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Abstract: We consider a disordered quantum metamaterial formed by an array of
superconducting flux qubits coupled to microwave photons in a cavity. We map the system
on the Tavis-Cummings model accounting for the disorder in frequencies of the qubits.
The complex transmittance is calculated with the parameters taken from state-of-the-art
experiments. We demonstrate that photon phase shift measurements allow to distinguish
individual resonances in the metamaterial with up to 100 qubits, in spite of the decoherence
spectral width being remarkably larger than the effective coupling constant. Our simulations
are in agreement with the results of the recently reported experiment.
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1. Introduction

The novel type of quantum metamaterials [1–3] composed of arrays of superconducting two-level
systems (qubits) offers a platform for quantum simulators and quantum memories [4,5]. Quantum
metamaterials can be employed as test bench for studies of fundamental phenomena as ensemble
quantum electrodynamics and spin resonance physics on macroscopic level [6,7]. The flux qubit [8,9],
which can be viewed as a artificial atom [10], is a µm-sized superconducting loop with several Josephson
junctions acting as nonlinear circuit elements. The strongly anharmonic potential of the flux qubit
results in an effective two-level structure of the lowest pair of energy levels of the system, where
the excitation frequencies fall into GHz range. Ground and excited levels of the qubit correspond
to quantum superpositions of states with opposite directions of macroscopic persistent currents in the
qubit loop. When coupled to a photon field in a superconducting cavity, the qubit becomes “dressed”
with photons. The experimental studies of superconducting qubit-cavity quantum electrodynamics have
shown vacuum Rabi oscillations [11,12], spin echo and Ramsey fringes [13,14], emission of single
microwave photons [15], and Lamb shift [16].

While the artificially made ensembles of superconducting qubits have an unavoidable spread of
excitation frequencies, in contrast to identical natural atoms, they are easily tunable by varying an
external magnetic flux. This fact makes possible observation of the fundamental phenomena as
dynamical Casimir effect by applying of a non-stationary external drive [17,18], under which GHz
photons are created from cavity vacuum fluctuations. In case of the multi-qubit system, a cm-long
cavity is used as a transmission line where the virtual photon exchange provides a long-range qubit-qubit
interaction in a sub-wavelength metamaterial. It was shown by Tavis and Cummings [19] thatN identical
two-level systems coupled to the single photon mode generate a collective enhancement of the coupling
constant proportional to

√
N . In a qubit array with disordered values of excitation frequencies photons

are also coupled to a collective superradiant mode and decoupled from other N − 1 subradiant modes.
Collective enhancement combined with a possibility of tuning the parameters of the metamaterial by
external magnetic field opens new possibilities for quantum information technology. For example, it has
been suggested, that by applying gradients of magnetic field along the array of qubits, the system can be
operated as a quantum memory with information encoded in collective qubit states [20].

The present work is motivated by recent experiments by Macha et al. [1] where the collective states
of an array of superconducting flux qubits were probed by microwave photons transmitted through the
resonator, in the regime of relatively strong decoherence and disorder in qubit excitation frequencies.
The experiment has shown that resonant photon phase shift effect is quite prominent and stable against
the decoherence. We perform simulations of the phase shift as a function of external flux that modifies the
qubit excitation energies, in the setting similar to Ref. [1]. In our approach, we perform a diagonalization
of the Hamiltonian in a single excitation basis. We analyze the phase shift portrait for different number
of qubits and various values of disorder in qubit excitation frequencies. We show that photon phase shift
measurements are capable to resolve individual resonances for up to N = 100 qubits. Our simulations
closely reproduce the experimental observations.
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2. Model

2.1. Hamiltonian of Disordered Metamaterial

Considering the interaction of N qubits with a photon in a resonator (see Figure 1), we start from the
Tavis-Cummings Hamiltonian, which includes qubit-qubit interaction term

H = ωra
+a+

N∑
i=1

εiσ
+
i σ

−
i +

N∑
i=1

gi(σ
+
i a+ a+σ−

i ) +
N−1∑
i=1

gqq,iσ
+
i+1σ

−
i (1)

Bosonic operators a+, a in Equation (1) correspond to the photon modeωr in the cavity and the single
i-th qubit is described in terms of uppering and lowering Pauli operators σ+

i = |e〉〈g|,σ−
i = |g〉〈e| acting

on its ground and excited states. The first and the second terms in Equation (1) correspond to photon
and qubit excitations of frequencies ωr and εi, the third one is qubit-cavity coupling written in rotating
wave approximation. The last term is an effective direct nearest neighbor qubit-qubit interaction.

Figure 1. Sketch of quantum metamaterial formed by an array of flux qubits embedded into
a microwave resonator.

The qubit excitation frequency ε follows from microscopic Josephson and charging energies, EJ and
EC , which imply EJ > EC in the operating regime of flux qubit. When the external magnetic flux
threading the qubit loop is equal to half of the magnetic flux quantum Φ = Φ0/2, with Φ0 = h/(2e),
the total energy of the qubit has two symmetric minima related to the opposite circulations of persistent
currents |↓〉 and |↑〉where the tunneling rate ∆ between two wells depends onEJ andEC . The condition
that ∆ is higher than dephasing rate Γϕ allows for quantum superpositions of |↓〉 and |↑〉 resulting in
two non-degenerate states |g〉, |e〉 being the basis of Equation (1). By detuning the magnetic flux from
Φ = Φ0/2 one shifts the two minima by the energy

εi(Φ) =
2Ip,i
~

(
Φ− Φ0

2

)
(2)
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where Ip,i is the i-th qubit nominal current [8]. The excitation frequency of i-th qubit is given by the
Floquet relation

εi(Φ) =
√

∆2
i + εi(Φ)2 (3)

The qubit-cavity coupling constants in Equation (1) are renormalized bare constants gi = ∆i

εi(Φ)
gbarei

written in the rotated basis |g〉, |e〉. Everywhere below we work with the effective constants. Under
uniform flux biasing conditions, the spread in εi depends mainly on qubit excitation gaps ∆i, rather than
Ip,i, due to exponential dependence of ∆i ∝

√
EJ/EC exp(−α

√
EJ/EC) on the EJ/EC ratio which

fluctuates from one flux qubit to another. The system under consideration [1] is strongly disordered
because the spread of excitation gaps ∆i is estimated as high as σ∆ ≤ 20%. The system has an
intermediate collective coupling strength value Ω, which is smaller than decoherence rate Γϕ but larger
than relaxation rate κ of the cavity

Γϕ > Ω > κ, Ω =

√ ∑
i=1...N

g2
i

In the experiment by Macha et al. [1], the external magnetic flux Φ tunes qubit excitation frequencies
in resonance with the cavity mode providing the shift of the phase ϕ(Φ) of a weak external probe signal
at cavity mode frequency ωr/2π = 7.78 GHz. From the measured ϕ(Φ) it was found that number of
qubits in an ensemble, which form a collective mode, corresponds to N = 8. Relevant parameters of
the studied metamaterial are the following: qubit-cavity coupling strength gi/2π = (1.2 ± 0.1) MHz,
dephasing Γϕ/2π = 55 MHz, persistent current Ip = (74 ± 1) nA and average value of the excitation
gap ∆/2π = 5.6 GHz. The qubit-qubit interaction, estimated as gqq,i/2π < 1 MHz, has negligible effect
on ϕ(Φ). The interaction only slightly shifts energies of collective states and does not contribute directly
to the collective qubit-cavity coupling strength Ω, which is the most relevant for the phase shift.

2.2. Exact Diagonalization Approach

The qubit dephasing in the system under consideration leads to smearing of the photon density of
states which becomes not informative. However, the experimentally measured phase locking effect is
quite prominent [1]. In our work here, we focus on the influence of relatively large diagonal disorder in
the qubit excitation frequencies and their number N on the phase shift ϕ(Φ) of the transmitted photons.
We calculate the phase shift from a complex phase of the photon Green function ϕ(Φ) = argDω, where
ω is the probe frequency and Φ is the external flux, counted from the symmetry point value Φ0/2, which
shifts all excitation energies in the qubit ensemble.

Considering approximately resonant regime where the excitation frequencies of qubits and resonator
mode are close to each other

|εi −ωr| < ωr (4)

we find a spectrum of the system in a regime of single excitation by means of exact diagonalization of
the Hamiltonian. This regime is realized under experimental conditions due to small microwave probe
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power and low temperature of the system. Our solution corresponds to the fully quantum regime where
all the variables σ−

i , a are quantum fields.
Below we introduce the basis of N + 1 states of approximately equal energies which are related to

single excitation either in the photon cavity or in one of N qubits. Namely, the state where a single
photon is excited and all qubits are in the ground state reads

|1〉 = |1; 0, . . . , 0〉︸ ︷︷ ︸
N+1

(5)

The excitation in 1-st, i-th or N -th qubits without the photon are given by

|2〉 = |0; 1, 0, . . . , 0〉

|i + 1〉 = |0; 0, . . . , 1, . . . , 0〉

and
|N + 1〉 = |0; 0, . . . , 0, 1〉

The Hamiltonian Equation (1) in a matrix form Hi,j = 〈i|H|j〉 in terms of this single excitation basis
|i〉 reads

Hi,j =



ωr g1 g2 g3 g4 g5 . . .

g1 ε1 gqq,1 0 0 0 . . .

g2 gqq,1 ε2 gqq,2 0 0 . . .

g3 0 gqq,2 ε3 gqq,3 0 . . .

g4 0 0 gqq,3 ε4 gqq,4 . . .

g5 0 0 0 gqq,4 ε5 . . .

...
...

...
...

...
... . . .


The photon Green function Dω is given by the first diagonal {1, 1} element of the resolvent matrix G

Gi,j = [ωδi,j −Hi,j − diag(iκ, iΓϕ, ...)]
−1

This is the matrix of retarded Green functions, where the last term diag(iκ, iΓϕ, ...) introduced in order
to take into account the damping in the cavity κ/2π = 715 kHz and dephasing of qubits. We note that
the above expression for the photon Green function Dω and Gi,j allowing us to calculate the phase shift
coincides with the generic equations obtained earlier by Volkov and Fistul [3].
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3. Results

3.1. Strong Disorder and Large N

In our numerical studies, we model the system with large amount of qubits and in the presence of
disorder between them. Namely, we fix metamaterial parameters and plot the phase shift increasing qubit
number N , but keeping spread of ∆i constant, see Figure 2, and vice versa, see Figure 3. The reported
results for the ϕ(Φ) are obtained at the experimental values ω/2π = ωr/2π = 7.78 GHz, Ip = 74 nA
and the following parameters: decoherence rate Γϕ/2π = 33 MHz, average qubit excitation gaps
∆/2π = 5.9 GHz with normal distribution and dispersion σ∆ = 3.6%, effective qubit-cavity coupling
g/2π = 1.1 MHz with small dispersion σg = 1% and N = 7 qubits in the ensemble. These parameters
give best fit in the experimental regime at small N discussed in the next Section 3.2.

Figure 2. Numerical results for the phase shift ϕ(Φ) at qubit energy gap disorder σ∆ = 3.6%

of N = 20, 50, 100, 250, 500 qubits.

Figure 3. Numerical results for the phase shift ϕ(Φ) of N = 250 qubits using five different
values of disorder σ∆ = 5, 7.5, 10, 15, 25%. Parameters of the system: probe frequency
ω/2π = ωr/2π = 7.78 GHz and relaxation rate κ/2π = 715 kHz, average excitation gap
∆/2π = 5.9 GHz of qubits with normal distribution and dispersion σ∆ = 3.6%, average
coupling constant g/2π = 1.1 MHz with σg = 1%, decoherence Γϕ/2π = 33 MHz,
persistent current Ip = 74 nA.

Figure 2 shows plots of the phase shift dependence on magnetic flux for N = 20, 50, 100, 250, 500

qubits in the system and fixed spread σ∆ = 3.6% of the normal distribution of ∆i. The pronounced
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irregular peaks in Figure 2 at finite number of qubits, e.g., at N = 20, reflects the disordered structure
of the eigenmodes. Under the increasing of N in our simulation Figure 2, fluctuations on curves are
smearing gradually. One can see that for N < 100 the phase shift fluctuates and depends on a particular
realization of the qubit frequencies, while for N > 100 it appears rather smooth and regular, meaning
that the array of qubits can be treated as a continuous system at these parameters. In this limit the phase
shift curve depends on the shape of the inhomogenous broadening of qubit frequencies in the ensemble,
rather than the particular disorder realization. In Figure 3, we show results for different values of disorder
with the following dispersions σ∆ = 5, 7.5, 10, 15, 25%, keeping qubit number N = 250 fixed. One can
see from the Figure 3 that, with increasing disorder, the phase shift pictures start to reveal fluctuations.
For the realistic spread σ∆ = 10% the system remains far from the ensemble limit, even for this relatively
large number of qubits. We demonstrate in Figure 3, that effects of finite number of qubits are significant
and it requires several hundreds of qubits in a real superconducting metamaterials to form an effectively
continuous system showing a regular response functions.

3.2. Experimental Regime, Small N

Next, we compare experimental [1] (Figure 4, left panel) and numerical (Figure 4, right panel) results
for the phase shift ϕ(Φ). The resonator frequency ω/2π = ωr/2π = 7.78 GHz and persistent current
Ip = 74 nA are fixed. In our numerical method, we assume a normal distribution of the qubit excitation
gaps and effective coupling. We selected a parameter distribution with dispersions σ∆ = 3.6% and
σg = 1% for a system containing N = 7 qubits with an average excitation gap ∆/2π = 5.9 GHz, which
closely resembles the experimental data. Subsequently, we fitted the decoherence rate and effective qubit
coupling and found Γϕ/2π = 33 MHz and g/2π = 1.3 MHz, respectively. While the assumed spread
is less than the experimentally expected one (σexp

∆ < 20%) all found parameters are in correspondence
with those quoted in [1], where ∆exp/2π = 5.6 GHz, gexp/2π = 1.2 MHz, Γexp

ϕ /2π = 55 MHz and
N exp = 8. The values for qubit number and dephasing reported in Ref. [1] were found under the
assumption of identical qubits. Here we show, that the experimental data can be reproduced fairly well
under the assumption of randomly distributed qubit parameters. In the experiment it was observed,
that an ensemble of N exp = 8 qubits, resonantly interacting with the cavity mode and monitored over
long time, spontaneously dissolved into two sub-ensembles of 4 qubits each, resulting into two jumps
in Figure 4 (left panel). The reduction of the peaks amplitude in the central region from ≈±0.15 to
≈±0.05 in Figure 4 (left panel) follows from the interference between the tails of the resonant jumps at
Φ−Φ0/2 ≈ 10.5, 11.5 mΦ0 related to each of two sub-ensembles. In our exact diagonalization procedure
we do not find the formation of sub-ensembles but arrive at correspondence with the experimental curves
if parameters of the metamaterial and disorder are close to the experimental values.
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Figure 4. Experimental (left panel) and numerical (right panel) results for the photon phase
shift ϕ(Φ) as a function of external flux bias Φ, calculated for the system of N = 7 qubits.

4. Conclusions

We theoretically studied the model of a flux qubit array coupled to a cavity, with disorder in qubit
excitation frequencies. The system under consideration contains a finite number of qubits and operates
in the intermediate regime where disorder range and decoherence rate exceed the effective qubit-cavity
coupling. We calculated the photon Green function through the exact diagonalization of the Hamiltonian
in the single excitation regime, assuming low power of external microwave driving. We found that
the resonant phase shift of a transmitted probe signal shows quantitative correspondence with the
experimental data [1]. Variations in phase shift characteristics at different values of the disorder and
number of qubits in the system were presented.
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