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Abstract: Colorectal cancer is very widespread in developed countries. Its diagnosis partly depends
on pathologists’ experience and their laboratories’ instrumentation, producing uncertainty in diag-
nosis. The use of spectroscopic techniques sensitive to the cellular biochemical environment could
aid in achieving a reliable diagnosis. So, we used Raman micro-spectroscopy, combined with a
spectral analysis by means of machine learning methods, to build classification models, which allow
colon cancer to be diagnosed in cell samples, in order to support such methods as complementary
tools for achieving a reliable identification of colon cancer. The Raman spectra were analyzed in
the 980–1800 cm−1 range by focusing the laser beam onto the nuclei and the cytoplasm regions of
single FHC and CaCo-2 cells (modelling healthy and cancerous samples, respectively) grown onto
glass coverslips. The comparison of the Raman intensity of several spectral peaks and the Principal
Component Analysis highlighted small biochemical differences between healthy and cancerous cells
mainly due to the larger relative lipid content in the former cells with respect to the latter ones and to
the larger relative amount of nucleic acid components in cancerous cells compared with healthy ones.
We considered four classification algorithms (logistic regression, support vector machine, k nearest
neighbors, and a neural network) to associate unknown Raman spectra with the cell type to which
they belong. The built machine learning methods achieved median values of classification accuracy
ranging from 95.5% to 97.1%, sensitivity values ranging from 95.5% to 100%, and specificity values
ranging from 93.9% to 97.1%. The same median values of the classification parameters, which were
estimated for a testing set including unknown spectra, ranged between 93.1% and 100% for accuracy
and between 92.9% and 100% for sensitivity and specificity. A comparison of the four methods
pointed out that k nearest neighbors and neural networks better perform the classification of nucleus
and cytoplasm spectra, respectively. These findings are a further step towards the perspective of
clinical translation of the Raman technique assisted by multivariate analysis as a support method to
the standard cytological and immunohistochemical methods for diagnostic purposes.

Keywords: colon cells; Raman spectroscopy; machine learning algorithms

1. Introduction

Nearly 2 million new cases of colorectal cancer were diagnosed in 2020; they con-
tributed to 10.7% of total cancer cases according to the data from the World Cancer Research
Fund International [1]. The gold standard procedure for colon cancer screening and di-
agnosis is mainly based on colonoscopy, followed by histopathological examinations of
biopsy samples taken from patients. Indeed, performing colon cancer diagnosis by means
of quantifying tumor markers in the blood, such as the carcinoembryonic antigen (CEA),
sometimes provides unreliable results because some healthy people have high blood levels
of CEA, especially if they are smokers [2]. A histopathologist makes a diagnosis according
to the morphological characteristics of the cells and lesions present in the biopsy specimen
after specific staining of the same specimen has been carried out. Therefore, the expertise
and ability of a physician can influence the sensitivity and specificity of a cancer diagnosis.
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Because the evolution of a healthy cell into a cancerous one requires changes at the bio-
chemical level, it is of interest to confirm the diagnostic results of a histological analysis with
the results obtained by chemical analytical techniques. Raman spectroscopy is a vibrational
technique that is suitable to detect biochemical modification occurring as a consequence
of cancer onset at the cellular level [3]. In recent years, many authors reviewed Raman
spectroscopy applications for cancer detection in human breast [4], brain [5], lung [6,7],
and gastric [8,9] tissues and cells. Although promising results have been obtained in cancer
detection, Raman spectroscopy remains, at present, only a technique to assist standard
histopathological techniques. In fact, much work remains to be conducted to implement
this spectroscopic technique in diagnosis and screening activities.

Raman spectra provide information about the biochemical differences between cancer
cells and healthy cells. However, such spectral differences in many cases are only slightly
larger than the signal-to-noise ratio, so the spectra measured for cells of unlike types almost
overlap. In this case, it is necessary to process the spectral data by means of proper analysis
techniques in order to allow useful information to be extracted. In particular, multivariate
statistical methods have been recently used to classify Raman spectra [10–12].

The classification problem consists of the assignment to the right class of a given
spectrum, which is measured on a sample whose class is unknown. Recently, W. Wang
et al. reported an interesting method, based on Raman spectra measured on tissue biopsies,
that is able to identify the prognoses of patients suffering from gastric cancer [13]. This
method is based on the estimation of the Euclidean distance of various Raman spectra with
respect to a poor prognosis reference spectrum. The good results obtained (sensitivity of
75% and specificity of 96.8%) refer to a situation in which the average Raman spectra of the
favorable and poor prognosis groups are quite different from each other.

In the case of spectra that are very similar to each other but belong to different
classes, the classification problem can be solved using machine learning methods. They
are mathematical methods that first analyze spectra whose classes they belong to are
known in order to obtain the main spectral characteristics that distinguish the different
classes, and then apply these characteristics to classify spectra whose classes are not known.
Some of these methods classify the spectra according to a limited number of wavenumber
values and the corresponding spectral intensities; therefore, they require a careful feature
selection step. Nonetheless, several of them are freely available online. As an example, the
“Orange” software product (https://orangedatamining.com/, accessed on 31 January 2024)
comprises many machine learning methods [14], such as neural networks (NNs), support
vector machines (SVMs), k nearest neighbors (kN N), and logistic regression (LR).

NNs are algorithms that acquire classification ability by means of many mathematical
functions (artificial neurons) arranged in layers; each neuron of a layer receives input
data and provides output data to the neurons of the next layer until it reaches the output
layer, which provides the response about the classification of the input data [15]. Recently,
D. Kalatzis et al. applied a type of NN method, known as a convolutional NN (CNN),
for the classification of the Raman spectra of colon tissues; they found that the CNN
algorithm achieved an accuracy of 83.4% and a sensitivity of 85.9% in the classification of
a spectral dataset including 248 spectra measured in the 800–1800 cm−1 range [16]. Also,
H. Yan et al. obtained excellent classification accuracy (97.2%), sensitivity (99.1%), and
specificity (95.4%) in the discrimination of tongue squamous cell carcinoma from adjacent
non-tumorous tissues with Raman spectroscopy and a CNN [17]. As for cell samples, W.
Shuyun et al. reported an accuracy mean of 99.2 ± 5.1%, a sensitivity mean of 99.2 ± 5.1%,
and a specificity mean of 99.8 ± 1.0% for the classification of different kinds of liver cancer
cell lines by means of laser tweezer Raman spectroscopy combined with a deep neural
network [18].

The SVM algorithm uses the input data, belonging to known classes, to identify a
hyperplane in the space of the selected spectral features, which optimize the separation
of data belonging to different classes; next, the projection of unknown data onto the
hyperplane allows them to be classified correctly [10,15]. The SVM algorithm was able
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to detect colorectal cancer by analyzing the Raman spectra of blood serum samples from
75 patients; in particular, the analysis of 43 properly selected spectral features in the
800–3000 cm−1 range allowed the investigated samples to be classified with accuracy,
sensitivity, and specificity values of 96%, 93%, and 98%, respectively [19]. X. Fang et al.
implemented the surface enhanced Raman technique with SVM method to distinguish
lung cancer cells from normal cells including blood cells and immortalized lung cells; they
achieved a classification accuracy between 98.8% and 100% for differentiation of cancer
cells from normal ones [20].

The kNN algorithm classifies unknown data according to the classes of their nearest
neighbors. Specifically, first, an appropriate value of the number k is chosen, and then an
unknown spectrum is assigned to the class to which the k closest spectra in the calibration
set belong [15]. X. Li et al. developed an algorithm for colon cancer diagnosis based on
the kNN method applied to Raman spectra measured for serum taken from 75 healthy
volunteers, 65 colon cancer patients, and 60 postoperative colon cancer patients; an accuracy
of 91.0% and a specificity of 92.6% were achieved [21]. X. Wang et al. investigated the
feasibility of using Raman spectroscopy combined with kNN to discriminate between
healthy volunteers, breast cancer, and ductal carcinoma in situ (DCIS); the kNN method
applied to Raman spectra collected from the serum of 241 healthy volunteers, including
463 patients with breast cancer and 100 DCIS patients, achieved an accuracy of 78.93%,
while larger accuracy values were obtained for binary classifications [22].

LR is an algorithm, mainly used for binary classification, based on a logistic function
(also known as sigmoid function) whose parameters are optimized during the calibration
phase; then, unknown data are classified according to the value of sigmoid function and
calculated with the optimized parameters [23]. In a work several years ago, S.K. Teh et al.
achieved accuracies of 92% and 94% for tissue classification of gastric adenocarcinomas of
intestinal and diffuse type, respectively, by the LR method applied to Raman spectra of such
tissues [24]. More recently, L.A. Arevalo et al. successfully discriminated vibrational spectra
of cerebral–spinal fluid from healthy and Alzheimer’s patients by the LR method [25].

Recently, we differentiated healthy colon cells from cancerous cells by analyzing FTIR
spectra and applying machine learning methods. In particular, the NN algorithm was
very effective in discriminating the two cell types, with excellent accuracy, sensitivity,
and specificity [26]. The aim of this work is to investigate which of the above machine
learning algorithms (NN, SVM, kNN, and LR) allow reliable classification of Raman spectra
measured in the nucleus and cytoplasm region of healthy and cancerous colon cells. We
found that all algorithms can discriminate the Raman spectra from the two classes of spectra
with accuracy, sensitivity, and specificity values larger than 92%. In particular, excellent
accuracies were obtained for the classification of nucleus spectra by the kNN method and
cytoplasm spectra by the NN method.

2. Materials and Methods
2.1. Cell Growth

Fetal human colon (FHC) cell line was used as a model of healthy colon cells. DMEM
F12 was used as the growth medium, to which 10 mM Hepes, 10 ng/mL cholera toxin,
5 µg/mL insulin, 5 µg/mL transferrin, 100 ng/mL hydrocortisone, 20 ng/mL EGF, and
fetal bovine serum with a 10% final concentration were added. The human colorectal
adenocarcinoma (CaCo-2) cell line was used as a colon cancer cell model. CaCo-2 cells were
grown in Dulbecco’s Modified Eagle’s medium (DMEM), supplemented with 4 mmol/dm3

L-glutamine, 1% penicillin/streptomycin, 10% fetal bovine serum (FBS), and 1% non-
essential amino acids (NEAA) at 37 ◦C and 5% CO2. Both cell lines were purchased from
ATCC (Manassas, VA, USA).

The cells were allowed to adhere to a glass coverslip, and after that, a proper poly-
lysine coating was deposited on the glass surface. Both healthy and cancer cells were fixed
in 3.7% paraformaldehyde and stored in Petri dishes with phosphate-buffered saline (PBS)
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solution until Raman spectra acquisition. Each cell sample was rinsed in deionized water
to remove residual PBS before Raman measurements.

2.2. Raman Spectra

Raman spectra were measured with a Raman confocal micro-spectrometer (Labram
from Jobin-Yvon Horiba, Montpellier, France), using an Olympus 100x oil-immersion
objective, in the range 600–1800 cm−1. The 514.5 nm line of an Ar ion laser was used
to excite two different positions of single FHC and CaCo-2 cells, i.e., a cell volume that
includes the nucleus and a cell volume that excludes it (and includes only the cytoplasm
region). The diffraction-limited spot focused on the sample had a diameter of less than
1 µm. In particular, before measuring each Raman spectrum, an optical image of the single
cell to be measured was obtained using a charge-coupled device camera, in order to select
the cell compartment on which to focus the laser beam and from which to collect the signal.
Each measured cell was excited with a laser power of 6 mW. The spectrum obtained from
each single cell consisted of the average signal of three consecutive acquisitions of 10 s each.
About 50 randomly chosen cells were measured, both for healthy and cancer samples. The
backscattered Raman light was analyzed by a diffraction grating with 600 grooves/mm and
it was detected by a charge-coupled device. The spectral resolution was about 5 cm−1/pixel.
The background signal was measured within volumes where no cell was located.

2.3. Spectral Processing and Data Analysis

Each Raman spectrum was preprocessed by first subtracting the corresponding
background signal and then performing a subtraction of the cell fluorescence and stray
light signal by means of the adaptive algorithm of the Spectragryph software (version
1.2.16.2023) [27], with a coarseness value of 30. That algorithm creates a baseline that fits
to the lower part of the spectra to remove the underlying broad and featureless signals
while keeping actual peaks. Next, area normalization was performed with the goal of
normalizing each spectrum to the total amount of biological material in the sampling
volume. In particular, the background spectrum, measured in a region of cell-free coverslip,
is due to the Raman signal of the glass coverslip and water, and it is mainly characterized
by a strong band centered at about 940 cm−1, related to the glass coverslip [28]; this band
cannot be fully removed by means of the background subtraction. Therefore, because the
presence of this spurious and cell-to-cell variable signal could affect the results of area
normalization, each single spectrum was normalized only in the 980–1800 cm−1 spectral
range. Finally, each spectrum was smoothed with a Savitzky–Golay filter with interval size
5 and polynomial order 3 using Spectragryph software [27]. These values were optimized
so that the intensity ratios of the peaks in each spectrum did not vary drastically.

Exploratory data analysis was performed by Principal Component Analysis (PCA)
with Unscrambler X (CAMO software, version 10.4), in order to visualize the discrimination
of the two types of samples (in the score plots) and the spectral variables to which this
separation is related (in the loading plots). A full cross-validation was used to validate the
PCA results.

After comparison of the mean spectra and PCA analysis, each of the sets of the healthy
and cancerous spectra was divided to obtain two subsets: a calibration set (70% of the
whole set from each cell type) for training the algorithms and a test set (the remaining
30% of the whole set from each cell type) for testing them. The calibration and test sets
were obtained for both the sampled regions of nucleus and cytoplasm. A random number
generator was used to select the spectra of the calibration set. Four classification models
included in the Orange software 3.35.0 were used for training: LR, SVM, kNN, and NN.
During the training step, the values of some parameters that the algorithms use to perform
the learning process were optimized in order to obtain maximum accuracy values and
full cross-validation was used to validate the obtained results. The random selection of
the calibration set spectra from the whole spectral dataset measured in both the nucleus
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and cytoplasm regions was repeated 25 times. The classification parameters were reported
according to median values.

3. Results and Discussion

The area-normalized Raman spectra of healthy FHC and cancerous CaCo-2 cells are
shown in Figure 1, where the mean (continuous lines) and standard deviation (dashed
lines) spectra are plotted for Raman signals detected within a cell region comprising the
nucleus (a) and a cell region including only the cytoplasm (b). In particular, when the
laser beam is focused on the nucleus region, Raman signals are mainly due to nucleus
constituents (nucleic acids, DNA/RNA, and proteins) and less to components of the
plasmatic membrane (mainly proteins and lipids); when the laser beam is focused within
the cytoplasm, the components of the nucleus are not sampled. The spectra of CaCo-2 cells
have been shifted vertically in Figure 1 for the sake of clarity. We measured the Raman
spectra of these two cell regions for each cell to test to determine whether one of these
two regions is more suitable than the other for effective discrimination of cancerous cells
from healthy cells. The standard deviation values in Figure 1 indicate that the Raman
signals of healthy cells are more variable than those of cancerous cells; this points out
that healthy cells are characterized by larger differences in the relative content of cellular
constituents than cancerous ones.
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Figure 1. Mean Raman spectra of healthy FHC (continuous black line) and cancerous CaCo-2
(continuous blue line) cells after area normalization. The spectra were measured within a cell volume
including the nucleus (a) and including only the cytoplasm (b). Standard deviation spectra are shown
as dashed lines. The spectra have been vertically shifted for clarity. The labels indicate the spectral
position of the main Raman features.

Similar spectra have been reported by other authors about colon cells [29,30] and
tissues [31]. In particular, all spectra in Figure 1 show many peaks, due to Raman scattering
of distinct functional groups located within the cellular components. The assignment of
spectral features, in agreement with the results of the previous literature [32], is shown
in Table 1. In particular, the most intense peaks in the spectra in Figure 1 are due to the
contribution of the amide I (~1657 cm−1) and CH2 deformation (~1450 cm−1) peaks. Other
well-resolved protein-related peaks include amide III (~1260 cm−1), phenylalanine ring
breathing vibrations (1004 cm−1), C-N stretching (1088 and 1129 cm−1), and aromatic ring
vibrations associated with phenylalanine, tryptophan, and tyrosine (e.g., 1031, 1174, and
1210 cm−1). The contribution of DNA and RNA components is more evident in the spectra
measured in the nucleus region than in the cytoplasm one; it is mostly related to the peaks
at 1097 cm−1 (PO2

− phosphodioxy bond of the phosphate group), 1326 and 1340 cm−1
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(CH3CH2 wagging mode in purine bases of DNA and ring breathing modes of DNA/RNA
bases, respectively), and 1580 cm−1 (ring breathing vibrational modes characteristic of
adenine and guanine). Lipid components weakly contribute to the Raman spectra in
Figure 1. In particular, a well-resolved lipid-related peak is located at 1064 cm−1, where
other lipid peaks are mainly overlapped with the protein ones, as occurs at 1088, 1129, and
1450 cm−1.

Table 1. Attribution of Raman bands, according to previous literature results [32] and in the present
investigation. Abbreviations: p: proteins; l: lipids; n.a.: nucleic acids.

Spectral Position (cm−1) Assignment

1004 C-C symmetric ring breathing of Phenylalanine (p.)

1031 C-H in plane bending of Phenylalanine (p.)

1064 C-C stretching (l.)

1088 C-N stretching (p.) and C-C stretching (l.)

1097 Symmetric PO2
− stretching of DNA (n.a.)

1129 C-N stretching (p.), C-O stretching (c.), C-C stretching (l.)

1174 C-H bending aminoacids (p.)

1210 C-C6H5 stretching aminoacids (p.)

1250 Amide III (p.)

1272 Amide III (p.)

1326 CH3CH2 wagging mode in purine bases of DNA (n.a.)

1340 Ring breathing modes of DNA bases (n.a.)

1406 (C=O)O− stretching of aminoacids (p.)

1450 CH2 bending modes (p., l.)

1580 Ring breathing modes in DNA bases (n.a.)

1657 Amide I (p.)

The differences of mean spectra, shown in Figure 2a,b for the nucleus and cytoplasm
regions, respectively, provide preliminary information on the relative content of the cell
components in the two cell types. In fact, the positive peaks in Figure 2 represent a larger
relative content of the peak-related components in the healthy cells than in the cancer cells,
whereas the opposite occurs for negative peaks. Thus, the positive peaks at about 1060 and
1450 cm−1 suggest a larger relative amount of lipids in healthy cells than in cancerous ones.
Negative signals at about 1338 and 1580 cm−1 also indicate a larger relative content of
nucleic acid components in the cancerous cells with respect to the healthy cells. Figure 2
shows larger uncertainty about relative protein content; in fact, positive peaks at about
1660 cm−1 suggest larger protein content in healthy cells than in cancerous cells, whereas
negative signals in the 1200–1280 cm−1 range indicate the opposite.

To test whether the intensity values of individual spectral peaks in Figure 1 were
sufficient to discriminate healthy cells from cancerous ones, we compared the intensity
values of specific peaks for the two cell types. Figure 3 shows some of these comparisons.
In particular, the Raman intensities of the DNA-related peak at about 1340 cm−1 in the
spectra measured including the nucleus region are quite larger for cancerous cells than for
healthy ones, as visible in Figure 3a. Such behavior suggests that cancerous cells contain
a larger relative amount of DNA than healthy cells. Such an observation is in agreement
with the results reported a few years ago by M.V.P. Chowdary et al., who found that mean
Raman spectra of malignant tissue exhibit relatively stronger DNA bands (at 1340 and
1470 cm−1) than mean Raman spectra of normal tissue [33]. Recently, M. Fouskova et al.
also reported Raman spectra of normal colorectal mucosa, benign epithelial polyps, and
colorectal adenocarcinoma [34]. In particular, they found a larger relative intensity of
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the Raman band at about 1333 cm−1 (partly due to vibrational modes of DNA bases) in
the spectra of adenocarcinoma than in the other tissues. Such a result is confirmed by
B. Brozek-Pluska et al. regarding the DNA-related peaks located at 1342 and 1584 cm−1

in Raman spectra of colon tissue and colon cells [31]. However, although the statistical
difference between the distributions of intensity values in the two types of cells obtained
in Figure 3a is significant (as indicated by the box plot on the right side), the separation
was not clear-cut, and several Raman intensity values were close to each other for the
two groups.
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Regarding the relative protein content in the two types of cells, contradictory results
were obtained from the comparison of peak intensities, as discussed above and as visible in
Figure 3b,c. Indeed, Figure 3b suggests a large relative content of proteins in the spectra of
cancerous cells compared with those of healthy cells, as the peak at 1450 cm−1 is mainly
due to proteins for spectra measured in the nucleus region. In contrast, Figure 3c, which
shows the comparison of amide I peak intensity values, indicates a larger intensity of such
a peak in the healthy cells than in the cancerous ones. These results are in disagreement
with similar spectra measured on the nucleus region of normal and cancerous colon cells
by other authors [35]. In particular, they found larger intensity values for the Raman peak
centered at 1444 cm−1 in the spectra of normal cells than in cancerous ones, whereas they
measured similar intensity values for the amide I peak in both cell types. Although a
statistically significant difference was obtained, as visible in the plots on the right side of
Figure 3, in this case, the intensity values in Figure 3b,c are also largely overlapping.
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As for the Raman spectra measured within the cytoplasm region, a larger amount of
lipid content in the healthy cells is suggested in Figure 3d, which shows the comparison
of peak intensity values at about 1064 and 1450 cm−1, related to C-C stretching and CH2
bending modes of lipids, respectively. The larger amount of lipid components in healthy
compared with cancerous cells has been previously reported by us for similar cells using
FTIR measurements [26], as also measured by Dong et al. [36] and E. Kaznowska et al. [37]
for colon tissues. However, Brokek-Pluska et al. reported discordant results from those in
Figure 3e regarding the 1444 cm−1 peak in tissue colon samples [35]. In addition, these
authors reported larger intensity values of the Raman signal at 1655 cm−1, due to protein
components, in the spectra measured within the cytoplasm region of cancer colon cells
than those measured within the cytoplasm of normal colon cells [35]. This protein-related
result is also different from that obtained and shown in Figure 3f.

Overall, the intensity values of single spectral peaks cannot be considered as markers of
colorectal cancer, because the differences between such values for all the cell constituents in
the Raman spectra of normal and cancerous cells are too subtle and overlapping each other;
thus, a reliable cancer diagnosis cannot be achieved. Therefore, it is worth considering
multivariate analysis techniques (in which the intensity values of many Raman peaks are
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simultaneously analyzed, as machine learning methods) to test the possibility of classifying
unknown cells as healthy or cancerous samples, according to their Raman spectrum.

Before using machine learning algorithms to evaluate their performance for the clas-
sification of unknown cells, we performed the PCA technique as a preliminary step to
determine whether spectra belonging to two different groups can be discriminated based
on the simultaneous contribution of different spectral intensity values. Figure 4a,b show
the PCA score plots for Raman spectra measured within the nucleus and cytoplasm, re-
spectively. The spectra of cancerous cells are well-discriminated from those of healthy
cells according to the PC1 and PC3 score values of the nucleus and cytoplasm spectra,
respectively. In fact, the spectra of cancerous cells are mainly characterized by negative
values of PC1 and PC3 scores, whereas the spectra of healthy cells have mainly positive
values of these PC scores. The loading 1 and 3 plots for the nucleus and cytoplasm regions
are shown in Figure 3c and 3d, respectively. They should be compared with the difference
signals of the average spectra in Figure 2, in order to understand which Raman peaks are
related to the discrimination between the two types of spectra. The loading plots in Figure 4
and the difference plots in Figure 2 are quite similar to each other. Therefore, the loading
plots confirm that the discrimination of healthy from cancerous cells occurs mainly for the
different relative content of lipids and nucleic acids; the content of the former is larger in
healthy cells, whereas the content of nucleic acids is larger in cancerous cells.
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Overall, the PCA results demonstrate the possibility of assigning spectra of an un-
known nature to the appropriate class by suitable classification techniques, based on the
simultaneous use of many Raman peaks as a spectral biomarker for malignancy. Therefore,
we estimated the results obtained by training four classification algorithms (kNN, LR, SVM,
and NN) from the “Orange” software, for both the nucleus and cytoplasm region. The
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spectral features selected for the classification were those corresponding to the spectral
positions of the main Raman peaks labelled in Figure 1. The only difference between the
features selected for the classification of the spectra acquired in a volume including the
nucleus compared to the spectra measured in a volume excluding the nucleus was the
choice of the spectral feature located at 1097 cm−1 in the former ones and of the feature
located at 1088 cm−1 in the latter ones. For each algorithm, the parameters controlling the
learning process turn oute to be optimized when they assume the following values:

• LR: non-regularization type;
• SVM: radial basis function (RBF) kernel, SVM with cost 1.0 and regression loss epsilon

0.1, tolerance 0.001, and maximum 100 iterations;
• kNN: the number of neighbors equal to two, by using an Euclidean metric and weights

by distances;
• NN: 30 neurons in the hidden layer, ReLu activation, Adam solver, and 300 maximum

iterations.

The use of different machine learning methods is spreading in medical diagnostics
for the classification of cell and tissue samples according to optical [38], electrical [15],
and spectroscopic [39] data. The values of the performance parameters achieved by the
classification algorithms during the training of the calibration data, randomly chosen
25 times from the original dataset, are reported in Table 2. All the mentioned algorithms
accomplished a good classification level, with accuracy values larger than 95% for both cell
regions. In particular, the SVM algorithm performs slightly better than the others, with an
accuracy value of about 97% for the two cell regions. Note that the classification target was
set to detect the cancerous cells; consequently, healthy cells were assessed as negative and
cancerous cells as positive.

Table 2. Median values of performance parameters for the investigated classification algorithms
applied to the calibration set of Raman spectra of healthy and cancerous colon cells. The param-
eters are reported for spectra measured with the laser spot focused on both the nucleus region
and the cytoplasm region. The 25th and 75th percentile values are reported between brackets for
each parameter.

Method Accuracy
Nucleus (%)

Accuracy
Cytoplasm (%)

Sensitivity
Nucleus (%)

Sensitivity
Cytoplasm (%)

Specificity
Nucleus (%)

Specificity
Cytoplasm (%)

kNN 97.1
(95.7, 97.9)

95.5
(94.0, 96.3)

100.0
(97.1, 100.0)

95.5
(94.1, 97.1)

94.3
(94.3, 97.1)

93.9
(90.9, 97.0)

LR 95.7
(95.7, 97.1)

97.0
(97.0, 97.8)

97.10
(95.7, 97.1)

97.1
(97.1, 98.6)

97.1
(94.3, 97.1)

97.0
(97.0, 97.0)

NN 95.7
(94.2, 97.1)

97.0
(97.0, 98.5)

97.1
(94.1, 100.0)

97.1
(97.1, 100.0)

94.3
(91.4, 95.7)

97.0
(97.0, 97.0)

SVM 97.1
(95.7, 97.1)

97.0
(95.5, 97.8)

97.1
(97.1, 100.0)

97.1
(97.1, 97.1)

94.3
(94.3, 97.1)

97.0
(93.9, 100.0)

Some works have been recently published reporting the comparative analysis of sev-
eral machine learning techniques applied to Raman spectra measured for tissue samples,
with the aim of promoting the adoption of the Raman technique coupled with multivariate
methods in colon cancer diagnostics. In particular, M. Fouskova et al. [34], using several
methods of machine learning (PCA-Linear Discriminant Analysis, SVM, Decision Tree,
and Decision Tree AdaBoost), were able to achieve more than 99% accuracy in distinguish-
ing colorectal lesions from healthy epithelial tissue. However, their results refer to the
10-fold cross-validation of the whole spectral dataset. In addition, J. Depciuch et al. [19]
analyzed Raman data collected from 75 blood serum samples of healthy and colon cancer
patients using three machine learning methods (Deep Learning, SVM, and eXtreme Gradi-
ent Boosting trees) in order to determine the efficiency of discrimination of sick and healthy
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people. They obtained accuracy values ranging from 59% to 96%, and both depended
on the investigated spectral range and on the number of selected spectral features. The
eXtreme Gradient Boosting trees method performed better than the other two methods,
although these authors also used the whole dataset to build the classification models, which
were tested with a leave-one-out cross-validation approach. As a third example, N. Blake
et al. [40] investigated the potential of using Raman spectroscopy to distinguish between
normal cells and adenocarcinoma in human colorectal tissue samples. In particular, they
obtained discrimination accuracy values between 71% and 75% by means of PCA-LDA,
SVM, and CNN. However, even in this case, the validation step was carried out using a
cross-validation method rather than using an independent test set.

In contrast to these authors’ methods, we performed LOOCV only during the building
step of the classification models, using the Raman spectra of the calibration set, in order to
generalize and optimize such models. Next, we tested the machine learning algorithms on
a set of unknown Raman spectra (test set) in order to assess the ability of the investigated
machine learning models to classify colon cells. The achieved values of the performance pa-
rameters are reported in Table 3; they refer to the median values calculated for 25 instances
of randomly chosen spectra of the test set from the original dataset. In particular, the area
under the ROC curve (AUC) values, which can vary between 0 and 1, are proportional to
the model’s ability to distinguish the unknown spectra as belonging to the proper class
between the healthy and cancerous cells [41]. The AUC values in Table 3 show that all the
investigated models have excellent ability to distinguish between cells with disease and
without disease. In addition, all the obtained values of accuracy were almost excellent,
particularly for the kNN method for the Raman spectra of the nucleus region and NN
method for the Raman spectra of the cytoplasm region. Instead, the obtained sensitivity
and specificity values of all models suggest that Raman spectra measured in the cytoplasm
region perform better with respect to those measured in the nucleus region in reducing the
risk of failing to diagnose the pathology or of misdiagnosing it.

Table 3. Median values of performance parameters for the investigated classification algorithms
applied to the test set of Raman spectra of healthy and cancerous colon cells. The parameters are re-
ported for spectra measured with the laser spot focused on both the nucleus region and the cytoplasm
region. The 25th and 75th percentile values are reported between brackets for each parameter.

Method AUC
Nucleus

AUC
Cytoplasm

Accuracy
Nucleus (%)

Accuracy
Cytoplasm (%)

Sensitivity
Nucleus (%)

Sensitivity
Cytoplasm (%)

Specificity
Nucleus (%)

Specificity
Cytoplasm (%)

kNN 1.00
(0.97, 1.00)

1.00
(0.96, 1.00)

100.0
(96.6, 100.0)

96.4
(92.9, 96.4)

100.0
(100.0, 100.0)

100.0
(92.9, 100.0)

93.3
(93.3, 100.0)

92.9
(92.9, 100.0)

LR 1.00
(0.99, 1.00)

1.00
(0.99, 1.00)

96.6
(93.1, 96.6)

96.4
(94.7, 100.0)

92.9
(89.3, 100.0)

100.0
(92.9, 100.0)

100.0
(93.3, 100.0)9

100.0
(92.9, 100.0)

NN 0.99
(0.99, 1.00)

1.00
(0.99, 1.00)

93.1
(89.7, 96.6)

100.0
(96.4, 100.0)

92.9
(85.7, 100.0)

100.0
(96.5, 100.0)

93.3
(86.7, 96.7)

100.0
(92.9, 100.0)

SVM 1.00
(0.99, 1.00)

1.00
(0.99, 1.00)

96.6
(93.1, 100.0)

96.4
(92.9, 100.0)

100.0
(92.9, 100.0)

100.0
(92.9, 100.0)

100.0
(93.3, 100.0)

100.0
(92.9, 100.0)

4. Conclusions

In summary, we proposed the use of Raman spectroscopy combined with machine
learning methods to obtain reliable classification of Raman spectra measured in the nucleus
and cytoplasm regions of healthy and cancerous colon cells. First, we randomly selected
70% of the Raman spectra from the whole dataset to form a calibration set to be used to
optimize the machine learning parameters. This random selection was repeated 25 times.
The remaining 30% of the Raman spectra constituted the test set, to be used to evaluate
the performance of the algorithms used. We found a classification accuracy > 93% for the
spectra measured in the two cell regions, with the cytoplasm region performing slightly
better on average compared to the nucleus region. The sensitivity and specificity values
estimated from the Raman spectra measured in the cytoplasm region were also better
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on average than those measured in the nucleus region. About the performances of the
four machine learning methods, excellent accuracies were obtained for the classification of
nucleus spectra with the kNN method and cytoplasm spectra with the NN method.

Although these findings suggest that the subcellular Raman analysis approach com-
bined with machine learning analysis might be a powerful tool to improve cancer diagnosis
during clinical examination, some critical issues should be overcome before the Raman
measurements and machine learning analysis could be accepted in clinical practice. First,
this investigation is only a proof of suitability of the presented diagnostic analysis, because
it involves cell lines; hence, the results should be confirmed by measuring and analyzing
cytological specimens from patients. In addition, tissue biopsy samples from patients
should be investigated too, because histological analysis is as widespread as cytological
analysis. In the case of tissue samples, the distributions of the performance parameter
values are expected to be broader than those related to cell samples, due to the greater
variability of biochemical content present in tissues than in cells. Lastly, the achieved results
should be confirmed regarding samples characterized by different degrees of pathology.
Nonetheless, our findings are promising in terms of using the vibrational spectroscopy and
machine learning algorithms as useful methods in cytology diagnostics.

Despite these promising results, some issues still need to be addressed before Raman
spectroscopy and machine learning techniques can be effectively implemented in clinical
settings. The first issue concerns the standardization of the measurement protocol, specif-
ically about the preparation of the sample to be measured (for which proper substrates
should be evaluated), the choice of the best laser wavelengths (in order to optimize the
signal/noise ratio of the spectra), and the planning of the number of measurements to be
carried out (in order to obtain reliable results). Then, the preprocessing methods of the
spectra should be standardized, by properly choosing the outlier spectra to be removed
from the subsequent analysis, the method of subtracting the baseline related to the substrate
signal and the fluorescence of the sample, and finally, the normalization method of the
spectra. Finally, it is necessary to choose the machine learning techniques that produce
the most reliable results (according to the problem to be addressed and what is reported
in the literature) for the building of the prediction models to obtain a classification that is
as correct as possible. Overcoming these drawbacks would make it possible to correctly
diagnose an unknown cellular sample once measurements are made on known samples.
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