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Abstract: Mid-infrared optical frequency comb generation in whispering gallery mode microresonators
attracts significant interest. Chalcogenide glass microresonators are good candidates for operating in the
mid-infrared range. We present the first theoretical analysis of optical frequency comb generation in
As2S3 microbubble resonators in the 3–4 µm range. The regime of dissipative soliton plus dispersive
wave generation is simulated numerically in the frame of the Lugiato–Lefever equation. Using
microbubble geometry allows controlling of the zero-dispersion wavelength and the obtaining of
anomalous dispersion needed for soliton generation at the pump wavelength of 3.5 µm, whereas the
zero-dispersion wavelength of the analyzed As2S3 glass is ~4.8 µm. It is shown that, for the optimized
characteristics of microbubble resonators, optical frequency combs with a spectral width of more than
700 nm (at the level of −30 dB) can be obtained with the low pump power of 10 mW.

Keywords: chalcogenide microresonators; optical frequency combs; mid-infrared light sources;
dissipative solitons; dispersive waves

1. Introduction

Broadband mid-infrared light sources have many applications in biomedicine, defense,
environment monitoring, and sensing. There are several concepts of mid-infrared coherent optical
sources, such as solid-state lasers, optical parametric oscillators and amplifiers, semiconductor
lasers, fiber lasers, and laser systems based on frequency conversion in different nonlinear media
(see, for example, [1–9]). Mid-infrared optical frequency comb generation in whispering gallery
mode (WGM) microresonators also attracts significant interest. For example, broadband mid-infrared
optical frequency combs have been demonstrated in silicon nitride [10], silicon microresonators [11],
and crystalline calcium fluoride and magnesium fluoride resonators [12]. WGM glass microresonators
for comb generation are developed in the visible and near-infrared ranges [13–16] but not in the
range beyond 2 µm. We previously studied near-infrared optical frequency comb generation in the
dissipative soliton regime in silica and germanosilicate solid microspheres pumped at 1.55 µm or at
2 µm [17]. Such microresonators cannot be used in the mid-infrared due to high optical losses [18].
However, we believe that the mid-infrared soliton regime may be implemented in microresonators with
a more complicated design (such as a microbubble) on the basis of special glasses. Chalcogenide glass
microresonators are good candidates for this target. Chalcogenide glasses have high chemical stability,
low optical losses, resistance to atmospheric moisture, a transparency band up to ~10 µm (up to ~20 µm
for individual compositions), and high linear and nonlinear refractive indices [19–22]. Chalcogenide
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microresonators have been demonstrated in the literature [23–26], but we have no information about
generation of optical frequency combs in them.

Here, for the first time to the best of our knowledge, we investigate theoretically the possibility of
using chalcogenide glass microresonators for mid-infrared optical frequency comb generation in the
regime of the dissipative soliton plus dispersive waves (DW) [27]. This regime requires small anomalous
dispersion at the pump wavelength λp, which should be located near the zero-dispersion wavelength
(ZDW) [27,28]. We consider the microbubble geometry of As2S3 microresonators aimed at controlling
dispersion. It is known that for microbubbles, ZDW can be both red-shifted and blue-shifted [16,29],
whereas for solid microspheres, ZDW for fundamental WGMs is red-shifted [17,30]. We assume
continuous wave (CW) pump at 3.5 µm, so ZDW of microbubbles should be blue-shifted by ~1.4 µm
from the ZDW of As2S3 glass, which is ~4.8 µm [18]. Such ZDW shift is possible by the corresponding
choice of resonator radius and wall thickness. We believe that an Er-doped fluoride CW fiber laser at
~3.5 µm [4,31,32] or an optical parametric generator may be used as a pump source. Other widespread
chalcogenide glasses, such as As2Se3 or Te-based ones, have ZDW > 7.4 µm [2,18], so it may be difficult
to shift their ZDW in the range <3.5 µm.

2. Materials and Methods

A scheme of the microbubble resonator with radius R and wall thickness b as well as the considered
system for mid-infrared optical frequency comb generation are shown in Figure 1. The eigenfrequencies
of the WGM microbubble can be found from the numerical solution of the characteristic equation,
which is obtained on the basis of Maxwell’s equations. For transverse electric (TE) modes of bubble-like
resonators, the characteristic equation takes on the following form [33],

χ′l(kR)
χl(kR)

= n
Nlψ

′
l(nkR) + χ′l(nkR)

Nlψl(nkR) + χl(nkR)
, (1)

where the refractive index n of the As2S3 microbubble wall is defined by the Sellmeier equation

n2 = 1 +
∑

i

Biλ
2

λ2 −Ci
, (2)

with constants B1 = 1.8983678, B2 = 1.9222979, B3 = 0.8765134, B4 = 0.1188704, B5 = 0.9569903,
C1 = 0.0225 µm2, C2 = 0.0625 µm2, C3 = 0.1225 µm2, C4 = 0.2025 µm2, C5 = 750 µm2 [34], and the
coefficient Nl

Nl =
ψ′l(z1)χ(z2) − nψl(z1)χ′(z2)

nψl(z1)ψ′l(z2) −ψ′l(z1)ψl(z2)
, (3)

with z1 = k(R−b) and z2 = nk(R−b); k = 2π/λl is the wavenumber in vacuum; λl is the resonance
wavelength; νl = c/λl is the eigenfrequency; c is the speed of light; l is the mode index; ψl(z) = zJl(z) and
χl(z) = zYl(z) are the spherical Riccati–Bessel and spherical Riccati–Neumann functions, and Jl(z) and
Yl(z) are the spherical Bessel functions of the first and second kind, respectively,

Jl(z) =
√
π
2z

jl+1/2(z), Yl(z) =
√
π
2z

yl+1/2(z), (4)

where jl(z) and yl(z) are the standard Bessel functions of the first and second kind, respectively.
The derivatives in Equations (1) and (3) can be expressed by

ψ′l(z) =
√
π
8z

[zjl−1/2(z) + jl+1/2(z) − zjl+1/2(z)], (5)

χ′l(z) =
√
π
8z

[zyl−1/2(z) + yl+1/2(z) − zyl+1/2(z)], (6)
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Here we consider only the fundamental TE WGMs with q = 1, q is the index characterizing the
number of mode nodes in the radial direction. It is known that when coupling an electromagnetic wave
through a fiber taper, the HE11 fiber mode effectively excites the TE modes of the microresonators [35].
We assume this technique of WGM excitation (see Figure 1).
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The roots of the characteristic Equation (1) and the corresponding eigenfrequencies νl are found by
a homemade numerical code. The frequency dependence of the refractive index is taken into account
iteratively. The coefficient of quadratic dispersion β2 with allowance for the material and geometric
contributions is calculated by the formula,

β2 = −
1

4π2R
∆(∆νl)

(∆νl)
3 , (7)

where
∆νl =

νl+1 − νl−1

2
; ∆(∆νl) = νl+1 − 2νl + νl−1. (8)

The nonlinear Kerr coefficients γ of microresonators are estimated by the formula:

γ =
2π
λ

n2

Ve f f /(2πR)
, (9)

Here, n2 = 2·10−18 m2/W [19] is the nonlinear refractive index and the effective WGM volume Veff
is determined as follows,

Ve f f =

∫
n2

∣∣∣ε∣∣∣2dV

max(n2
∣∣∣ε∣∣∣2) , (10)

where ε is the electric field of WGM. The explicit expression for ε is very cumbersome, therefore it is
not given here but can be found in the paper [33].

The dynamics of the formation of mid-infrared optical frequency combs in As2S3s microbubble
resonators is modeled using the Lugiato–Lefever equation [27,36],

tR
∂E(t, τ)
∂t

=

−α− iδ0 + i2πR
∑
k≥2

βk

k!

(
i
∂
∂τ

)k

+ i2πγR|E|2
E +

√

θEin, (11)

where E(t, τ) is the complex envelope of the intracavity field, t and τ are the slow and fast times,
tR = 2πRn/c is the microresonator roundtrip time, t = M·tR, M is the microresonator roundtrip number,
δ0 is the frequency detuning of the pump field Ein from the nearest resonance, θ is the coupling
coefficient, βk is the dispersion coefficient of the k-th order, α = (2π)2R/(Qλp) is the loss coefficient as
the sum of intrinsic and coupling losses.

For the numerical simulation of the frequency comb dynamics in the frame of Equation (11), we
developed a homemade software using the split-step Fourier method (SSFM) with the fast Fourier
transform [37].
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3. Results

First of all, we calculated the dispersion of As2S3 spherical microbubble resonators for different
geometrical parameters. The ZDW of microbubbles as a function of b and R is shown in Figure 2a.
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Figure 2. Zero-dispersion wavelength as a function of thickness and radius of a microbubble (a).
Dispersion as a function of thickness and radius of a microbubble calculated at λp = 3.5 µm (b).

One can see that for reasonable values of 1.5 µm < b < 4 µm and 50 µm < R < 200 µm, ZDW can
be tuned in a wavelength range wider than 3–4.4 µm. Indeed, we can find geometrical parameters
providing anomalous dispersion at the considered pump wavelengths of 3.5 µm. The value of β2 as a
function of b and R simulated at λp = 3.5 µm is shown in Figure 2b. Further, we chose the combinations
of b and R, ensuring small anomalous dispersion at the pump wavelengths needed for dissipative
soliton and DW generation. The functions β2(λ) are plotted in Figure 3.
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Next, we calculated the effective WGM volumes by Equation (10) at the central wavelengths of
3.5 µm as functions of the wall thickness and radius (see Figure 4a). WGMs are well-localized in the
wall, so the effective volumes are relatively small. After that, the nonlinear Kerr coefficients defined
by Equation (9) were estimated for the same geometrical parameters of microbubbles (see Figure 4b).
The nonlinear coefficients can be as high as a few hundred (W·km)−1. Such giant values are due to
small WGM volumes and the high nonlinear refractive index (n2 of As2S3 glass is ~200–300 times
higher than n2 of MgF2 and CaF2 crystals used for mid-infrared frequency comb generation [12] and
~100–200 times higher than n2 of silica glass) [18,19]. Note that for silica microspheres, typical values
of the nonlinear Kerr coefficient in the near-infrared are of order a few (W·km)−1 [15,17].

Further, we simulated generation of optical frequency combs, taking into account the calculated
dispersion and nonlinear Kerr coefficients shown in Figures 3 and 4b, respectively. We took the following
values of parameters: The pump power |Ein|2 = 10 mW and Q = 106. The spectra and the corresponding
temporal distributions of intracavity intensities are plotted in Figure 5. The microresonators with
b = 2.5 µm, R = 50 µm and b = 2.75 µm, R = 75 µm have ZDWs near 3.4 µm and small anomalous
dispersion at λp = 3.5 µm: −16 ps2/km and −21 ps2/km, respectively, which is desirable for generation
of optical frequency combs with wide spectra. The widest spectra spanning more than 700 nm at the
level of −30 dB were obtained in these microbubbles. The corresponding pulse duration is shorter
than 100 fs. The spectra broaden so much that a substantial part of their blue wings falls into the
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normal dispersion region and acts as a source of phase-matched radiation, also known as Cherenkov
radiation or DW [27,28]. In the time domain, the short-wavelength DW is located on the trailing edge
of the dissipative soliton [17,27,28], which is also shown in Figure 5. Note that the phenomenon of the
emission of phase-matched linear DW by perturbed solitons was also studied for optical fibers [38–41].
For R = 100 µm and b = 2.5 or 2.75 µm, then ZDW < 3.3 µm, only dissipative solitons are generated and
there is no DW (see Figure 5, the second and the fourth rows). In these cases, their spectra spanning of
about 300 nm at the level of −30 dB are obtained. The corresponding pulse duration is about 200 fs and
the repetition rate is about 200 GHz.
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4. Discussion and Conclusions

In the presented work, we performed numerical analysis of the possibility of using chalcogenide
As2S3 glass microbubble resonators for mid-infrared optical frequency comb generation with CW
pump at 3.5 µm. We believe that an Er-doped fluoride fiber laser or an optical parametric generator may
be used as a pump source. Special attention was paid to the study of the dispersion and nonlinearity
of such microresonators. We showed that for reasonable values of radius and wall thickness, ZDW can
be blue-shifted by more than 1.8 µm from the ZDW of As2S3 glass, which is ~4.8 µm. The thinner the
wall, the higher the geometrical contribution to the dispersion is. The Kerr nonlinear coefficient can be
as high as a few hundred (W·km)−1. The thinner the wall and the smaller the radius, the higher the
nonlinear coefficient is.

The formation of optical frequency combs was modeled in the frame of the Lugiato–Lefever
equation using a SSFM-based homemade computer code. We considered the regime of the dissipative
soliton plus DW generation. Small anomalous dispersion is desirable for comb generation with a wide
spectrum (>700 nm at the level of −30 dB). The optimal ZDW of microresonators is about 3.4 µm,
for which spectra expand in the anomalous and normal dispersion regions. For ZDW < 3.3 µm,
the spectral evolution is observed in the anomalous dispersion region, and the short-wavelength wing
does not reach the phase-matching point for DW generation. For ZDW > 3.4 µm, the soliton radiates
the significant part of its energy to the short-wavelength DW. Thus, the soliton energy decreases, which
limits long-wavelength spectral broadening.

As2S3 glass has a large Kerr nonlinearity, so the pump power for comb generation is as low as
~10 mW, which can be profitable for some tasks. We believe that As2S3 glass is a very promising material
for developing microbubble resonators for operating in the 3–4 µm range. Such microresonators
can play a significant role in many sensing applications due to many absorption lines of chemical
compounds in this spectral range. Note that CW laser sources at different wavelengths in the 3–4 µm
range may be used for comb generation in the analyzed regime. Figure 2a demonstrating ZDW as
a function of the wall thickness and radius may help to design As2S3 microbubble resonators for a
certain pump wavelength.

Other widespread chalcogenide glasses, such as As2Se3 or Te-based ones, are also interesting
for investigation. However, they have ZDW > 7.4 µm [2,18]. We estimate that for the fundamental
TE WGM, As2Se3 microbubble resonators have ZDW > 4 µm for reasonable values of b ≥ 1.5 µm
and R ≥ 50 µm, for example, ZDW = 4.5 µm for an As2Se3 microbubble resonator with b = 2.5 µm
and R = 50 µm. Therefore, implementation of the considered regime of comb generation in As2Se3 or
Te-based glass microbubble resonators requires CW laser pump at longer wavelengths.
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