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Abstract: This mini-review is aimed at briefly summarizing the present status of functional
near-infrared spectroscopy (fNIRS) and predicting where the technique should go in the next
decade. This mini-review quotes 33 articles on the different fNIRS basics and technical developments
and 44 reviews on the fNIRS applications published in the last eight years. The huge number of
review articles about a wide spectrum of topics in the field of cognitive and social sciences, functional
neuroimaging research, and medicine testifies to the maturity achieved by this non-invasive optical
vascular-based functional neuroimaging technique. Today, fNIRS has started to be utilized on healthy
subjects while moving freely in different naturalistic settings. Further instrumental developments
are expected to be done in the near future to fully satisfy this latter important aspect. In addition,
fNIRS procedures, including correction methods for the strong extracranial interferences, need to
be standardized before using fNIRS as a clinical tool in individual patients. New research avenues
such as interactive neurosciences, cortical activation modulated by different type of sport performance,
and cortical activation during neurofeedback training are highlighted.

Keywords: functional near-infrared spectroscopy; functional neuroimaging; optical imaging;
cortical activation

1. Introduction

Biophotonics is a bridging discipline located at a critical juncture between fundamental advances
in science/technology and biomedicine. Optical technologies have been playing an increasingly big
role in the study of living organisms—the brain, in particular. Neurophotonics is an exploding
research field that spans the intersection of light and neurons for fundamental discovery and clinical
translation [1]. Neurophotonics employs a range of optical methodologies, from microscopies to
spectroscopies, to achieve a multiscale understanding of the structure and function of normal and
diseased brains as well as the nervous system. In particular, neurophotonics has employed photons
to: (1) Interrogate the cellular processes of the nervous systems, (2) manipulate neurons to modulate
function, and (3) detect diseases for clinical diagnosis and surgical guidance. This transdisciplinary
field bridges the disciplines of optical physics, biochemistry, biomedical engineering, physiology,
neuroscience, and neurosurgery. In 2005, Tanner et al. [2] published the first article including the term
“neurophotonics” in the title. The results reported in that article were obtained by near-infrared (NIR)
spectroscopy (NIRS). The discovery of this technique, now named medical NIRS, goes back to 1977 [3],
when Frans J6bsis, Professor of Physiology at Duke University (Durham, NC, USA), reported that the
relatively high degree of transparency of brain tissue in the 650-900 nm NIR range (“optical window”),
and the characteristic hemoglobin (Hb) absorption spectra in this wavelength region enable real-time
non-invasive detection of Hb oxygenation using transillumination spectroscopy.
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In medical NIRS measurements, the source (laser or light emitting diode) and detector probes are
positioned over the scalp surface to detect the change in optical density caused by the hemodynamic
changes mainly expected in the cortical grey matter [4]. Consequently, the light needs to pass through
different extracranial and intracranial tissues (superficial layers, skull, cerebrospinal fluid, meninges,
cortical grey matter) both before and after passing through the brain. At the end, the detected emerging
NIR signal (as a result of the absorption and scattering phenomena) comes mainly from oxygenated Hb
(O,Hb) and deoxygenated Hb (HHDb) located in small vessels (<1 mm diameter). A schematic sketch
representing the NIR light travelling through the different intracranial tissues is reported in Figure 1.

Light source Optical detector
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Figure 1. Schematic representation of the optical region of sensitivity (banana-shaped shaded area) in
non-invasive near-infrared (NIR) studies of the human brain. The illumination and collection points
(which are coupled to a light source and optical detector, respectively) are located on the scalp at a
relative distance of the order of 3 cm. Light propagation is affected by the heterogeneity in the optical
properties of tissues. Therefore, the sensitivity of the optical signal to the probed tissue is not spatially
uniform (as indicated by the different grey levels within the region of sensitivity) and is maximal in the
most superficial tissue layers (scalp and skull). Reproduced with permission from [5] © 2018 licensed
under a Creative Commons Attribution (CC BY) license.

NIR photons propagate simultaneously in the entire illuminated volume of the head, and, due to
multiple scattering, the photon paths have all possible shapes and lengths. The light intensity in the head
cannot be non-invasively measured. Therefore, the light propagation in the head has been predicted
by simulations using realistic head models and the Monte Carlo method [6]. The most meaningful way
to characterize the variety of paths is to use the statistical quantities such as the mean total pathlength
(typically 5-10 larger than the source—detector distance) and the partial pathlength—regions of the
head, in particular. The partial pathlength in the brain of the adult subjects is small compared to the
total pathlength (~10% of the total pathlength at a 3 cm separation).

It is important to obtain the sensitivity of the NIRS signal to the absorption change in the volume of
sampled tissue, in particular in the cortical grey matter, with a particular source—detector pair. For this
purpose, Sakakibara et al. [7], using Monte Carlo simulations and a five-layered head model, elaborated
the spatial sensitivity profile on the surface of the grey matter (Figure 2). The source—detector
pair detects the absorption change in the broad region in the grey matter. The sensitivity of the
source—detector pair is the greatest at the measurement point, but the sensitivity decreases with an
increase in the distance from the measurement point. The black and white lines in the figure indicate
50% and 10% with respect to the maximum sensitivity. The spatial distribution of the sensitivity of
the probe arrangements depends on the positions of the measurement points and the direction of the
spatial sensitivity profiles. Using the Monte Carlo method and the diffusion theory, several previous
studies demonstrated that functional near-infrared spectroscopy (fNIRS) signals are more sensitive to
the surface areas immediately under the optodes, i.e., the scalp, for review [5]. This limitation is less
significant in young children, since, with thinner skull, the partial pathlength in the brain increases.
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Figure 2. The spatial sensitivity profile on the grey matter surface. The black and white dotted lines
indicate 50% and 10% with respect to the maximum sensitivity. This profile was obtained by a Monte
Carlo simulation of a five-layered head model. Reproduced with permission from [7] © 2016 Springer.

In 2012, the Journal of Near Infrared Spectroscopy Special Issue on Medical Application nicely summarized
the most important aspects of the medical NIRS in 16 articles (mainly review articles) [8,9]. Brain/muscle
oximetry and functional NIRS (fNIRS) represented the most established clinical and/or basic research
areas. The first brain oximeter measuring cortical Hb saturation (in %) was built in 1989 by Hamamatsu
Photonics K.K. (Japan). Today, more than 10 brain oximeters with Food and Drug Administration
(FDA) and/or European Union (EU) approval are commercially available and utilized worldwide
mainly in cardiac surgery and neonatal intensive care units [10-13]. The present mini-review does not
cover the present and future applications of oximetry. Instead, it wants to focus exclusively on fNIRS
applied to different medical fields.

In the last 20 years, there have been exponential developments in the field of neuroimaging.
This field includes mainly magnetic resonance imaging (MRI) and molecular imaging, and most
of the changes have occurred in the latter with advances in positron emission tomography (PET).
Now, it is possible to image the brain glucose consumption as well many different chemicals like
dopamine, serotonin, and acetylcholine. Non-invasive vascular-based neuroimaging techniques,
such as functional MRI (fMRI) and fNIRS, map brain activity through hemodynamic-based signals and
are invaluable diagnostic tools in several neurological disorders. Cerebral blood flow (CBF), adequate
for brain activity and metabolic demand, is maintained through the processes of neurovascular
coupling. More particularly, when a specific brain region is activated, CBF increases in a temporally
and spatially coordinated manner tightly linked to changes in neural activity through a complex
sequence of coordinated events involving neurons, glia, arteries/arterioles, and signaling molecules.
fNIRS and fMRI rely on this coupling to infer changes in neural activity that are mirrored by the
changes in the blood oxygenation in the region of the activated cortical area.

fNIRS, applying an array of sources/detectors over the scalp, maps (typical sampling rate 1-10 Hz)
the concomitant increase in O,Hb and the decrease in HHb only at level of cortical microcirculation
blood vessels by means of the characteristic Hb absorption spectra in the NIR range; fMRI only
maps the decrease in HHb in all brain regions with a spatial resolution ten times higher than
fNIRS does. fNIRS also maps the total Hb (tHb) (tHb = O,Hb + HHb), though this is strictly
related to cerebral blood volume. The hemodynamic signals are normally precisely related to the
underlying neuronal activity through neurovascular coupling mechanisms that ensure the supply of
glucose and oxygen to neurons [14] but also provide a heat sink to help cool the brain and removal
of waste by-products [15,16]. In addition, the neurovascular coupling plays a key role in water
dynamics inside the brain barrier [17]. As described recently in detail [18,19], the fNIRS signal
includes six different components that can be classified according to their: (1) Source (cerebral versus
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extra-cerebral); (2) stimulus/task relation (evoked versus non-evoked); and (3) physiological cause
(neuronal versus systemic). The monitoring of the hemodynamic response due to neurovascular
coupling is only one of these six components (i.e., the component neuronal/task-evoked/cerebral), while
all the other components are the physiological noise that acts as confounders in fNIRS studies and
must be removed by different methods [5,19]. While the strict relationship between CBF and neuronal
activity forms a fundamental brain function, whether neurovascular coupling mechanisms are reliable
across physiological and pathological conditions is still questionable; for instance, alterations of the
brain vasculature compromise neurovascular coupling. The mechanisms that are involved in the
neurovascular coupling are different in health and in diseases such as psychiatric disorders and stroke.
In addition, neurovascular coupling mechanisms are probably affected by changing brain states like
sleep, wakefulness, and attention. Though fMRI has been clinically utilized more extensively than
fNIRS, in the last decade the functional activation of the human cerebral cortex has been successfully
explored by fNIRS. The latest is also named: Optical topography, NIR imaging, diffuse optical imaging
(DQJ), or diffuse optical tomography (DOT). Unlike fMRI, fNIRS can be utilized on subjects while
moving freely in naturalistic settings (such as face to face communications), in hyper-scanning studies,
and in field studies on subjects practicing sports, playing a musical instrument, etc.

The present mini-review article is aimed at briefly summarizing the current status of f{NIRS and at
predicting where the technique should go in the next decade.

2. Where Do We Stand

In order to provide the readers with an update of the fNIRS methods, in Table 1 recent relevant
references (33 articles published from 2012) are reported about several topics related to the fNIRS
basics and technical developments. These articles were identified through the PubMed, Web of Science,
and Scopus databases. The topics include: The basics of NIR photon migration, the state of the art
of instrumentations/signal processing/statistical analysis, and the integration of {NIRS with other
neuroimaging methods.

Table 1. Most relevant references about functional near-infrared spectroscopy (fNIRS): Basics and
technical developments.

Topic Year 1st Author [Ref]
2012 Martelli [20]
Modeling near-infrared photon propagation in biological tissue 2016 Bigio [4]
2018 Fantini [5]
History of fNIRS 2012 Ferrari [21]
State of the art of continuous-wave multispectral fNIRS instrumentation ;81‘; Sch;){lilijzla [r; r;][l l
. 2016 Nsorati [23]
Sta;ce of th(: e};‘t of continuous-wave hyperspectral {NIRS 2016 Pham [24]
fstrmentation 2018 Giannoni [25]
. . . . 2014 Torricelli [26]
State of the art of time-domain fNIRS instrumentation 2019 Yamada [27]
Clinical brain monitoring by time-domain fNIRS instrumentation 2019 Lange [28]
2016 Hoshi [29]
State of the art of diffuse optical imaging ggg FEEZE(E]S]
2018 Zhao [31]
2018 Strangman [32]
State of the art of wearable fNIRS 2018 Pinti [33]

State of the art of functional connectivity measurements 2018 Fantini [5]
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Table 1. Cont.

Topic Year 1st Author [Ref]
Factors influencing fNIRS data and recommendations 2010 Orihuela-Espina [34]
Caps for long term fNIRS measurements 2015 Kassab [35]
Selection of the optimum source—detector distance 2015 Brigadoi [36]
Mayer waves interference 2016 Yiicel [37]
Multiple components of the fNIRS signal 2016 Tachtsidis [19]
Signal pre-processing procedures 2019 Pinti [38]
2014 Tsuzuki [39]
Anatomical guidance for fNIRS
2015 Aasted [40]
Statistical analysis of fNIRS data 2014 Tak [41]
Pattern of hemodynamic response in newborn < 1 month 2018 de Roever [42]
Pattern of hemodynamic response in infants 2018 Issard [43]
Integration of fNIRS with:
e  Electroencephalography 2017 Chia?elli.[44]
e  Functional magnetic resonance imaging 2017 Scarapicchia [45]
[ Transcranial magnetic stimulation 2019 Curtin [46]
2018 Fantini [5
Recent fNIRS general reviews including the advantages and limitations 2018 I?iitlin[lélg]]
of fNIRS 2019 Quaresima [48]

Ref: Reference number.

The advantages and disadvantages of {NIRS have been widely reported in several recent review
articles [5,47,48]. Unlike other neuroimaging modalities, {NIRS has a very high experimental flexibility.
fNIRS is silent, tolerant to movement artefacts, and allows for long-time continuous measurements.
fNIRS can be easily integrated with fMRI, PET, electroencephalography (EEG) or event related potentials.
A detailed critical comparison between fNIRS and fMRI has been recently reported [5]. Among the
disadvantages, it is noteworthy to mention: (1) {NIRS does not provide anatomical information, and (2)
fNIRS measurements are restricted to the outer cortex and have a low spatial resolution (2-3 cm).

Roughly twenty multi-channel f{NIRS systems, which utilize arrays of multiple NIR sources
and detectors arranged over the scalp, are so far commercially available [47,48]. Figure 3 shows one
stationary system and two mobile wireless systems.

Multi-channel fNIRS systems utilize different NIRS techniques: (1) The continuous wave (CW)
multispectral and CW hyperspectral (broadband) techniques, both based on constant tissue illumination,
measuring the light attenuation; (2) the frequency-domain (FD) method, based on intensity-modulated
light, measuring both the attenuation and phase delay of emerging light; and (3) the time-domain (TD)
technique, based on short pulses of light, measuring the shape of the pulse after propagation through
tissues [18]. The CW hyperspectral technique allows for a more accurate separation of the chromopores
than the CW multispectral technique that utilizes few wavelengths [25]. The O,Hb/HHb quantitation
depends on the NIRS adopted technology [5,18]. The most commonly used CW multispectral f{NIRS
instrumentation measures changes of O,Hb and HHb (with respect to an initial value arbitrarily set
equal to zero) that are calculated using a modification of the Lambert-Beer law. Considering that the
tissue optical pathlength is longer than the distance between the source and the detector (Figure 1),
the O,Hb and HHb signal changes are expressed as pmolar*cm or mmolar*mm. CW multispectral
systems offer the advantages of being low-cost and easily transportable (Figure 3). f{NIRS analysis
methods permit the monitoring of real-time cortical hemodynamic changes. fNIRS data from multiple
simultaneous measurement sites are displayed by fNIRS systems in the form of O,Hb/HHb map over
a cortical area.
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Figure 3. Continuous wave (CW) multispectral fNIRS instrumentations. Left panel: Stationary systemin

a conventional laboratory setting (LABNIRS, Shimadzu, Japan with three wavelengths and 52 channels)
(year of release in USA 2015) (Photo courtesy of University College London, Department of Medical
Physics and Biomedical Engineering). Central panel: Mobile wireless system in outdoor environment
(Brite?*, Artinis Medical Systems, The Netherlands with two wavelengths and 24 channels) (year of
release 2018) (Photo courtesy of Artinis). Right panel: Mobile wireless system (LUMO, Gowerlabs
Ltd., UK) (year of release 2019) (Photo courtesy of Gowerlabs). The first commercially available
modular, wearable, high-density diffuse optical tomography (DOT) system consisting of a series of
hexagonal sensor modules (‘tiles’), each of which provides two wavelength LED sources and four
detectors. Channels are formed both within and across tiles with source-detector separations ranging
from 10 to 40 mm. By connecting multiple tiles into the LUMO head cap, users can create lightweight,
high-density fNIRS imaging arrays to cover any part of the cortex. We obtained permission from
photographed subjects.

In 2014, the journal Neuroimage dedicated a Special Issue with 58 articles to celebrate the first
20 years of fNIRS research [49]. Thus far, NIRS has lacked the combination of spatial resolution and
wide field-of-view sufficient to map in detail distributed brain functions. The emergence of high-density
DOT represents the last generation of multispectral CW fNIRS systems. Figure 3 depicts an example of
a high-density DOT imaging system for children and adults. High-density DOT resolves the basic
problem of the contribution from hemodynamic changes occurring in the scalp, skull, and other
extra-cerebral tissue layers [5].

In order to provide the readers with an update on the fNIRS applications, in Table 2, 44 recent review
articles (published from 2012) covering different applications are listed; the field of psychology/education
is covered by 10 reviews, functional neuroimaging basic research by 13 reviews, and medicine by
18 reviews.

Table 2. Main reviews on the fNIRS applications in the fields of cognitive and social sciences, functional
neuroimaging research, and medicine.

Field of Application Topic Year N. Subjects  1st Author [Ref]
Cognition and food 2015 39 A Val-Laillet [50]
Cognition in infants 2015 171 C Aslin [51]
. . 2014 29 C Vanderwert [52]
Devel t(t land at 1
evelopment (typical and atypical) 2015 149 C Wilcox [53]
Development of mathematics/language
Psychology/education P skills in children /languag 2018 7 C Soltanlou [54]
Emotion 2016 11 A Bendall [55]
Influence of exercise on cognition 2018 35 A Herold [56]
Interhemispheric organization 2014 32 A Homae [57]
Psychology general review 2012 106 A Cutini [58]
Social development during infancy 2018 29 C McDonald [59]
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Table 2. Cont.

Field of Application Topic Year N.  Subjects  1st Author [Ref]
Economics Neuroeconomic research 2014 15 A Kopton [60]
L Language and its development 2012 60 A Quaresima [61]
Linguistics C
Word and sentence processing 2012 9 C Rossi [62]
Neuroergonomics Neuroergonomics and fNIRS ;812 gg 2 C;;T}(Eif]
Brain computer interface 2015 33 A Naseer [65]
Driving research 2016 10 A Liu [66]
2019 13 A Lohani [67]
Hybrid fNIRS-EEG brain-computer 2017 11 A Ahn [68]
interfaces 2018 43 A Hong [69]
. . . . 2013 7 A Scholkmann [70]
Functional Neuroimaging ~ Hyperscanning with multi-subject 2018 15 A Minagawa [71]
Basic Research measurements 2018 18 A Wang [72]
Postural and walking tasks 2017 57 A Herold [73]
Resting-state furTct.lonal brain 2014 16 A Niu [74]
connectivity
. 2017 31 A Vitorio [75]
Walk
akimg 2019 35 A Pelicioni [76]
Walking and balance tasks in older 2018 o4 A Stuart [77]
adults
Attention deficit disorder 2018 11 C Mauri [78]
Auditory cortex.plastlaty after 2018 7 A Basura [79]
cochlear implant
Autism spectrum disorder ;812 ;g g ZIE:;S[OS] 1
Cognitive aging 2017 34 A Agbangla [82]
Developmental age attention -
deficit/hyperactivity disorder 2019 13 c Grazioli [83]
Eating disorders 2015 11 A Val-Laillet [50]
. Epilepsy 2016 23 A Peng [84]
Medicine
Gait disorders 2017 12 A Gramigna [85]
Mild cognitive impairment 2017 8 A Beishon [86]
Neurofeedback training 2018 127 A Ehlis [87]
Pain assessment in infants 2017 9 C Benoit [88]
Parkinson’s disease and walking 2018 5 A Stuart [77]
balance tasks
Prolonged disorder of consciousness 2018 7 A Rupawala [89]
Psychiatry 2014 168 A Ehlis [90]
Robot-assisted gait training 2019 2 A Berger [91]
Schizophrenic disorders 2017 17 A Kumar [92]
Stroke therapy/recovery/rehabilitation 2019 66 A Yang [93]

A: Adults; C: Children; EEG: Electroencephalography; N: Number of reviewed articles; Ref: Reference number.

The total number of the articles quoted by the 44 reviews is 1675. A detailed analysis of the very
different fields of applications is beyond the aim of this mini-review. It is noteworthy to mention in the
last five years, there has been an increasing number of clinical studies on psychiatric disorders and
basic studies using the hyper-scanning approach. Hyper-scanning, which consists of the measurement
of brain activity simultaneously on two or more people, has been adopted by fNIRS for investigating
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inter-personal interactions in a natural context. fNIRS, more than any other neuroimaging modality, is
suitable for investigating real social interactions by using the hyper-scanning approach.

Table 3 lists five recent video articles showing different applications; these videos very
carefully illustrate different studies performed in a laboratory or outdoor area utilizing stationary or
mobile/wireless instrumentations.

Table 3. Recent fNIRS video articles.

Device, Company, Number of

Topic Year 1st Author [Ref] Country Channels

Brain development. Language
processing study (rhyme . LightNIRS,
judgment task) on primary school 2018 Jasifiska [94] Shimadzu, Japan 47
aged children.
Hyper-scanning. Parent—child
dyads for analyzmg bram—to—‘pram 2019 Reindl [95] ETG-4000, Hitachi, m
synchrony during a cooperative Japan
and a competitive computer task.
Motor cortex activation during

. . CWS6, TechEn,
dlffeljent motor tasks (cycling, 2014 Sukal-Moulton [96] Milford, MA, USA 24
walking) on adults.
Temporal cortex activation during
a dance video game task revealed 2015 Noah [97] Shi;?gglll}i’ an 22
by fNIRS and fMRI on adults. +Jap
Wearable fNIRS. Real-world
ecological prospective memory 2015 Pinti [98] WOT-100, NeU 16

tasks on adults. Corporation, Japan

fMRI = functional magnetic resonance imaging; Ref = reference number.

The top 10 cited articles on fNIRS [21,99-106], ranked according to their citations, account
for between approximately 500 to over 1000 studies and (data from Scopus, Elsevier, Amsterdam,
The Netherlands, June 2019) provide an insight into the historical developments and allows for the
recognition of the important advances in the fNIRS field since 1993, the year of the first five {NIRS
publications [21].

3. Where Should We Go?

The main question is: Might fNIRS improve people’s lives? Imagining the future of the fNIRS
instrumentations and applications is quite difficult. Considering that a significant portion of the optical
pathlength of the detected photons lies within the extra-cerebral tissue (Figure 1), the “vital” main
requirement of all commercial fNIRS instrumentations (using different fNIRS methods) should be
their capability to correct the skull/scalp blood flow/systemic effects. For this purpose, the ideal {NIRS
instrumentation should be equipped with different source-detector distances that can provide the
fNIRS data necessary for adopting the different strategies to disentangle the cerebral/extra-cerebral
contributions of the NIRS signals. These strategies have been recently reviewed [5,19].

The sector of wearable health technology is gaining endless interest. The use of low-cost wearable
monitoring devices or wearable biosensors that allow for the constant monitoring of physiological
signals, such as fNIRS signals, is essential for the advancement of both the diagnosis and treatment of
diseases, as well as for monitoring active life styles [32,107].

Since the first {NIRS studies in 1993, there has been a vast improvement in CW multispectral
fNIRS systems. TD-fNIRS (the most quantitative methodology) is still not at its final stage; broadband
or multi-wavelength laser sources and new detectors can be further miniaturized [108], and the signal
to noise ratio can be consistently improved [109,110].
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New developments in fNIRS technology will further allow for the monitoring, at least on
newborns, of the cytochrome-c-oxidase redox state (CCO), which is also a metabolic marker of
oxidative metabolism [111]. The hyperspectral CW NIR technique is currently used by some research
groups to monitor in vivo human brain metabolism via measurements of the concentration changes
in O,Hb, HHb and the oxidation state of CCO to achieve the quantification of cerebral metabolic
activation in different situations from functional stimulation to response during oxygen-dependent
conditions [23,24]. An increase of the CCO signal, typically corresponding to an increment in cerebral
metabolism, was found, for instance, during the functional activation induced by simulated driving [23],
the Stroop task [24] or working memory tasks [112]. Unlike the hemodynamic changes that are strongly
affected by scalp blood flow changes, the changes in the CCO signal more specifically reflect the brain
cortex activation. Therefore, the CCO measurement could represent an additional and more robust
marker of cortical brain activation, thus allowing for the better identification of false positives and
negatives [19].

The fNIRS integration with multimodal physiological monitoring and neuro-stimulation
methodologies has already been demonstrated [46], but it needs to be better designed and
defined. Very recently, Scholkmann et al. [113] introduced systemic-physiology-augmented functional
near-infrared spectroscopy; SPA-fNIRS), which consists of a combination of fNIRS with physiological
measurements. These measurements, obtained by a gas analyzer, a continuous noninvasive blood
pressure monitor, and a skin conductance measuring device, can give an important integrative view
because any brain stimulation could provoke systemic effects, which, in turn, could affect cerebral
hemodynamics. Therefore, these effects should be investigated because the concept that cerebral
hemodynamic changes are purely associated with brain activation is probably wrong, and it should be
correctly revisited [113].

Considering that fNIRS has no age limitation, it is difficult to predict which would be the most
useful clinical and basic science applications. Table 2 already includes some very useful clinical and
basic science applications to be further investigated. The most important challenge is to improve
patient care by translating the new technologies from basics science into clinical practice.

The FDA, industries and several research groups have become increasingly involved in efforts
to develop international consensus standards that can facilitate the development of fNIRS devices
with the potential to improve the related regulatory processes. Recommendations for conducting and
reporting fNIRS findings should be also generated.

To extract and analyze the {NIRS information at single-subject level, novel methods should be
conceived. Ideally, all clinical applications would require a single-subject analysis, even on-line in the
case of, for example, the neurorehabilitation field. These new methods should be capable to identify the
cortical circuitry and the brain function/dysfunction. For instance, several psychiatric and neurological
symptoms are best explained by network-level changes rather than focal alterations. Given the broad
range of related diseases and methodological variability, defining procedural clinical standards could
be difficult. However, developing recommendations for patient and methodological challenges is
highly desirable to move fNIRS into the clinical realm [114].

The multi-modal integrations of EEG-fNIRS seem to be promising in different fields [44].
For example, EEG-fNIRS can characterize the neurovascular coupling in the brain network dynamics
induced by robot-assisted gait training [91]. In order to guide non-invasive brain stimulation protocols,
a feedback of cortical activations patterns could be useful for the identifications of regions of hypo-
or hyperactivity. Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation
technique that involves the application of low intensity direct currents at the scalp for the modulation
of central nervous system excitability [115]. tDCS is an increasingly important tool that is being used
in a wide range of applications, including as a potential adjunct therapy for neurological/ psychiatric
disorders. The integration of tDCS with EEG-fNIRS holds great promise for shedding light on the
underlying neural mechanisms of stimulation effects [115].
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A recent review article summarized the vast potential and bright future of all neuroimaging
techniques [116]. Several advances in functional neuroimaging technologies offer promising
opportunities to answer clinical questions and to address some of the most fundamental aspects of
how the brain works. Local fluctuations in brain physiologic signals are highly correlated across
brain regions organized within functional networks. Functional connectivity maps could also provide
clear guidance for pre-surgical planning for the resection of brain tumors and epileptogenic lesions.
In the future, such connectivity maps may allow clinicians to interrogate functionally perturbed
networks controlling attention, memory, and other key cognitive domains. In addition, fNIRS will
absolutely have a unique role in fields such interactive neurosciences [71], cortical activation in sport
performance [117], and cortical activation during neurofeedback training [87].

Moreover, over the last 20 years, a complementary optical technique—NIR diffuse correlation
spectroscopy (DCS)—has been developed for the continuous measurement of blood flow in tissue.
Applications to the human brain cortex have been successfully demonstrated [118]. DCS uses the
temporal fluctuations of diffusely-reflected light to quantify the motion of tissue scatterers (which
are primarily red blood cells) and provides a non-invasive estimate of deep tissue microvascular
blood flow. By combining oximetry and DCS flow measures, the tissue regional oxygen metabolic
rate—a parameter closely linked to underlying physiology and pathological states—could finally be
quantified [119,120]. Therefore, the combination of fNIRS with DCS could provide a very interesting
tool for functional neuroimaging studies because it could give information about how surface/cortical
blood flow changes affect the hemodynamic signals that are measured by fNIRS.

4. Conclusions

fNIRS technology continues to evolve, and the nature of this approach provides distinct advantages
when studying human cortical activation. Despite the current limitations that are largely isolated to
a limited depth of penetration, a low spatial resolution, and strong extra-cranial interference, in our
view, the feasibility and the success of applying fINIRS in some branches of medicine, neuroimaging
basic research, and social sciences have been well documented. The development of fNIRS has
strongly gained from the advances in microelectronics, computer technology, and optical engineering.
With the advent of further miniaturization and integration such as integrated optics, wearable and
even disposable fNIRS technology can be envisioned. The fNIRS systems that will emerge from these
developments would further enlarge the number of fNIRS applications and make fNIRS findings more
easily comparable with the other ones obtained by using other technologies. Before reaching the final
goal, consisting of the use of {NIRS as a clinical tool in individual patients, {NIRS procedures need to
be standardized.
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