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Abstract: Artificial optical metamaterial with a zero index of refraction holds promise for many
diverse phenomena and applications, which can be achieved with vacuum (or related) surface
impedance and materials in the optical domain. Here, we propose simple metal-oxide nanorods
as meta-atoms on the basis of an effective medium approach, based on their weak overlapping
(electric/magnetic) resonances. We thus studied the optical properties of TiO2 nanowire arrays with a
high-filling fraction through their photonic band structure, which exhibits a double-degeneracy point
without a band gap at the center of the Brillouin zone. Various configurations are considered that
reveal their performance over a reasonable range of incident wave vectors as impedance-matched,
double-zero, bulk (low-loss) metamaterials.

Keywords: ε-near-zero metamaterials; double-zero metamaterials; metal-oxide nanowires

1. Introduction

In recent years, new phenomena have been observed in the field of metamaterials that would allow
unprecedented control of the flow of electromagnetic waves, thus opening fascinating possibilities in
different fields of physics and engineering. From the advent of negative-index metamaterials [1,2],
other regimes of effective dielectric permittivity or magnetic permeability have been explored with
tailored effective refractive indices, ranging from positive to negative values [3,4]. In particular,
zero-index metamaterials [5–9] (effective refraction index near zero, n ' 0) have also become a
subject of active investigation [10–17] due to their unique electromagnetic characteristics stemming
from their vanishing ε, namely, the electromagnetic tunneling and energy squeezing that occurs
through subwavelength narrow channels, which can be exploited in supercoupling [10,11], optical
nanocircuit boards [18], waveguide coupling [19], directional [5,20] or position-independent emission
enhancement [21], enhanced nonlinear effects [22,23], photonic doping [24], and even levitation [25].
Thus far, most investigated zero-index metamaterials are based on ε-near-zero (ENZ) metamaterials,
although magnetic µ-near-zero metamaterials would also yield n ' 0, exhibiting properties identical
to those of ε-near-zero metamaterials [26,27].

Attempts to fabricate zero-index metamaterials have been carried out in the microwave [14],
THz [28], IR [23,29], and optical domains [17,30–32]. Nonetheless, like any other optical metamaterial,
making them bulky and lossless is a major challenge [33–35]. Moreover, matching the impedance
of metamaterials to that of a vacuum is crucial in many applications [6,9,13,20,29,30]. Therefore, the
effective dielectric permittivity and magnetic permeability must reach zero simultaneously so that the
resulting impedance-matched, double-zero metamaterial (DZM) exhibits n → 0 and Z =

√
µ/ε ∼ 1.
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However, as is known, supercoupling effects, such as a perfect conductor slab or a waveguide filled
with material with high Z values (where both ε and µ neither match nor approach zero with the same
dispersion profile) can arise at specific configurations [9–11,27,36].

In this regard, one approach has relied on high-index all-dielectric photonic crystals [15,30,31],
exploiting the emergence of an accidental-degeneracy-induced Dirac point at the center of the Brillouin
zone, which leads to an effective DZM behavior [15]. In this respect, it should be pointed out that
(non-magnetic) high-index dielectric meta-atoms (such as semiconductor nanoparticles) can deliver
effective optical magnetic responses through Mie-like magnetic resonances [37–51], which, combined
with the well known negative electric response of metals in the visible range, might lead to bulky
negative-index metamaterials [34,35,52,53] or cloaking devices [54–57].

In this work, we show theoretically that the combination of weak (electric and magnetic)
resonances, slightly blue-shifted, in lossless dielectric nanoparticles suffice to achieve optical
double-zero metamaterials in such a way that the corresponding impedance remains close to that of
the vacuum. In particular, we propose dielectric nanorods with a lossless, moderately large dielectric
function ε (as is the case of metal oxides), made of materials that can potentially span the whole
visible range, at the expense of high-filling fractions, as excellent candidates for the meta-atoms of
such impedance-matched, optical DZMs, revealing numerically their remarkable performance as DZM
supercoupling devices in two dimensions based on arrays of titanium oxide nanowires.

2. Results

2.1. An Effective Medium Approach

Let us first analyze through a simple theoretical model the requirements for a nearly-zero-dielectric
permittivity and magnetic permeability. To that end, we have extended the effective medium theory
of magnetodielectric composites developed specifically for cylinders or spheres, [58] which reduces
in the quasi-static limit to the Maxwell–Garnett theory. In the (2D) case of infinitely long nanowires
of radius R, with dielectric permittivity εc (non-magnetic µc = 1), embedded in vacuum (ε0, µ0) with
filling fraction f , we obtain generalized expressions for the effective anisotropic ε̃eff and µ̃eff (εeff

‖ and

µeff
‖ in the plane perpendicular to the nanowire axis and εeff

z and µeff
z along the nanowire axis) in terms

of analogue dipolar polarizibilities, as follows:

εeff
‖ − ε0

εeff
‖ + ε0

= − f
α
(E)
‖

πR2 , (1)

µeff
z

µ0
− 1 = − f

α
(H)
z

πR2 (2)

for transverse electric (TE) waves, that is, the electric field linearly polarized perpendicular to the
nanowire axis; note that, due to the symmetry of Maxwell’s equations, the effective medium parameters
for transverse magnetic (TM) waves can be obtained from those of TE waves by exchanging permittivities,
permeabilities, and polarizibilities. These expressions allow us to roughly determine what type of (or
spectral regime of) polarizabilities will be a priori suitable to yield specific effective medium behaviors.
For instance, a negative refractive index (εeff

‖ ' −1, µeff
z ' −1) requires from Equation (2) very high

electric dipolar polarizibility 1/α
(E)
‖ → 0, which is in turn the approach followed in [34,35] through

overlapping electric and magnetic Mie resonances in dense arrays of core-shell metal-semiconducting
nanowires. One would expect that a similar approach would suffice to achieve DZMs with the
advantage of not needing such large filling fractions. Though this is plausible, the on-resonance
condition introduces moderately large (scattering) losses that may in turn kill the zero-index behavior
through the imaginary parts of α

(E)
‖ and α

(H)
z .
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Nonetheless, another approach can be inferred from Equation (2) upon assuming that εeff
‖ and

µeff
z = 0. The required dipolar polaribilities can be written as

α
(E)
‖ ' f−1πR2 (3a)

α
(H)
z ' f−1πR2. (3b)

Such electromagnetic (EM) conditions can be fulfilled on the blue side of the spectral regime of
weakly resonant scattering of dielectric nanorods. Since only moderately large dielectric constants
are needed, metal oxides can be exploited with negligible losses in most of the optical domain [59],
in turn synthesized as nanowires with suitable dimensions [60]; as e.g., TiO2 nanowires, which can be
easily fabricated through thermal evaporation [61]. Upon plane wave illumination, the scattering and
extinction cross sections (and thus the absorption) of cylinders can be expanded as sums over different
multipolar contributions [34]. For a TE wave:

Qsca =
2

kR

(
|a0|2 + 2

∞

∑
j=1
|aj|2

)
(4)

Qext =
2

kR
Re

(
a0 + 2

∞

∑
j=1

aj

)
(5)

where k = 2π/λ, λ being the wavelength of the external medium. For dielectric particles (n =
√

ε),
the coefficients aj are given by

aj =
nJ
′
j (kR) Jj (nkR)− Jj (kR) J

′
j (nkR)

nJj (nkR) H′j (kR)− Hj (kR) J ′j (nkR)
(6)

where Jj and Hj are the standard Bessel and (first-kind) Hankel functions, and the primes indicate
differentiation with respect to the argument. Each coefficient aj represents a certain multipolar character
that can be either electric or magnetic. The first two lowest-order terms, a0 and a1, are related to the
magnetic and electric dipole polarizabilities, respectively, while higher-order terms are related to other
multipolar contributions. The Mie extinction (or scattering, since absorption is neglected thus far)
cross section of an infinite TiO2 nanocylinder of radius R = 180 nm in TE polarization (the electric field
perpendicular to the cylinder axis) is shown in Figure 1; incidentally, note that the polarization is the
opposite to that in [15,30,31]. The refractive index of TiO2 is assumed constant nTiO2 = 2.6 throughout
the spectral region studied therein [59]. In addition, we show separately the lowest-order multipolar
contributions to the Mie extinction cross section. The electric-dipole resonance is clearly observed,
stemming from the a1 term in Mie scattering, which in turn gives the contribution to the electric
polarizibility α

(E)
‖ . On the other hand, the contribution from the a0 term yields a very weak magnetic

resonance in the infrared (not shown in Figure 1), providing the contribution to the (effective) magnetic
polaribility α

(H)
z . Both are negative in the overlapping regime in the blue part (at smaller wavelengths)

of the electric/magnetic resonances, exhibiting appropriate DZM conditions (3) as explicitly indicated.
Snapshots of the EM field components (in-plane electric and out-of-plane magnetic) for an incoming
field propagating along the x axis (from left to right) are shown at and off resonance. The field
distributions illustrate their behavior opposing the incident fields on the blue side of the resonances
(λ = 750 nm).
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Figure 1. Left: (top) Mie extinction efficiency Qext ≡ Qsca in TE polarization and (bottom) corresponding

polarizibilities α
(E)
‖ and α

(H)
z for a TiO2 nanocylinder of radius R = 180 nm. Right: (top) Contour maps

of the transverse electric and longitudinal magnetic fields, and (bottom) angular scattering patterns,
at the a1 Mie resonance (λ = 835 nm) and off resonance, at both higher and lower wavelengths
(λ = 950 nm and λ = 750 nm, respectively). The incident light propagates from left to the right along
the x axis and the electric field lies on the y axis.

Next, we exploit the effective medium (Equation (2)) to obtain the effective parameters expected
for a random arrangement of TiO2 nanorods. This is shown in Figure 2 for varying filling fractions.
It can be seen that, for increasing filling fraction f , the real parts of εeff

‖ and µeff
z tend to decrease; this

is true not only for their real parts but also their imaginary parts, which account for the effective
absorption. These, however, remain reasonably low. Since the material is lossless, effective absorption
losses stem only from scattering losses. In this regard, we have plotted the scattering pattern associated
to single Mie nanocylinders at several frequencies in Figure 1. Note that, though the scattering cross
section is moderately large in the blue part of the electric resonance (spectral regime appropriate for
DZM behavior), the angular pattern reveals strong suppression of backward scattering, which might
contribute to the minimization of scattering losses in the effective medium. With the help of the above
(effective medium) parameters, we expect the resulting effective refractive index neff =

√
εeff
‖ µeff

z to
approach zero with a moderate impedance.
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Figure 2. Spectral dependence of the effective parameters (left) εeff
‖ and (right) µeff

z in TE polarization
for a random arrangement of TiO2 nanocylinders of radius R = 180 nm with varying filling fractions
f = 1/3, 1/2, 2/3.
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2.2. Numerical Calculations: Double-Zero Metamaterials

Since the required filling fractions f ≥ 2/3 exceed the limit of validity of the effective medium
theory, let us explore numerically the EM behavior of a metamaterial consisting of such TiO2 nanorods.
To that end, a triangular lattice of TiO2 is considered with a period (d = 380 nm), such that the resulting
filling fraction f ∼ 0.8 belongs to the spectral regime of interest neff ∼ 0, predicted above. First of all,
we show in Figure 3 the resulting photonic band structure. The region of interest lies near the Γ point
at frequencies above the pseudo-gap of the second band, where the third and fourth bands appear
degenerate. Incidentally, this spectral region roughly coincides with that of the electric dipole, the a1

Mie resonance mentioned in the previous subsection. This region has been magnified for the sake of
clarity in Figure 3: A double degeneracy is observed at the Γ point with nearly isotropic quadratic
bands with increasing k. It should be emphasized that no (accidental) triply-degenerate Dirac point
is achieved as mentioned in [15,30,31,62] for opposite linear polarization, different lattice symmetry,
and higher refractive index contrast. However, as mentioned in [63], if indeed our system can be
made homogeneous, the zero phase velocity with the high group velocity associated with the obtained
bands could lead to DZM behavior near the Γ point. It should be recalled that, if the effective index of
refraction is actually close to zero, the effective wavelength inside could be large enough to consider
the medium homogenizable [15].

Γ

K
M

Γ

MKM
0

100

200

300

400

500

ν 
(T
H
z)

Γ MK

Figure 3. 2D photonic band structure for a triangular lattice of TiO2 nanocylinders of radius R = 180 nm
with period d = 380 nm. The inset shows the region around k = 0 (Γ point) where third and fourth
bands are degenerate, exhibiting the upper band isotropy over a sufficiently wide k-range.

The plausible behavior of our all-dielectric array as DZM about the doubly degenerate point
now needs to be verified. Therefore, we show the transmission of a plane wave through an infinite
slab for an increasing angle of incidence in Figure 4. A remarkable DZM behavior is observed, with
a total transmission only very near normal incidence (a constant phase front) and an abrupt total
reflection beyond a narrow admittance angle ∼3◦. Such total reflection is preserved up to a large angle
of incidence ≥30◦, which corresponds to the wavevector region shown above (see Figure 3), where the
two photonic bands bend and cross each other along the ΓM direction.
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Figure 4. Left: Transmission as a function of the angle of incidence θ of a TE-polarized plane wave
through an infinite slab of width W = 6.613µm made of an array of TiO2 nanocylinders of radius
R = 180 nm with period d = 380 nm for two frequencies at/near the doubly degenerate point. The inset
depicts the configuration. Right: Electric field maps across the slabs for various relevant angles of
incidence at fixed frequency ν = 385 THz.

Finally, two devices are numerically simulated where the DZM behavior is evidenced.
First, we show in Figure 5 a finite thin slab similar to the infinite one considered in Figure 4.
The zero-phase-delay across the slab can be observed, although a finer structure of the electric field
within the rods is also appreciable. The wave front is fully transmitted with negligible absorption
(neff ∼ 0) and a nearly negligible reflection at the entrance face. Moreover, a prism acting as a beam
splitter is also shown in Figure 5, where some disturbances in the input face can be observed due to
unwanted reflection, and in the output corner. Corresponding videos are included as supplementary
information. The phase front evolution can be clearly observed, evidencing this quasi-constant phase
(quasi-infinite phase velocity) across both devices. Particularly, in the case of the prism, it can be
observed that the wavefront actually follows the inclination of the output faces, leading to two outgoing
beams (except for some spurious diffraction near the prism edge) emerging from these two faces of the
prism, as is observed in beam splitters.

6 μm

1
5

.6
 μ
m

10 μm

3
1

 μ
m

Figure 5. Transverse electric field snapshots for two finite arrangements of an array of TiO2

nanocylinders with a radius R = 180 nm and a period d = 380 nm, on which a TE-polarized Gaussian
beam impinges at the frequency of the doubly degenerate point described above: a slab (left) and a
prism (beam splitter, right) on which a Gaussian beam impinges, revealing the resulting DZM behavior
of the nanocylinder array. Corresponding videos are included in the Supplementary Information where
the phase front evolution is clearly observed.
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3. Conclusions

We have theoretically explored a means of obtaining an impedance-matched, double-zero
optical metamaterial on the basis of weakly (electric/magnetic) resonant meta-atoms,
exploiting their off-resonant, negative polarizibilities on the blue side of the overlapping
resonances. Metal-oxide nanowires are proposed as good candidates to fulfill such conditions,
revealing through effective medium theory that this is the case for TiO2 cylinders in the optical
domain. Numerical analysis of the photonic band structure in TE polarization for a closely packed
triangular lattice of TiO2 rods reveals a doubly degenerate point at k = 0 at the third and fourth bands.
The transmission of plane waves at frequencies close to the degeneracy exhibit a DZM behavior
with a transmission only at near normal incidence and a total reflection for an increasing angle up
to ∼30◦, beyond which the two bands bend and cross each other. Further numerical simulations
for configurations such as a finite slab and a beam splitter (prism) neatly manifest remarkable
DZM-expected phenomena, which have fascinating applications in optics and engineering. Our results
aid in the actualization of impedance-matched, low-loss (bulky) DZMs (in the visible and throughout
the EM spectrum) with moderately large index dielectrics, which might ease optical DZM fabrication
through state-of-the-art metal-oxide nanowire arrays [60,61].

Supplementary Materials: The following are available online at http://www.mdpi.com/2304-6732/5/2/7/s1,
Video S1: Transverse electric field in a full harmonic cycle for a finite slab made of TiO2-cylinder triangular array
shown in Figure 5. Video S2: Transverse electric field in a full harmonic cycle for a prism (beam splitter) made of
TiO2-cylinder triangular array shown in Figure 5.
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