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Abstract: The ultimate goal of metamaterial engineering is to have complete control over 

the electromagnetic constitutive parameters in three-dimensional space. This engineering 

can be done by considering either single meta-atoms or full meta-arrays. We follow the 

first route and perform numerical simulations of split-ring resonators, with different gap 

numbers and under varying illumination scenarios, to investigate their individual 

multipolar scattering response. For the fundamental resonance, we observe that odd-gap 

rings always exhibit overlapping electric and magnetic dipole responses while even-gap 

rings only exhibit that behavior accidentally. We expect our results to foster progress in the 

engineering of three-dimensional disordered metamaterials. 
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1. Introduction  

In the last fifteen years, intense efforts have been devoted to the investigation of man-made artificial 

materials or metamaterials [1,2]. Metamaterials are attractive because they possess a rich variety of 

electromagnetic constitutive parameters, such as electric permittivity, magnetic permeability, and 

bianisotropy, all of which can be tailored by their geometry [3–5]. For example, metamaterials have 

made transformation optics possible by providing a blueprint for the realization of anisotropic, 

inhomogeneous, and graded electromagnetic properties [6,7]. To date, almost all metamaterials 

investigated have been periodic. Indeed, periodicity not only simplifies the simulation of metamaterials 

but also their fabrication. However, at optical frequencies, current top-down fabrication technologies, 
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such as electron-beam lithography, are very costly, intrinsically planar, and not compatible with large 

scale-devices. Bottom-up fabrication technologies could alleviate part of this problem but suffer from 

limitations of their own, namely the absence of long-range order [8], even though they’ve made  

strides in recent years [9]. Therefore, to leverage bottom-up fabrication technologies and go towards 

three-dimensional, large-scale devices, it is necessary to develop novel tools for a thorough 

understanding of disordered metamaterials [10,11]. 

Metamaterials electromagnetic properties have most often been investigated using parameter 

retrieval, i.e., they were computed from reflection and transmission coefficients of periodic arrays [12]. 

However, this approach is no longer possible for disordered metamaterials. To overcome this 

difficulty, another approach to metamaterials is needed. For instance, metamaterials can be seen as a 

collection of essential building blocks, also referred to as meta-atoms, which support different multipoles: 

electric dipoles, magnetic dipoles, as well as higher-order multipoles [13]. From this perspective, it is 

the induction of this microscopic polarization and magnetization that gives rise to macroscopic 

effective properties, such as electric permittivity, magnetic permeability, or bianisotropy [14]. Then, a 

natural and versatile method of considering the electromagnetic properties of disordered metamaterials 

consists of computing the intrinsic multipoles of meta-atoms and complement those with a mixing  

law [15]. Investigations of individual meta-atoms thus represent a required stepping stone towards the 

engineering of disordered metamaterials. 

Split-ring resonators are one of the essential building blocks of metamaterials. They have been used 

in the first experimental demonstrations to obtain negative permeability and negative index and, more 

recently, in magnetic resonance imaging and cloaking [16,17]. The first investigations of one-gap  

split-ring resonators were essentially focused on their fundamental resonance due to their resonant 

magnetic response. It was referred to as an LC resonance, in analogy with electrical engineering 

practice, because the gap and ring were seen as a capacitance (C) and inductance (L), respectively [18]. 

With the transition to optics, however, it was soon realized that all resonances can be interpreted 

within the unified framework of plasmonic, standing-wave resonances [19,20]. In such models, split-

rings are essentially viewed as thin plasmonic films that are truncated into a wire and bent into a split-

ring [21]. Other investigations focused on the properties of multi-gap split-ring resonators and their 

coupling effects [22], most notably to extend the operating range of one-gap split-rings because of its  

saturation-imposed limits at optical frequencies [23]. A similar plasmonic, standing-wave picture was 

shown to apply to multi-gap split-rings as well [24]. In addition, it was recently shown that one-gap 

split-ring resonators are possible platforms for the realization of random metamaterials with a negative 

index due to the inherent superposition of their intrinsic electric and magnetic dipoles [25]. 

In this paper, we go one step further and investigate the multipoles of split-ring resonators with an 

odd or even number of gaps (from one to four gaps) and show that electric and magnetic dipoles are 

always degenerate in the odd case, while that is only accidentally true in the even case. We present 

extensive numerical evidence to support this claim, namely multipole coefficients of individual  

split-ring resonators retrieved from full-wave simulations, and thus shed light on the effective 

properties of disordered metamaterials. 
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2. Multipolar Decomposition  

We first consider a one-gap split-ring resonator (1-SRR) made of gold and surrounded by free 

space, with a length ܮ ൌ 700 nm, width ܹ ൌ 50 nm, thickness ܶ ൌ 50 nm, and gap ܩ ൌ 200 nm (see 

Figure 1a). We illuminate this 1-SRR with a plane wave for three different incidences and/or polarizations. 

In case 1, the electric field is in-plane and along the gap and the magnetic field is out-of-plane (see 

Figure 1b). In case 2, the electric field is in-plane but normal to the gap and the magnetic field is  

out-of-plane (see Figure 1c). In case 3, both the electric and magnetic fields are in-plane and the 

electric field is along the gap while the magnetic field is normal to it (see Figure 1d). These cases were 

chosen because the fundamental resonance of the 1-SRR is excited in all three cases [20]. 

 

Figure 1. (a) Dimensions of the 1-SRR: L = 700 nm, W = 50 nm, T = 50 nm, and  

G = 200 nm (b) Case 1: electric field in-plane and along the gap, magnetic field  

out-of-plane (c) Case 2: electric field in-plane and normal to the gap, magnetic field  

out-of-plane (c) Case 3: electric and magnetic fields in-plane, along the gap and normal to 

it, respectively. All the gold SRRs are described using the Drude model with a plasma 

frequency (ωp = 1.367 × 1016 rad/s) and collision frequency (ωc = 6.478 × 1013 rad/s) based 

on values from [31].  

The scattered electric field (total field minus incident field) is recorded in the near-field on a virtual 

sphere completely enclosing the 1-SRR. In spherical coordinates, the scattered electric field can be 

compactly expressed in terms of vector spherical harmonics (VSH), ۼ௡௠ and ۻ௡௠ [26,27] Eୱୡୟሺr, θ, φሻ ൌ ෍ ෍ kଶE୬୫ሾa୬୫N୬୫ሺr, θ, φሻ ൅ b୬୫M୬୫ሺr, θ, φሻሿା୬
୫ୀି୬

ஶ
୬ୀଵ  (1)

where ݊ and ݉ are indices characterizing the zenithal and azimuthal dependence of the VSHs, ݇ is the 

wavevector, and ܧ௡௠  a scaling coefficient. Since the VSHs are orthogonal to each other, we can 

compute the expansion coefficients ܽ௡௠ and ܾ௡௠ by projection and appropriate normalization.  ܽ௡௠ ൌ ׬ ׬ ۳. ∗௡௠ۼ ׬గ଴ଶగ଴߮݀ߠ݀ߠ݊݅ݏ ׬ .௡௠ۼ ∗௡௠ۼ గ଴ଶగ଴߮݀ߠ݀ߠ݊݅ݏ  (2)

ܾ௡௠ ൌ ׬ ׬ ∗௡௠ۻ.۳ ׬గ଴ଶగ଴߮݀ߠ݀ߠ݊݅ݏ ׬ ∗௡௠ۻ.௡௠ۼ గ଴ଶగ଴߮݀ߠ݀ߠ݊݅ݏ  (3)

The scattering cross-section of the 1-SRR is then simply expressed as 
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௦௖௔ܥ ൌ ݇ଶ෍ ෍ ݊ሺ݊ ൅ 1ሻሾ|ܽ௡௠|ଶ ൅ |ܾ௡௠|ଶሿା௡
௠ୀି௡

ஶ
௡ୀଵ  (4)

Furthermore, we can relate these expansion coefficients to Cartesian multipoles [26], most notably 

the lowest-order multipoles (electric dipole, ܘ , magnetic dipole, ܕ , and electric quadrupole, ۿ ). 

Finally, we can use these to decompose the scattering cross-section ܥ௦௖௔ ൌ ௦௖௔௣ܥ ൅ ௦௖௔௠ܥ ൅ ௦௖௔ொܥ ൅ ⋯ (5)

Note that in the limit of geometrical optics, and accounting for the extinction paradox [27], the 

scattering cross-section is bounded by twice the geometrical cross-section (ܥ௦௖௔ ൑  .(ଶ݉ߤ	0.98

In the following, we use this decomposition to identify the multipolar character of each resonance in 

all three cases of interest (see Figure 1). Besides, we restrict to the four lowest order Cartesian 
multipoles with the strongest response, namely electric dipoles, ݌௫, and, ݌௬, magnetic dipole, ݉௭, and 

electric quadrupole, ܳ௫௬. 

3. From 1-SRR to 4-SRR  

We plot in Figure 2 the different scattering cross-sections (electric dipole, magnetic dipole, electric 

quadrupole, and total) of the 1-SRR for the three different cases defined in Figure 1. In case 1, only 

modes that are even with respect to the ݕݔ-plane and odd with respect to the ݖݔ-plane can be excited. 

In case 2, only the former symmetry holds true, while in case 3, only the latter symmetry holds true. 

Due to these symmetry constraints, the electric dipole, ݌௫, cannot be excited in cases 1 and 3. As can 

be seen in Figure 2, in all three cases there are two resonances that are always excited (f1 = 51 THz,  

f3 = 151 THz) while in the second case there is also an additional resonance (f2 = 106 THz).  

Resonance 2 is due to the excitation of the electric dipole, ݌௫. Resonances 1 and 3 can be excited either 

by the electric field along the gap, or the magnetic field normal to the plane of SRR, or a combination 
of both, and yield both an electric dipole, ݌௬ , and a magnetic dipole, ݉௭ , response. In addition, 

resonance 3 shows an in-plane quadrupole, ܳ௫௬, response. Surprisingly, when both fields are present 

with the right polarization (case 1), their effects do cumulate for resonance 1 but not for resonance 3. 

This would seem to indicate that case 3 is the most favorable to multipole overlap but, in a planar 

configuration, the magnetic dipole, ݉௭, does not radiate in the direction of propagation, thus making 

case 1 the preferred illumination scenario. 

We plot in Figure 3, the scattering cross-sections of the 2-SRR (even) for the three different cases 

defined in Figure 1. We highlight that all further additions of gaps carry the same dimensions of ܩ ൌ 200 nm centered along a given side of the starting square split-ring (see Figure 1a). In case 1, 

only modes that are even with respect to the ݕݔ-plane and odd with respect to the ݖݔ-plane can be 

excited. In case 2, only modes that are even with respect to the ݕݔ-plane and odd with respect to the ݖݕ-plane can be excited. In case 3, only modes that are even with respect to the ݖݕ-plane and odd with 

respect to the ݖݔ-plane can be excited. Due to these symmetry constraints, the electric dipole, ݌௫ , 
cannot be excited in cases 1 and 3, the electric dipole, ݌௬, cannot be excited in case 2, and the magnetic 

dipole, ݉௭, and electric quadrupole, ܳ௫௬, cannot be excited in case 3. As a result, there can only be an 

overlap between the electric dipole, ݌௬, and the magnetic dipole, ݉௭, in case 1. However, as can be 

seen from Figure 3, both modes are only weakly excited in this case (f1 = 98 THz). Unlike the 1-SRR, 
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in case 2, the 2-SRR has a small overlap between the electric dipole, ݌௫, and the magnetic dipole, ݉௭, 

(f1 = 98 THz, f2 = 106 THz), which could prove useful in the design of novel metamaterials. This 

overlap is not due to symmetry but rather to the specific dimensions of the 2-SRR considered here and, 

hence, is accidental. For the 2-SRR, case 2 is the preferred illumination scenario. 

 

 

Figure 2. Multipolar decomposition of the scattering cross-section, for a 1-SRR between 

30 THz and 200 THz, into the lowest order multipoles; (a) Case 1: electric field in-plane 

and along the gap, magnetic field out-of-plane; two resonances are observed at f1 = 51 THz 

and f3 = 151 THz (b) Case 2: electric field in-plane and normal to the gap, magnetic field 

out-of-plane; three resonances are observed, those observed in case 1 plus another one at 

f2 = 106 THz due to the excitation of the electric dipole, ݌௫  (c) Case 3: electric and 

magnetic fields in-plane, along the gap and normal to it, respectively; two resonances are 

observed, just as in Case 1. The resonances excited in Case 1 and 3 yield both an electric 
dipole, ௬݌	 , and a magnetic dipole, ݉௭ , response. Resonance 3 also shows an in-plane 

quadrupole, ܳ௫௬, response in all cases. Insets show the real part of ܧ௭ at the corresponding 

resonance frequencies using a rainbow colormap (min in blue, zero in green, and max in red). 

In Figure 4, we plot the scattering cross-sections of the 3-SRR (odd) for the three cases defined in 

Figure 1. The 3-SRR has exactly the same symmetry properties as the 1-SRR, thus exactly the same 

multipoles are forbidden or allowed. As can be seen in Figure 4, in all three cases there are two 

resonances that are always excited (f1 = 121 THz, f2 = 219 THz) and, similar to the 1-SRR, when both 

fields are present with the right polarization (case 1), their effects do cumulate for resonance 1 but not 

for resonance 2. Furthermore, just as for the 1-SRR, the planar configuration of case 3 is not suitable 

for multipole overlap as it suffers from a lack of radiation along the direction of propagation. A notable 
difference for the 3-SRR is that resonance 2 has a much less prominent electric quadrupole, ܳ௫௬, than 

the 1-SRR. Overall, the 3-SRR is very similar to the 1-SRR, e.g., case 1 is the preferred illumination 

scenario, with the only important difference being that its resonances occur at higher frequencies.   
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Figure 3. Multipolar decomposition of the scattering cross-section, for a 2-SRR between 

30 THz and 200 THz, into the lowest order multipoles; (a) Case 1: electric field in-plane 

and along the gaps, magnetic field out-of-plane; one resonance is observed at f1 = 98 THz. 
Weak excitation of electric dipole, ݌௬, and the magnetic dipole, ݉௭ observed. (b) Case 2: 

electric field in-plane and normal to the gaps, magnetic field out-of-plane; two resonances 

are observed, that observed in case 1 plus another one at f2 = 106 THz. Small overlap 

between the electric dipole, ݌௫, and the magnetic dipole, ݉௭ observed. (c) Case 3: electric 

and magnetic fields in-plane, along the gaps and normal to them, respectively; no 

resonances are observed. Insets show the real part of ܧ௭ at the corresponding resonance 

frequencies using a rainbow colormap (min in blue, zero in green, and max in red). 

In Figure 5, we plot the scattering cross-sections of the 4-SRR (even) for the three cases defined in 

Figure 1. For this case, case 1 and case 2 are identical due to the symmetry of the 4-SRR and are 

referred to from here on as case 2. In case 2, only modes that are even with respect to the ݕݔ-plane and 

odd with respect to the ݖݕ-plane can be excited. In case 3, only modes that are even with respect to the ݖݕ-plane and odd with respect to the ݖݔ-plane can be excited. Due to these symmetry constraints, the 
electric dipole, ݌௫, cannot be excited in case 3, the electric dipole, ݌௬, cannot be excited in case 2, the 

magnetic dipole, ݉௭, and the electric quadrupole, ܳ௫௬, cannot be excited in case 3. As a result, there 

can only be an overlap between the electric dipole, ݌௫ , and the magnetic dipole, ݉௭ , in case 2. 

However, as can be seen from Figure 5, only the magnetic dipole, ݉௭, is strongly excited in this case 

(f1=203 THz). For the 4-SRR, there is thus no preferred illumination scenario. 
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Figure 4. Multipolar decomposition of the scattering cross-section, for a 3-SRR between 

30 THz and 350 THz, into the lowest order multipoles; (a) Case 1: electric field in-plane 

and along the single gap, magnetic field out-of-plane; two resonances are observed at  

f1 = 121 THz and f2 = 219 THz (b) Case 2: electric field in-plane and normal to the single 

gap, magnetic field out-of-plane; three resonances are observed, those observed in case 1 

plus another one at f3 = 297 THz (c) Case 3: electric and magnetic fields in-plane, along 

the single gap and normal to it, respectively; two resonances are observed, just as in case 1. 
The resonances excited in Case 1 and 3 yield both an electric dipole,	݌௬, and a magnetic 

dipole, ݉௭ , response similar to the 1-SRR. Insets show the real part of ܧ௭  at the 

corresponding resonance frequencies using a rainbow colormap (min in blue, zero in green, 

and max in red). 

Figures 2–5 help us paint a portrait of the rich multipolar response of SRRs to electromagnetic 

radiation. For odd-gap rings (2N + 1-SRR), the fundamental resonance exhibits strong and overlapping 

electric and magnetic dipole responses regardless of the illumination, while for even-gap rings  

(2N-SRR), it exhibits a strong magnetic dipole response when the magnetic field is out-of-plane. 

Hence, the parity of the rings plays a crucial role in SRR’s electromagnetic response, with analogous 

resonances for the odd-gap rings and even-gap rings.  

We have shown that the planar configuration of SRRs, which is the one currently amenable to 

fabrication in the optical range, is not the best for multipole overlap. This highlights the need to move 

away from periodic, top-down structures and towards random, bottom-up ones. We note that this can 

also be achieved using dielectric nanoparticles, such as disk or ring resonators [28]. Moreover, we also 

note that recent works have extended investigations of randomness to the field of metasurfaces [29,30]. 
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Figure 5. Multipolar decomposition of the scattering cross-section, for a 4-SRR between 

30 THz and 350 THz, into the lowest order multipoles; (a) Case 2: electric field in-plane, 

magnetic field out-of-plane; one resonance is observed at f1 = 203 THz. Strong magnetic 

dipole, ݉௭, excitation is observed. (b) Case 3: electric and magnetic fields in-plane; one 
resonance is observed at f2 = 230 THz. Only electric dipole, ݌௬, excitation is observed. 

Insets show the real part of ܧ௭ at the corresponding resonance frequencies using a rainbow 

colormap (min in blue, zero in green, and max in red). 

4. Conclusion 

We investigated the scattering response of SRRs with increasing gap numbers, from one to four, 

under three different illumination schemes. We found agreement between our results and previous 

works on one-gap SRRs under normal and grazing incidence and extended it to two, three, and four 

gaps SRRs. In a nutshell, odd-gap rings are more favorable to multipole overlap than even-gap rings 

and grazing incidence is more favorable than normal incidence. These findings confirm the need, 

especially for optics, to move towards random configurations. This could be achieved with either 

plasmonic or dielectric nanoparticles suspended in an aqueous solution. Furthermore, scattering 

properties of individual nanoparticles can be experimentally studied using techniques such as dark 

field microscopy. This detailed knowledge of the Cartesian multipolar response of multi-gap SRRs 

will accelerate the engineering of disordered metamaterials in all three dimensions.  
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