A general theory is more complicated than for QCLs because we need to take into
account different scalings between three small parameters, namely ε, P2/P1, and ω. A preliminary
analysis of the limit P2/P1 → 0 indicated that the coupled laser equations reduced to the rate equations
for an optically injected Class B laser [44] provided that ω and P2/P1 verified specific scalings with
respect to ε. In future work, we plan to investigate this case in more detail.

Supplementary Materials: The following are available online at http://www.mdpi.com/2304-6732/6/4/125/s1.
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