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Abstract: The article presents a comparative analysis of published data for the physical parameters of
the ZGP (ZnGeP2) crystal, its nonlinear and phase-matching properties, and functional capabilities
for all frequency conversion processes (harmonics, sum and difference frequencies, and parametric
generation). At the first time, the possibilities for obtaining the temperature-noncritical processes for
some combinations of wavelengths are shown.
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1. Introduction

Mid-infrared (IR) radiation is widely used for solving different tasks [1–3]. These are
spectroscopy [4], medicine (diagnostic, therapy, surgery) [5], analysis of biological sys-
tems [6–8], monitoring of trace gases and remote sensing [9–11], preservation of historical
values [12–14], ecological studying of soil [15], etc. A large number of applications are
based on methods of spectroscopy with different wavelengths of radiation. For forming
these, nonlinear optical frequency conversion of laser radiation is used. The generation
of the sum and difference of the frequencies makes it possible to generate radiation at
fixed wavelengths. The wavelength variation in a wide range is provided by an optical
parametric oscillator (OPO) [16–18]. Currently, sources have been developed for generation
radiation in both continuous and pulsed mode (from monopulse to femtosecond durations
of pulses).

Commercially produced crystals are widely used for nonlinear optical frequency
conversion: AGS (AgGaS2), AGSe (AgGaSe2) and ZGP (ZnGeP2) [19,20]. Crystal ZGP
stands out among them. It has important advantages—a large range of transparency,
large values of effective nonlinearity coefficient and thermal conductivity, an optimal
birefringence value, a sufficiently high damage threshold, etc. The synthesis and research
of ZGP began in the “semiconductor era”. The results of the work of this period are
given in [21]. The possibility for application of this crystal for nonlinear optical frequency
conversion was obviously shown for the first time in the article [22]. In the past, a large
number of studies of its physical properties have been carried out, and various frequency
conversion processes with various schemes of solutions have been implemented.

This paper provides an overview of the published data on the physical parameters of
the ZGP crystal, and its phase-matching properties for various tasks of nonlinear optical
frequency conversion (harmonic generation, sum and difference frequencies, and paramet-
ric generation). Many of the data on ZGP properties published before 2005 are given in the
well-known D. Nikogosyan handbook [23]. More complete data are given in [24].
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2. Physical Parameters of the ZGP Crystal

The positive uniaxial crystal ZGP belongs to the 42m point symmetry group. In
general, crystal growth is carried out by the Bridgman–Stockbarger technique. The lattice
parameters, all thermo-physical parameters, and the transparency range were determined
fairly accurately at the initial stage of research into its properties [23,24].

The first measurement of the nonlinear susceptibility tensor coefficient was executed
in [22] when it was compared with GaAs. The value d14 = d25 = d36 = 111 pm/V was
obtained. For a ZGP crystal grown by the encapsulated Czochralski method [25], the value
of d36 = 50 pm/V. The reasons for such a small value are not specified by the authors.

In subsequent years, the value of d36 was clarified, and it is now accepted that for
crystals grown using Bridgman technology, d36 = 75 pm/V [26] (the question about the
dispersion of the d36 coefficient and its dependence versus temperature is not considered
here, although it can be expected that it will be no less than in oxide crystals [27]). In
any case, for the point group 42m, the distribution of the effective nonlinearity coefficient
deff(φ,θ) is determined by a single coefficient d36, and its form, for different values of the
coefficients of the tensor dij, will be similar. The deff(φ,θ) distributions for the two types of
interaction are shown in Figure 1. The dark red areas correspond to the maximum values
of deff, and the black ones correspond to zero values. The white line on Figure 1 shows
the directions of phase matching for generation of the third harmonic at a wavelength of
10.6 µm. It follows from the results of Figure 1 that for the eeo type of phase matching,
an angle-noncritical process is possible (at θpm = 90◦). Principally, this cut allows for the
realization of the maximum efficiency of radiation conversion with high divergence, but at
the same time, for eeo interaction deff(0◦,90◦) = 0. This mode is possible for oeo type with a
maximum value of deff(45◦,90◦) = d36.
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The crystal transparency range is 0.74–12 µm [23,24]. A distinctive feature of ZGP is
that in the local region with a wavelength of 9.0 µm, the effect of multi-phonon absorption is
manifested, which leads to an increase of the total losses in this wavelength range (see [24]).

In the first works, the ZGP crystal was distinguished by a large loss value (in the
transparency band up to 6 cm−1). Pumping at the radiation wavelength of widely used
Nd3+ lasers at 1.06 µm is practical interest for creating OPO with a large wavelength tuning
range. But the pumping wavelength is at the boundary of the transparency range, and
the coefficient of losses at this wavelength is 0.75–5.6 cm−1. Currently, radiation in the
range of 2.0–3.0 µm is widely used for pumping OPO [16–20]. This is optimal for many
tasks in terms of obtaining the required tuning range and ensuring the conversion process
with minimal losses. The development of growth technology and post-growth treatment
made it possible to reduce the value of the absorption coefficient in the range of 2–8 µm
to 0.01–0.02 cm−1 [28–31]. Figure 2 shows the values of absorption coefficients of no more
than 0.4 cm−1 at various wavelengths from different publications [24]. (The bibliographic
references for the data in Figure 1 are given in [24]). For crystals grown in recent years, the
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difference in the values of the absorption coefficient can reach 10 or more times. This is
obviously due to the technology of growing and post-growth processing of crystals. This is
not disclosed in the publications.
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Figure 2. The values of absorption α(λ) at different wavelengths.

An important parameter is the value of the crystal laser-induced damage threshold. In
this work, we do not provide data, since a detailed description of the obtained values and
methods for increasing the damage threshold are given in [32,33].

Phase matching, which determines the possibility of effective frequency conversion,
is determined by the main values of the refractive indices ni(λ). The first results of ni(λ)
measurements in the entire ZGP transparency range were given in [22]. The Sellmeier
equations obtained on the basis of data from [22] were published in [34]. From 1976 to 2023,
the Sellmeier equations for ZGP at various temperatures are given in 17 articles [34–50].
The dependences of ni(λ) on the data from these studies at room temperature, obtained
using [24], are shown in Figure 3 (the dotted lines show the boundaries of applicability
for the equation). Such a number of equations for ni(λ) is due to the fact that there were
significant differences between the results of measurements and calculations for phase-
matching angles (see, for example, [35,37,42,46,51,52]). The differences in the angles reached
15◦–20◦. Many authors attribute this to the error in determining refractive indices, which,
according to their estimates, ranges from 0.001 to 0.004. In some studies, it was noted that
for crystals with different values of absorption coefficients the refractive indices have equal
values. But the full expression for refractive indices also takes into account the loss of
the medium [19,20]. These losses should influence on the value of the refractive indices.
Detailed studies in the mid-IR range have not been conducted at present.
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The ZGP crystal is widely used in optical parametric oscillators. The refinement of the
Sellmeier equations coefficients is based on a comparison of the experimentally obtained
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tunable characteristics of the OPO with the calculated ones. But the generation process in
OPO occurs in the mode of a strong energy exchange (not in the fixed field approximation),
with the contribution of coupled nonlinear processes [53–61]. The obtained Sellmeier
equations are, in fact, “technical” characteristics corresponding to a certain mode of the
generation process. They are important, but they cannot always be used for other generation
processes in OPO and other schemes solutions.

The articles for the ZGP crystal use Sellmeier equations of various types. All of them
can be reduced to the following one- and two-resonant forms (electron- and phonon-
resonant wavelengths on the transparency range boundaries)

n2
i = Ai +

Biλ
2

λ2 − Ci
+

Diλ
2

λ2 − Ei
= Ai +

Biλ
2

λ2 − λ2
e,i

+
Diλ

2

λ2 − λ2
p,i

(1)

n2
i = Ai +

Biλ
2

λ2 − Ci
+ Diλ

2 = Ai +
Biλ

2

λ2 − λ2
e,i

+ Diλ
2 (2)

In these expressions, the free terms Ci and Ei determine the resonant wavelengths of
the electron (λe,i) and phonon (λp,i) absorption spectra.

Table 1 shows the values of refractive indices, birefringence (nz – nx) at a wavelength
of 10 µm, wavelengths λe,I and λp,I, and differences between the maximum and minimum
values of the parameters (max–min). The values of λp,I are not given when using single-
resonance Sellmeier equations of the form (2). The maximum differences for refractive
indices are the following: for no = nx = 0.00855, and for ne = nz = 0.01045. The biggest
difference is for ne = nz. The value of the wavelength λe,I is poorly consistent with the
magnitude of the band gap. There are big differences for λp,i. If this is due to the quality of
the crystal (for example, the presence of impurities), appropriate clarifications are needed. It
is also necessary to clarify the values of the intensity, pulse duration and average radiation
power with which the measurements were carried out.

Table 1. Optical parameters of ZGP crystal at wavelength 10 µm.

T, K no = nx ne = nz nz – nx λe,x, µm λe,z, µm λp,x, µm λp,z, µm Ref.

293 3.07899 3.11816 0.03918 0.3665 0.3782 27.39 27.38 [34]

293 3.07914 3.11831 0.03916 0.3658 0.3776 25.74 25.74 [35]

373 3.08019 3.11927 0.03908 0.3709 0.3821 25.74 25.74 [36]

293 3.07914 3.1183 0.03916 0.3658 0.3776 25.74 25.74 [50]

293 3.07857 3.11995 0.04138 0.3419 0.3913 [37]

293 3.07878 3.11821 0.03943 0.3691 0.3787 30 30 [38]

293 3.07851 3.11819 0.03968 0.3659 0.3793 40.67 31.64 [39]

293 3.07938 3.11963 0.04025 0.3419 0.3913 [40]

293 3.07889 3.11234 0.03345 0.3655 0.3773 [41]

293 3.07929 3.11878 0.03949 0.6389 0.6439 24.72 21.26 [42]

293 3.07957 3.11912 0.03955 0.4687 0.4681 28.86 30.84 [43]

293 3.08582 3.12278 0.03696 0.3992 0.3537 30 30 [44]

293 3.07957 3.11912 0.03954 0.4289 0.4681 28.86 30.84 [46]

293 3.07901 3.11778 0.03876 0.3605 0.3742 25.74 25.74 [48]

293 3.079 3.11739 0.03839 0.3937 0.3673 26.58 24.57 [47]

293 3.07727 3.1166 0.03933 0.3685 0.3813 30 30 [49]

max-min 0.00855 0.01045 0.00794 0.297 0.2902 15.95 9.58
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For eeo type of interaction, the phase-matching angle for second harmonic generation
(SHG) process is determined by the following expression, which shows the significant role
of the birefringence values n2o – n1o and n1e – n1o (index 1 corresponds to fundamental
radiation, 2 to the second harmonic):

θpm = arcsin

(
n1e
n2o

√
(n2o − n1o)(n2o + n1o)

(n1e − n1o)(n1e + n1o)

)
(3)

The differences in expression (3) show that small errors in determining the values of
the refractive indices lead to large errors in the phase-matching angles.

The values of the n1e – n1o are significantly different in various publications at the
boundaries of the crystal transparency range (at 10 µm, see Table 1). This leads to a large
difference in the phase-matching angles both for the different harmonic generation, the
sum and different wave processes, and for the parametric oscillators.

Figure 4 shows the dependences of the phase-matching angles for the second harmonic
generation with the eeo type of interaction in the crystal transparency range, obtained
with various Sellmeier equations from [24]. In the wavelength range of the fundamental
radiation of about 4–6 µm, the difference in the values of the phase-matching angles does
not exceed several degrees. They have unacceptably large values at the boundaries of the
range (up to 15◦–20◦).
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3. Function Capabilities of ZGP Crystal for Frequency Conversion

It is convenient to represent the crystal function capabilities for all frequency conver-
sion processes in the form of distributions that was proposed in [62]. Figure 5 shows the
distributions of the phase-matching angles θpm(λ1, λ2) and the figure of optical merit FOM
(FOM(λ1, λ2) = d2

eff
(
φpm, θpm

)
/n1n2n3)) in the crystal transparency range for two types of

interaction (eeo and oeo) depending on the wavelengths λ1 and λ2. The calculations were
executed with the application of the Sellmeier equations from [46]. Calculations of FOM
are executed along the directions of phase matching θpm at the optimal value of the angle
φpm. The isolines of the distributions in Figure 5 correspond to some fixed values of the
phase-matching angles and FOM, the scales of values for which are shown to the right
of the distributions. The bisector of the distribution corresponds to the second harmonic
generation (λ1 = λ2). The oblique dotted line corresponds to one of the special cases—the
generation of the third harmonic. The black lines on the distributions show wavelength
values λ3 (λ3 = (1/λ1 + 1/λ2)−1).
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All values of θpm and FOM for different combinations of wavelengths λ1 and λ2
correspond to the case of sum-frequencies generation and different harmonics. The results
of Figure 5 along curves with fixed values of λ3 allow us to determine combinations of
wavelengths λ1, λ2, and values of θpm and FOM, which can be obtained for parametric
generation. Changing the phase-matching angle along curves with fixed values of λ3 allows
to determine the range of angular tuning. Also, the distributions in Figure 5 allow us to
determine the frequency tuning range for a parametric generator with a fixed value of the
cutoff angle—along the corresponding line for the angle θpm.

The small value of birefringence ∆n = nz – nx of the main indices of refraction leads
to the fact that all frequency conversion processes are possible only for the first type of
phase matching, eeo. For the oeo type of phase matching, the SHG process is impossible,
but sum- and difference-frequency generation, and parametric generation can be obtained.
On the other hand, a small value of ∆n gives a large value of the angular bandwidth of the
phase matching.
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The boundary of the distribution θpm(λ1,λ2) for the phase-matching angles (Figure 5a)
corresponds to the case θpm = 90◦. A comparison of these results with the FOM distribution
(Figure 5b) shows, as noted above (Figure 1), that angular non-critical phase matching is
possible for eeo and oeo, but for the eeo type of interaction the value for FOM = 0. When
generating the sum frequency for two types of interaction, the minimum wavelength of λ3
(up to 0.7 µm) can be obtained not with SHG, but with the generation of the sum frequencies.
With parametric generation, the maximum wavelength tuning range for λ1 can be obtained
for the eeo type of phase matching when pumped at a wavelength λ3 = 2.0–2.1 µm. The
potential tunability range is λ1 = 4–12 µm in this case. In the shortwave part of the tuning
range, the FOM value is not very important. But it increases significantly in the longwave
part of the range. This creates prerequisites for increasing the conversion efficiency, since
the effective gain per pass is inversely proportional to the wavelength of the generated
radiation. It is possible to obtain a much larger FOM value when pumping at a wavelength
of λ3 = 2.5–3.0 µm. But the minimum value of the wavelength for λ1 in this case is 5–6 µm.

For OPO results for the θpm distribution, it is convenient to represent them depending
on λ1 and λ3—θpm(λ1, λ3). For the eeo type of interaction this distribution is shown in
Figure 6a. The horizontal dotted line is set to λ3 = 2.7 µm. Figure 6b shows the dependencies
θpm(λ1) and FOM(λ1) corresponding to this value of λ3 = 2.7 µm. Table 2 shows the values
of the main parameters at the boundaries of the tunability range (Left and Right). For the
above special case of pumping with λ3 = 2.7 µm, the tuning at a wavelength of λ1 in the
range of 5.4–12 µm is performed when the phase-matching angle changes from 46.7◦ to 51◦

(by 4.3◦, recall that the crystal tuning angle will be greater by the value of the refractive
index). The total wavelength range of the output radiation (λ1 and λ2) will be 3.45–12 µm.
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Figure 6. Distributions: (a) θpm(λ1, λ3), and (b) θpm(λ1) and FOM(λ1) at λ1 = 2.7 µm.

It should be noted that, when pumped at a wavelength of λ3 = 2.7 µm (Figure 6b)
in the range λ1 = 5.3–6.8 µm, the phase-matching angle θpm = 46.8◦ with the eeo type of
interaction practically does not change. This corresponds to the possibility of forming a
broadband radiation at λ1 with a narrowband pump radiation at λ3. In Figure 6a, this
corresponds to the fact that the horizontal dotted line λ3 = 2.7 µm is tangent to the isolines of
the distribution of the phase-matching angle θpm. This mode is possible in the wavelength
range λ3 = 2.4–3.0 µm. But at the edges of the wavelength range λ3, the width of the
spectrum at wavelength λ1 decreases.
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Table 2. Values of parameters for OPO at λ3 = 2.7 µm.

Left Right

λ1, µm 5.4 12.0

λ2, µm 5.4 3.45

λ3, µm 2.7 2.7

FOM, pm2/V2 198.7 154.2

θ, ◦λ 46.7 51.0

φ,◦ 0 0

For the oeo type of interaction for parametric generation the maximum tuning range in
the range of 5.5–12 µm at a wavelength of λ1 can be obtained when pumped at a wavelength
of 2.7 µm. But the value of the FOM is much smaller.

With other Sellmeier equations in calculations there are small quantitative changes in
the results, but the overall picture does not change qualitatively.

4. Thermo-Optical Parameters of ZGP Crystal for Frequency Conversion

The temperature width of the phase matching and the possibility of temperature tun-
ability of the wavelength in OPO are determined by the temperature derivatives dni(λ)/dT
for the main values of the refractive indices. The first measurements of dni(λ)/dT in the
crystal transparency range were published in [22]. But very large differences in measured
values were obtained (see below).

In most cases, the Sellmeier equations are given independently for refractive indices at
room temperature ni(λ) [34,35,37–44,46,48,50] and for expressions for first-order derivatives
dni(λ)/dT [35,36,43,63], depending on the wavelength. In recent years, the Sellmeier
equations have been given with temperature-dependent coefficients [36,47,49,50]. The
temperature dependence of coefficients are given in Equations (1) and (2) by the Taylor
series from the first to the third orders. This allows us to take into account the high-order
nonlinear dependence of the refractive index versus temperature. Also, in [35,36,38], the
Sellmeier equations with fixed values of coefficients in (1) and (2) at different temperatures
are given. In most cases, the temperature range is quite large.

In [63], a semi-empirical model for the temperature derivative of the refractive index
was proposed for the ZGP crystal. In it, the temperature dependences of the band gap
width (Eg) and the thermal expansion coefficient (TEC) of the medium make a decisive
contribution to dni/dT. But this model determines the character of the dependence only for
the first-order derivative. This is not enough for some tasks.

Figure 7 shows the dependence of dni/dT versus wavelength, calculated with data
from various publications at room temperature. Solid lines correspond to dnx/dT, and
dotted lines correspond to dnz/dT. The experimental data from the first work [22] are
also marked with dots there (dnx/dT—green squares and dnz/dT—red circles). Given the
general nature of the dependencies near the left border of the transparency range, they
differ significantly in the long-wavelength part of the crystal transparency range. There is
also a significant quantitative difference among all the results.

Figure 8 shows the dependencies for the coefficients Ai, Bi, Ci, Di of the Sellmeier
Equations (1) and (2) versus temperature with data from various publications. Solid
lines correspond to no = nx, and dotted lines correspond to ne = nz. All coefficients have
comparable values, and the ratios between them for nx and nz are generally the same. But
the nature of the change for the coefficients Ai, Bi and Ci is significantly different. Only
in [49] the temperature dependence for the Di coefficient was determined. But this is a very
small dependency. In other works, the value of this coefficient is determined by a constant.
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1—[36], 2—[47], 3—[49].

In [49], the nature of the temperature dependences of all coefficients is not explained.
It can be assumed that the data for the temperature dependence of the Sellmeier equations
coefficients in [49] were obtained by mathematical formalism under approximation. A
comparison of the results in Figure 8 shows that the approximation problem does not have
a single solution. A single consistent methodology for processing measurement results
is required.

It is necessary to note the work [64], in which the birefringence dispersion was mea-
sured by the interference method at various temperatures in the crystal transparency range.
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Not enough attention is paid to this work. A good agreement with its results can be
obtained only when using the equations from [49]. The corresponding dependencies are
shown in Figure 9. The dots show the measurement results from [55,64], and the solid lines
show the results of calculations using equations [49].
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With the available data for the values of ni(λ) and dni(λ)/dT, it is possible to determine
the values of temperature widths of phase matching for all frequency conversion processes,
the possibility of temperature tunability of the wavelength in the OPO, and the wavelengths
for a temperature-critical regime. Temperature derivatives of the first order play a decisive
role in this regime. In a form similar to Figure 5, the distributions for the values of the
temperature widths of phase matching from the radiation wavelengths calculated with first-
order derivatives dni(λ)/dT can be given. All values are determined along the directions of
phase matching (Figure 5a). Figure 10 shows the distributions of 2∆T(λ1,λ2) (the coefficient
2 is introduced, since in the general case the values of positive and negative temperature
derangement differ significantly) obtained with data for the dispersion of refractive indices
ni(λ) from [46], and for dni(λ)/dT from [43]. It follows from them that the smallest phase-
matching temperature band width takes place for SHG at the edges of the transparency
range. In this area, the character of the dependence of efficiency on temperature exactly
corresponds to sinc2(x). This character of the dependence will make it possible to organize
the temperature adjustment of the wavelength in OPO [49,51,65].

In the wavelength range for SHG at 6 µm, the conversion process is temperature
critical, but the temperature width exceeds 100 ◦C·cm. This takes place for both the eeo
and oeo types of interaction. There is an abnormal region at SHG with wavelengths of
λ2 = 1.2 µm and λ1 = 10–12 µm. There are small values of temperature phase-matching
bandwidth near this area. But in a narrow area of this wavelength range, the values of
temperature widths exceed 150 ◦C·cm.

The dependence of the wave-vectors mismatch on the parameters is determined by
the Taylor series

∆k(p) = ∆k0 +
d∆k
dp

∆p +
1
2

d2∆k
dp2 ∆p2 + · · ·+ 1

m!
dm∆k
dpm ∆pm (4)

where p = φ, θ, λ, T.
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Critical phase matching takes place when d∆k/dp ̸= 0, and noncritical for d∆k/dp = 0.
The phase-matching width (at level 0.5) for a critical process is

∆p·L = 0.886π/(d∆k/dp) (5)

and for a non-critical second-order process

∆p·
√

L =
√

1.772π/(d2∆k/dp2) (6)

The results of Figure 5 show that all derivatives of dni(λ)/dT have large values. But
their difference for some processes in the directions of phase matching is zero. It follows
from this that temperature non-critical phase matching (TNCPhM) takes place. For the eeo
type of interaction, the directions of the TNCPhM are determined from the condition [66]

d∆keeo
(
θpm

)
dT

= 2π

[
1

λ3

dn3,o

dT
− 1

λ2

dn2,e
(
θpm

)
dT

− 1
λ1

dn1,e
(
θpm

)
dT

]
= 0 (7)

and for the oeo type

d∆koeo
(
θpm

)
dT

= 2π

[
1

λ3

dn3,o

dT
− 1

λ2

dn2,e
(
θpm

)
dT

− 1
λ1

dn1,o

dT

]
= 0 (8)

The article [43] was the first to establish the fact of the possible implementation of the
TNCPhM regime in a uniaxial ZGP crystal for some frequency conversion processes. But it
provides data only for first-order derivatives. This does not allow us to determine the full
value of 2∆T.

The application of first-order derivatives in calculations makes it possible to deter-
mine the temperature width of the temperature-critical process and the directions of the
TNCPhM. To determine the full temperature widths, more accurate data on the temper-
ature dependence of the refractive indices are necessary, for example, with higher-order
derivatives. For this purpose, data from [49] can be used, in which the main coefficients of
the Sellmeier equation are determined with a degree up to T3. Figure 11 shows distributions
similar to Figure 10 obtained with data for ni(λ) and dni(λ)/dT from [49].
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In general, the values of the wavelengths of the TNCPhM area in Figures 10 and 11
are consistent. The results of Figure 11 show that the TNCPhM regime for two types of
interaction can be obtained in a sufficiently large wavelength range for both SHG and SFG.

It should be noted that from calculation with data from [49], the temperature non-
critical phase matching for generation of the second harmonic with the eeo type of interac-
tion takes place at a wavelength of 3.4 µm. This is inconsistent with the results of [36,38,44],
which show the dependences of the phase-matching angle for SHG on the wavelength at
different temperatures, calculated on the basis of the values ni(λ) and dni(λ)/dT measured
by the authors. The phase-matching angle practically does not change in the temperature
range from −200 ◦C to 400 ◦C at a wavelength of about 4.5 µm. This raises the question of
the need to refine the data for dni/dT.

The results of Figure 11 show that a temperature non-critical process can be obtained
for SFG. This can be represented as a dependence of the temperature derivative for the
phase-matching angle dθpm/dT from the wavelength. Figure 12 shows the dependence of
dθpm/dT versus the wavelength λ2 at SFG with λ1 = 10.3 µm for the eeo type of interaction.
At a wavelength of λ2 = 1.65 µm, the value of dθpm/dT = 0. This corresponds to the
TNCPhM regime.
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type of interaction.

The character of the radiation intensity dependency from temperature is determined
by the contribution of temperature derivatives of refractive indices of various orders, the
values of which are commensurate. Figure 13 shows the dependences of the relative
efficiency of the conversion versus the temperature for SHG at a wavelength of 3.407 µm
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with the eeo type of interaction at different cut-off angles in a 50 mm-length crystal. The
nature of their change corresponds to the transition from a critical to a non-critical process,
similar to the dependencies on changes of the angle and wavelength of radiation. The
transition from curve 1 to curve 3 in Figure 13a corresponds to the achievement of phase
matching at a temperature T = 180 K. With a further increase in the angle (the transition
from curve 3 to curve 8), two extremes are formed at different temperatures of crystal. The
difference in the distribution of the two dependences of I2(T) is determined by the nature
of the change in refractive indices from the temperature. This is shown by the dependence
of the phase detuning ∆k·L/2 from temperature, shown in Figure 13b.
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There are cut-off angles at which there is a significant difference in the nature of
the distribution of the left and right parts of the dependence of the conversion efficiency.
Figure 14 shows the dependence of the conversion efficiency on the temperature at SHG
with a wavelength of 3.358 µm for the eeo type of interaction in a 50 mm-length crystal. The
temperature width of the right side of the distribution is ∆T = 320 ◦C.

The temperature dependence versus the crystal length is not simple for various pro-
cesses (see (5) and (6)). For a critical process, the phase-matching width is inversely
proportional to the length of the crystal. For non-critical derivatives determined by the
action of only second-order derivatives, it is inversely proportional to

√
2. Figure 15 shows

the dependences of the relative conversion efficiency for SHG with eeo type of interaction
at a wavelength of 3.407 µm with a crystal length of 4 mm (curve 1) and 2 mm (curve 2).
The ratio of temperature widths for the two crystal lengths is 1.87, differing by a factor of 2.
This shows that a commensurate contribution to the value of ∆T is made by derivatives of
the first and higher orders. It follows that in the general case of temperature-noncritical
processes, it is impossible to determine the value of the temperature bandwidth of the
phase matching per unit length of the crystal.
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Figure 15. Relative efficiency for SHG versus temperature at λ1 = 3.407 µm, θpm = 70.12◦ for different
lengths of crystal: 1—4 mm, 2—2 mm.

For any frequency conversion process in biaxial crystals, temperature-noncritical phase
matching can be obtained in a sufficiently large wavelength range [66]. It is possible for
uniaxial crystals at fixed wavelengths. In the general case, the TNCPhM mode can be
obtained at not one, but several, fixed wavelengths. This follows from the fact that the
condition d∆ki/dT = 0 with a commensurate contribution of derivatives of different orders
has several roots. They correspond to different values of radiation wavelengths. All this is
determined by the character of the refractive-indices temperature dependence.

All these questions require separate research. The above calculation results set the
task of obtaining experimental confirmations.

5. Conclusions

The paper presents data on the physical parameters of the ZGP crystal, which have
been obtained over the past 20 years of this research medium. The development of growth
technology and post-growth treatment made it possible to significantly reduce the ab-
sorption, and obtain good optical quality and high damage thresholds in various modes.
This makes it possible to use the crystal to solve a wide range of problems of generating
radiation in the mid-IR range.

The paper shows the functional capabilities of the ZGP crystal for various frequency
conversion tasks—both sum-frequency generation and parametric-frequency conversion
with a large range of wavelength tuning or a large spectral width of radiation.

The question about the temperature dependence for values of the refractive indices is
very relevant. For the first time, some new data show that temperature-noncritical phase
matching is possible in the ZGP crystal at SHG, SFG, DFG and OPO with an abnormally
large temperature bandwidth. On the one hand, this removes the question on the necessary
thermal stabilization of the crystal and reduces the effect of thermal self-interaction on
the conversion process. On the other hand, this does not make it possible to organize
a temperature tuning of the radiation wavelength in OPO. It is necessary to execute the
corresponding experimental investigations.
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The difference in the obtained calculation results shows that it is necessary to con-
duct a comparison analysis of the physical parameters of the crystal that obtained with
different growth technologies and post-grown processing. It is necessary to determine the
most reliable data that are necessary when executing the research into and design of the
frequency converters.
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