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Abstract: Considering that structured light depth imagers are difficult to use for precision measure-
ments due to their limited measurement accuracy, we propose an innovative method for correcting
structural parameters of structured light depth imagers to reduce the depth measurement error
caused by structural parameter errors. For the structured light depth imager, the analytical imaging
model is established, and the model of depth error caused by structural parameter errors is estab-
lished based on the analysis of the depth measurement error analysis. Then, structural parameters are
corrected according to the depth measurement error analysis and processing based on experimental
depth imaging data of the standard reference plane at the maximum depth. As a result, the corrected
analytical imaging model and corrected depth measurement values are obtained. Experimental
results have demonstrated the success of this proposed method and its simplicity and convenience.

Keywords: depth imaging; structured parameter; imaging model; error model; correction

1. Introduction

The world is three dimensional, but traditional imaging projects the 3D world into 2D
images, which cannot easily reflect the real world because of the loss of depth information.
Therefore, 3D measurement technology that can obtain the 3D coordinates of a measured
surface is highly valued and developing rapidly [1–3]. The structured light depth imager
(SLDI) represents 3D visual measurement technology and obtains the surface 3D informa-
tion in the form of a graphic or image, and it has the advantages of quickness, automation,
non-contact, and high efficiency. Thus, it has been widely used in many production and
life fields such as manufacturing, medical industry, entertainment industry, etc. [4–6].

At the same time, structured light depth imaging technology has attracted much
attention from the precision manufacturing industry because of its full field, high efficiency,
high precision, and the ability to detect complex structural components. The quality and
accuracy of precision workpieces depend to a large extent on the form, position, and dimen-
sional tolerance of parts. However, traditional measurements cannot meet the requirements
because of low efficiency. Therefore, SLDI has become an efficient detection tool due to its
excellent performances. The quality of precision products is directly determined by the
quality of precision molds, and the mold mechanism required by products has become
more and more complex and precise, making it difficult for traditional inspection methods
to meet new demands. Therefore, structured light depth imaging technology provides
a powerful means to meet new demands. In the face of the continuous emergence of
large-size and/or small-size complex precision workpieces, the traditional detection meth-
ods often face the issue that it is difficult or even impossible to measure. Structured light
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depth imaging technology can have efficient enough detection to solve this issue. Precision
manufacturing products are being developed, from spot inspection to full-size inspection or
full-batch inspection, and structured light depth imaging technology provides an effective
method that is significantly different from traditional testing methods. Moreover, struc-
tured light depth imaging technology plays an important role in the forward and reverse
design of precision products, digitization, and intelligence of precision manufacturing
enterprises.

Greater requirements are put forward for the structured light depth imaging technol-
ogy, which is prominently reflected in reducing the depth measurement error to meet the
needs of precision manufacturing. The work of the depth imager includes two processes in
principle, obtaining the phase through the fringe image and calculating the depth value
according to the imaging model. Therefore, the depth error is caused by the phase mea-
surement error and structure parameter error. Among them, the phase error is affected
by many factors, such as the geometric and physical characteristics of the measured sur-
face. The depth measurement error is also comprehensively affected by these factors, and
its influence law is complex and difficult to determine. In order to avoid this problem,
the existing depth imagers use the projective geometric model for imaging, and accurate
imaging is achieved by adjusting the parameters of the projective geometric model [7,8].
However, each of the many projective geometric parameters is difficult to adjust due to the
comprehensive influence of the structural parameter error and phase measurement error at
the same time, which limits the depth measurement accuracy of the depth imager. There is
still a certain gap in the requirements of precision measurement, and there are difficulties
in it being widely used in the precision manufacturing industry [9–11]. According to the
working principle of SLDI, the depth image is obtained by the analytical imaging model.
Therefore, the depth measurement error of the analytical imaging model caused by the
structural parameter error and phase measurement error should be analyzed. The depth
measurement error could be reduced by adjusting the structural parameters and phase
measurement value, respectively, which is expected to be an effective way to improve the
depth measurement accuracy of SLDI. Because the analytical imaging model of SLDI can
directly express the influence of each structural parameter error on the depth measurement
error, the structural parameters are expected to be adjusted more accurately. However, the
obstacle lies in the complexity and coupling of the influence law of each structural param-
eter error on the depth error. The published works for reducing the measurement error
caused by the assembly of the imager mainly focus on the analysis and compensation of the
measurement error caused by the unsatisfactory device parameters in the imager [12–14].
However, for the depth measurement error caused by structural parameters, the existing
research results either stop at the optimal selection of structural parameters [15–17] or stay
at the level of qualitative error analysis [18,19]. It is rarely involved in using the analytical
model and correcting structural parameters to reduce the error of depth measurement.

A structural parameter correction method of SLDI is proposed to reduce the depth
measurement error caused by the structural parameter error (DMECSPE). Aiming at three
structural parameters, an analytical imaging model and a model of the DMECSPE are es-
tablished. The analytical imaging model quantitatively expresses the influence of structural
parameters on the depth measurement value; the decoupling of the structural parameter
error in the model of depth measurement error was achieved, and the depth error was
found to be at a maximum at the maximal depth. Only one depth imaging of the stan-
dard plane is carried out at the maximum depth position, and the structural parameter
correction is realized based on the analysis and processing of the experimental data of
the depth measurement error. Moreover, the corrected analytical imaging model of SLDI
is obtained, and the DMECSPE can be effectively reduced. The simulation results show
that the proposed method is effective, and the actual measurement results show that the
proposed method has a good depth imaging effect.

This paper is organized as follows: Section 2 establishes an analytical imaging model
of the SLDI; Section 3 establishes a model of the DMECSPE and puts forward the correction
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method of structural parameters; Section 4 carries out experiments and provides the
experimental results; Section 5 discusses the experimental results; Section 6 summarizes
the research work.

2. Analytical Imaging Model

The SLDI mainly consists of a pattern projector, a camera, and a computer [20]. The
coded patterns generated by the computer are projected onto the surface to be measured
by the pattern projector. The camera acquires the surface images and then sends them to
the computer for processing and decoding. Based on the decoding results, the computer
calculates the 3D coordinate values x, y, and z of the surface in the world coordinate system
via trigonometry.

The spatial position of the camera in the SLDI is shown in Figure 1. The point P is
the surface point to be measured in the world coordinate system xyzo, the point P0 is an
image point of point P mapped to the imaging plane x0o0y0 in the imaging coordinate
system x0y0z0o0, and the coordinate plane x0o0z0 is coplanar with the coordinate plane xoz;
the point o and the point M0 are the lens centers of the pattern projector and the camera,
and B = oM0; the point P′ and point Pz are the projection points on the coordinate plane
xoz and the coordinate plane y0o0z0 of the point P; the point P′

z is the projection point on
the coordinate plane x0o0z0 of the point Pz; f0 is the focal length of the camera lens, and
f0 = o0M0; the point P′

0 and the point P′′
0 are the projection points on the axis o0x0 and the

axis o0y0 of the image point P0.
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Figure 1. Spatial position diagram of the camera.

According to Figure 1 and based on the triangulation method and the pinhole model,
the analytical imaging model of the SLDI is derived as follows:

z(x′0, y′0) =
B

cot α +
lx · x′0 − (N + 1)(lx/2)+ f0 · cot β0

f0 + cot β0·[(N + 1)(lx/2) − lx · x′0]

(1)

where B, f0, and β0 are the structural parameters in this paper, they are the constant in
the SLDI, and their errors lead to the measurement error of the SLDI; x′0 and y′0 are the
pixel numbers of the camera image, which are directly read from the image during the
imaging process; the coordinate of the origin o0 of the imaging coordinate system in the
image coordinate system is ((N + 1)/2, (M + 1)/2); lx is pixel width along direction x′0; N
and M are pixel counts, respectively, along directions x′0 and y′0; the projection angle α is an
unknown parameter, which needs to be obtained by coding and decoding images in the
SLDI [20]. It should be pointed out that there is no parameter y′0 in the analytical imaging
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model, and Equation (1) can be established regardless of whether there is the symbol y′0 on
the left side of that. The left side of Equation (1) contains the symbol y′0, which can directly
express the meaning for a single pixel. This is convenient for the following theoretical
analysis and mathematical expression in experimental data processing.

3. Depth Error Model and Structural Parameter Correction

Firstly, the model of the DMECSPE is established. In the SLDI, the design values and
the truth values of structural parameters are denoted as B, f0, and β0 and B0, f00, and β00.
As a result, there are the structural parameter errors of ∆B = B − B0, ∆ f0 = f0 − f00, and
∆β0 = β0 − β00. According to the analytical imaging model, the depth truth value z0 is
obtained using the truth values of the structural parameters, while the depth measurement
value z using the known design values because the truth values of the structural parameters
are unknown. As a result, there is the depth measurement error ∆z = z − z0, which can be
written as follows:

∆z =
∂z
∂B

·∆B +
∂z
∂ f0

·∆ f0 +
∂z

∂β0
·∆β0 (2)

According to the analytical imaging model, the higher order terms of lx cot β0
(N + 1 − 2x′0)/2 f0 can be ignored if lx cot β0(N + 1 − 2x′0)/2 f0 ≪ 1, and ∆z can be de-
scribed as follows:

∆z = bB∆B + (a f + b f x′0)∆ f0 + (aβ + bβx′0)∆β0 (3)

Equation (3) is the model of the DMECSPE, where

bB = z
B , a f =

z2

B
(cot2 β0 + 1)

f0
2

(N + 1)lx
2 , b f = − z2

B
(cot2 β0 + 1)lx

f0
2 ,

aβ = z2

B sin2 β0

[
1 + lx cot β0

f0
(N + 1)

]
, bβ = − 2z2

B sin2 β0

lx cot β0
f0

(4)

It can be seen that the parameters bB, a f , b f , aβ, and bβ are constant, and |∆z| increases
as z increases.

Next, the measurement error correction is discussed. The maximum depth to be mea-
sured is denoted as zMAX , whose error is denoted as ∆zMAX , and according to Equations (3)
and (4), we obtain

|∆z| ≤ |∆zMAX | (5)

Then, the following method for correcting structural parameters is proposed.
Step 1: The standard reference plane is used as the surface to be measured and placed at

zMAX , the depth true value z0
MAX of the plane is obtained through control or measurement,

and the SLDI images the plane.
Step 2: The depth measurement value zMAXk(x′0, y′0) is calculated from Equation (1)

when B, f0, and β0 are replaced with (B + ka), ( f0 + kb), and (β0 + kc); ka, kb, and kc are
additional errors of the structural parameters; a, b, and c are designed constants and a ≪ B,
b ≪ f0, and c ≪ β0; k = 0, 1, 2, 3, · · · , K.

Step 3: The depth measurement error ∆zMAXk(x′0, y′0) = zMAXk(x′0, y′0)− zMAX0(x′0, y′0)
is calculated when there are additional errors of the structural parameters, and then its
average value along the y′0 direction is calculated as follows:

∆zMAXk(x′0) =
1
M

M

∑
y′0=1

∆zMAXk(x′0, y′0) (6)

Step 4: Choose x′0 = n1 on one side of the camera imaging plane and x′0 = n2 on the
other side, and calculate ∆zMAXk(n1) and ∆zMAXk(n2) from Equation (6).

Step 5: Let kb = kc = 0; bB is obtained by linear fitting of data pairs ∆zMAXk(n1) ∼ ka
according to ∆zMAXk(n1) = bBka using least squares regression analysis.
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Step 6: Let ka = kc = 0; a f and b f are obtained by linear fitting of data pairs
∆zMAXk(n1) ∼ kb and ∆zMAXk(n2) ∼ kb according to ∆zMAXk(n1) = (a f + b f n1)kb and
∆zMAXk(n2) = (a f + b f n2)kb using least squares regression analysis.

Step 7: Let ka = kb = 0; aβ and bβ are obtained by linear fitting of data pairs
∆zMAXk(n1) ∼ kc and ∆zMAXk(n2) ∼ kc according to ∆zMAXk(n1) = (aβ + bβn1)kc and
∆zMAXk(n2) = (aβ + bβn2)kc using least squares regression analysis.

Step 8: Let k = 0; the depth measurement value zMAX0(x′0, y′0) without additional
errors of the structure parameters is obtained; after that, calculate its average value along
the y′0 direction as follows:

zMAX0(x′0) =
1
M

M

∑
y′0=1

zMAX0(x′0, y′0) (7)

and then calculate the average value of the depth measurement error without additional
errors of the structure parameters from ∆zMAX0(x′0) = zMAX0(x′0)− z0

MAX .
Step 9: Substitute ∆zMAX0(x′0) and x′0, respectively, into the left and right sides of

Equation (3) to form a linear system of N equations as follows:

∆zMAX0(1) = bB∆B + (a f + b f )∆ f0 + (aβ + bβ)∆β0
∆zMAX0(2) = bB∆B + (a f + 2b f )∆ f0 + (aβ + 2bβ)∆β0
∆zMAX0(3) = bB∆B + (a f + 3b f )∆ f0 + (aβ + 3bβ)∆β0

...
∆zMAX0(N) = bB∆B + (a f + Nb f )∆ f0 + (aβ + Nbβ)∆β0

(8)

where ∆zMAX0(x′0), x′0, bB, a f , b f , aβ, and bβ are known quantities; ∆B, ∆ f0, and ∆β0 are
unknown quantities to be derived. Equation (8) is solved, and its least square solutions are
denoted as ∆B′, ∆ f ′0, and ∆β′

0.
Step 10: In Equation (1), B, f0, and β0 are replaced with B − ∆B′, f0 − ∆ f ′0, and

β0 − ∆β′
0. This corrects the structural parameters, and then gives the corrected analytical

imaging model and the corrected depth measurement value z′(x′0, y′0) as follows:

z′(x′0, y′0) =
(B − ∆B′)

cot α +
lx · x′0 − (N + 1)(lx/2) + ( f0 − ∆ f ′0) · cot(β0 − ∆β′0)

( f0 − ∆ f ′0) + cot(β0 − ∆β′0) · [(N + 1)(lx/2) − lx · x′0]

(9)

4. Experiment and Its Results

We used 3D Max and assembled a simulated SLDI to quantitatively verify the perfor-
mance of our proposed method. Considering the existing commercially available devices,
set N = 1236, M = 1624, lx = 4.4000 × 10−3 mm, B0 = 533.0000 mm, f00 = 14.7860 mm,
β00 = 65.0000◦, α ranging from 76.2000◦ to 103.8000◦, the depth to be measured ranging
from 1000.0000 mm to 1365.0000 mm, and lx cot β0(N + 1 − 2x′0)/2 f0= 0.0860 ≪ 1. In
a single imaging, the projector projected two sets with different frequencies of 10-step
phase-shift cosine fringe patterns and 8-bit gray code stripe patterns; these fringe patterns
were processed, and the wrapped phase, the absolute phase, and projection angle α were
drawn successively [20]; the depth measurement value was obtained from Equation (1).

In our quantitative simulation experiment, set B = 533.2000 mm, f0 = 14.7960 mm,
β0 = 65.0006◦, n1 = 1, n2 = 914, a = 0.0200 mm, b = 0.0010 mm, c = 0.0006◦, K = 10, and
z0

MAX = 1365.0000 mm. The experimental process and results were as follows.

• Performed steps 1 to 7. Let kb = kc = 0, and ∆zMAXK(x′0, y′0) is shown in Figure 2
where ez, i, and j, respectively, stands for ∆zMAXK(x′0, y′0), y′0, and x′0; obviously, the
spatial distribution deviation of ∆zMAXK(x′0, y′0) is less than 1.0 × 10−4 mm and can
be negligible; then, ∆zMAXK(x′0, y′0) can be approximated as unchanged with (x′0, y′0);
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∆zMAXk(n1) at x′0 = n1 = 1 is tabulated in Table 1, bB = 2.561 was obtained by linear
fitting of the experimental data in Table 1 using least squares regression analysis.
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Table 1. Experimental data of ∆zMAXk(1) when kb = kc = 0, /mm.

ka 1a 2a 3a 4a 5a 6a 7a 8a 9a 10a

∆zMAXk(1) 0.05122 0.10244 0.15365 0.20488 0.25610 0.30732 0.35854 0.40976 0.46097 0.5122

Let ka = kc = 0, and ∆zMAXK(x′0, y′0) is shown in Figure 3; ∆zMAXk(x′0) at x′0 = n1 = 1
and x′0 = n2 = 914 are tabulated in Table 2. Let ka = kb = 0, and ∆zMAXK(x′0, y′0)
is shown in Figure 4; ∆zMAXk(x′0) at x′0 = n1 = 1 and x′0 = n2 = 914 are tabulated in
Table 3. According to Figures 3 and 4, ∆zMAXK(x′0, y′0) are independent of y′0, monotonically
decrease with x′0, and can be approximated as linear. a f = 4.318 × 10, b f = −8.526 × 10−2,
aβ = 4.920 × 103, and bβ = −1.188 were obtained via linear fitting of the experimental data
in Tables 2 and 3 using least squares regression analysis, respectively.

• Performed Step 8. The depth measurement error image of the standard plane at the
maximum measured depth of 1365.0000 mm before structural parameter correction
is obtained as shown in Figure 5, and further ∆zMAX0(x′0) at x′0 = 1, 2, 3, · · · , 914 are
displayed as the black curve in Figure 6, where y and x represent ∆zMAX0(x′0) and x′0,
respectively, and then the maximum value of

∣∣∆zMAX0(x′0)
∣∣ is 1.4586 mm. Therefore,

the depth measurement error
∣∣∆z(x′0, y′0)

∣∣ ≤ 1.4586 mm before structural parameter
correction.

• Performed Step 9. The result was that ∆B′ = 0.1868 mm, ∆ f ′0 = 0.9966 × 10−2 mm,
and ∆β′

0 = (0.5907 × 10−2)◦.
• Performed Step 10. The structural parameters were corrected, and then the analytical

imaging model and the depth measurement value z′MAX0(x′0, y′0) were obtained after
structural parameter correction.

Table 2. Experimental data of ∆zMAXk(x′0) when ka = kc = 0, /mm.

x’
0

∆zMAXk(x’
0)

1b 2b 3b 4b 5b 6b 7b 8b 9b 10b

1 0.04310 0.08619 0.12928 0.17237 0.21545 0.25853 0.30160 0.34468 0.38775 0.43081

914 −0.03474 −0.06948 −0.10421 −0.13894 −0.17366 −0.20837 −0.24308 −0.27778 −0.31247 −0.34716



Photonics 2024, 11, 396 7 of 15

Table 3. Experimental data of ∆zMAXk(x′0) when ka = kb = 0, /mm.

x’
0

∆zMAXk(x’
0)

1c 2c 3c 4c 5c 6c 7c 8c 9c 10c

1 0.05148 0.10296 0.15445 0.20594 0.25743 0.30893 0.36043 0.41193 0.46344 0.51495

914 0.04012 0.08025 0.12038 0.16051 0.20064 0.24078 0.28092 0.32105 0.36120 0.40134
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Continued data processing for z′MAX0(x′0, y′0) to verify the performance our proposed
method. The experimental data processing of z′MAX0(x′0, y′0) followed exactly the same
experimental data processing of zMAX0(x′0, y′0). The depth measurement error image of
the standard plane at the maximum measured depth of 1365.0000 mm after structural
parameter correction was obtained as shown in Figure 7, and further, ∆z′MAX0(x′0) of the
average value of the depth measurement error after structural parameter correction are
displayed as the black curve in Figure 8, and then the maximum value of ∆z′MAX0(x′0) is
0.0432 mm. Therefore, the depth measurement error is

∣∣∆z′(x′0, y′0)
∣∣ ≤ 0.0432 mm after

structural parameter correction. In contrast, the depth measurement error ∆z′(x′0, y′0)
after structural parameter correction is reduced to 3% of that before structural parameter
correction. The results show that the proposed method significantly reduces the DMECSPE.
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In order to verify the adaptability of the proposed correction method to different
spatial positions and directions, quantitative comparative measurement experiments before
and after structural parameter correction were carried out by using the SLDI for standard
planes at different depths, standard inclined planes with different slopes, and standard
hemispheres with different radii.

In the simulation measurement experiment of the standard plane, the comparative
experimental measurement before and after structural parameter correction is carried out
for the standard planes at each depth position with a spacing of 72.0000 mm in the depth
measurement range from 1000.0000 mm to 1292.0000 mm. The maximum values of depth
measurement error for the standard planes at different depths before and after structural
parameter correction are shown in Table 4. Figures 9 and 10 are, respectively, the depth
measurement error images of the standard plane at a depth of 1146.0000 mm before and
after structural parameter correction. Figures 11 and 12 are, respectively, the average curves
of the depth measurement errors before and after structural parameter correction at the
plane depth of 1146.0000 mm and x′0 = 1, 2, 3, · · · , 914, where y represents the average
value of the depth measurement errors and x represents x′0. By comparing Figures 9 and 10,
as well as Figures 11 and 12, we can see that the proposed method significantly reduces
the depth measurement error of the plane caused by structural parameter errors. It can be
seen from Table 4 that the depth measurement error of the plane after structural parameter
correction is reduced to less than 3.5% of that before structural parameter correction.

Table 4. The maximum values of depth measurement error for the standard planes at different depths
before and after structural parameter correction, /mm.

Depth
Maximum Values of Depth Measurement Error

Before Correction After Correction

1000.0000 0.8831 0.0298

1073.0000 0.9874 0.0324

1146.0000 1.0971 0.0350

1219.0000 1.2122 0.0377

1292.0000 1.3328 0.0405Photonics 2024, 11, x FOR PEER REVIEW 11 of 17 
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In the simulation measurement experiment of the standard inclined plane, the standard
plane at the depth of 1143.022 mm is rotated 15◦, 30◦, 45◦, 60◦, and 75◦ around the x-axis
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and y-axis of the world coordinate system xyzo, respectively, to form standard inclined planes
with different slopes, and then the comparative experimental measurement before and after
structural parameter correction is carried out for each standard inclined plane. The maximum
values of depth measurement error for the standard inclined planes with different slopes before
and after structural parameter correction are shown in Table 5. Figures 13 and 14, respectively,
show the depth measurement error images of the standard inclined plane formed by rotating
the standard plane by 30◦ around the x-axis and y-axis before and after structural parameter
correction. By comparing Figures 13 and 14, we can see that the proposed method significantly
reduces the depth measurement error of the inclined plane caused by structural parameter
errors. It can be seen from Table 5 that the depth measurement errors of the inclined plane after
structural parameter correction is reduced to less than 5% of that before structural parameter
correction.

Table 5. The maximum values of depth measurement error for the standard inclined planes with
different slopes before and after structural parameter correction.

Rotation Angle around x-Axis Rotation Angle around y-Axis
Maximum Values of Depth Measurement Error

Before Correction After Correction

15◦ 15◦ 1.2646 mm 0.0360 mm

30◦ 30◦ 1.3016 mm 0.0416 mm

45◦ 45◦ 1.4016 mm 0.0533 mm

60◦ 60◦ 2.0327 mm 0.0972 mm

75◦ 75◦ 2.8968 mm 0.1153 mm
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In the simulation measurement experiment of the standard hemispheres, the com-
parative experimental measurement before and after structural parameter correction is
carried out for the standard hemispheres with spherical center coordinates (−92.4340 mm,
1365.0000 mm, 0 mm) and the radii of 90.0000 mm, 130.0000 mm, 170.0000 mm, 210.0000 mm,
and 250.0000 mm, respectively. The maximum values of depth measurement error for the
standard hemispheres with different radii before and after structural parameter correction
are shown in Table 6. Figures 15 and 16, respectively, show the depth measurement error
images of the standard hemisphere with a radius of 250.0000 mm before and after structural
parameter correction. By comparing Figures 15 and 16, we can see that the proposed method
significantly reduces the depth measurement error of the hemisphere caused by structural
parameter errors. It can be seen from Table 6 that the depth measurement errors of the
hemisphere after structural parameter correction is reduced to less than 4% of that before
structural parameter correction.

Table 6. The maximum values of the depth measurement error for the standard hemispheres with
different radii before and after structural parameter correction/mm.

Radius
Maximum Values of Depth Measurement Error

Before Correction After Correction

90.0000 1.0832 0.0409

130.0000 1.1586 0.0408

170.0000 1.2145 0.0414

210.0000 1.2806 0.0408

250.0000 1.3424 0.0400
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We also assembled the experimental equipment of SLDI to qualitatively verify the per-
formance of our proposed method. Our main equipment included a DLP projector (Texas
Instruments, Dallas, Texas, USA, model: DLP4710EVM-LC) and a 3CCD camera (JAI, Miyazaki,
Japan, model: AT-200GE) attached with a 20 mm lens (model: BV-L1020), and its parameters
were exactly the same as those of our simulated SLDI except for the focal length of the camera
lens, and the projection angle α is obtained using Gray code plus fringe method [20]. The attitude
position of the camera is adjusted according to the design value of the structural parameters
in the process of device assembly, because the attitude position of the camera in the device is
adjustable. However, it is difficult to accurately adjust the structural parameters to their design
values in the assembly process because the central position and focal length of the camera lens
are invisible. Therefore, the proposed method is used to correct the structural parameters.

We measured a more complex scene to visually demonstrate the success of our pro-
posed method. Figure 17 shows the scene photograph, and the scene includes Statue A of
Agrippa with complex morphology, Steel-plate B with bright feature points on dark surface,
Shadow C, and Background D, and Figure 18 shows the 3D reconstructed result of the
scene. This experiment demonstrated that the proposed method can reconstruct complex
3D surfaces with fine details, isolated surfaces, and surfaces with a sharp contrast between
light and dark. It is important to point out that the experimental result is only a qualitative
result, as shown in Figure 18, and a good depth imaging effect could be obtained by the
method. The work does not provide the comparative analysis of the DMECSPE before
and after correction. This is because in the actual measurement experiments, the depth
measurement error of the SLDI includes the depth measurement error caused by both
the phase measurement error and the structure parameter error. The depth measurement
error caused by the latter is difficult to clearly observe because it is submerged by that
caused by the former, and the former is complex and difficult to control in the actual
measurement experiments. In addition, the depth measurement errors caused by the latter
were only analyzed and corrected in this work, so it is difficult to quantitatively express the
comparison of depth measurement errors before and after structural parameter correction.
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5. Discussion

The projective geometric model was used in the existing SLDI to obtain the depth image,
and all the parameters of the projective geometric model need to be adjusted to ensure the
accuracy of the depth measurement. Each of these parameters is affected by many factors at
the same time, such as structural parameter error and phase measurement error. Therefore,
the influence law is complex. As a result, these parameters are difficult to adjust accurately.
The depth measurement accuracy of the structured optical imager is limited, and it is difficult
to be widely used in the field of precision manufacturing. The analytical imaging model is
used to obtain the depth image, analyze the depth measurement error caused by the structure
parameter error and phase measurement error, and reduce the depth measurement error by
adjusting those errors, respectively. It is expected to be an effective way to improve the depth
measurement accuracy of SLDI. Aiming at three structural parameters, an analytical imag-
ing model and a model of DMECSPE are established. The adjustment method of structural
parameters is proposed, which realizes the accurate adjustment of structural parameters and
effectively reduces the depth measurement error caused by the error of structural parame-
ters. Though many works were carried out about the depth measurement errors caused by
structural parameters, the existing results either stop at the optimal selection of structural
parameters [15–17] or stay at the level of qualitative error analysis [18,19], and there is nearly
no work to quantitatively analyze and correct the DMECSPE.

The simulation quantitative measurement experiments were carried out in this paper,
and for the measured surfaces in different positions and different directions, the results
proved that the proposed method can reduce the DMECSPE to less than 5% of that before
the structural parameter correction. In addition, the actual qualitative measurement ex-
periments were also carried out, and the results verified that the proposed method has
a good depth imaging effect. The work does not provide the quantitative measurement
experimental results for the etalon, so it is difficult to fully show the comparison of the
changes of depth measurement errors before and after structural parameter correction. This
is because in the actual measurement experiments, the depth measurement error of the
SLDI includes the depth measurement error caused by both the phase measurement error
and the structure parameter error. The depth measurement error caused by the latter is
difficult to clearly observe because it is submerged by that caused by the former, and the
former is complex and difficult to control in the actual measurement experiments.

In this work, the depth measurement error caused by structural parameter error was
analyzed and corrected. Therefore, the analysis and correction of depth measurement errors
caused by phase measurement errors will be an interesting work. Decouple those factors
that affect the phase measurement error and obtain the influence law of a single factor
on the phase measurement error, so as to independently correct the phase measurement
error caused by each influence factor, and then higher accuracy depth measurement can be
achieved. Moreover, the verification experiments show that the proposed method is simple
and easy to implement.

6. Conclusions

This paper has presented a method for correcting the structural parameters of SLDI,
which significantly reduced the DMECSPE. According to the quantitative comparison
of the simulation measurement results, the proposed method can reduce the DMECSPE
to less than 5% of that before the structural parameter correction. The qualitative actual
measurement experimental results show that the proposed method can obtain a depth
image with good visual effect for isolated surfaces and surfaces with a sharp contrast
between light and dark. Although the phase measurement error is not taken into account
in this paper, our proposed method provides an effective way and a new technical means
to improve the measurement accuracy of SLDI.
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