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Abstract: In this paper, we theoretically and numerically demonstrate a thermally controlled broad-
band absorber based on the phase change material Ge2Sb2Te5 (GST). When GST operates in the
amorphous state, the proposed metamaterial acts as a broadband nearly perfect absorber. The ab-
sorption can reach more than 90% in the wavelength range from 0.9 to 1.41 µm. As an application of
the GST-based metamaterial absorber, the near-field imaging effect is achieved by using the intensity
difference of optical absorption. Moreover, the thermally controlled switchable imaging can be
performed by changing the phase transition characteristics of GST, and the imaging quality and
contrast can be adjusted by changing the geometrical parameters. This designed metamaterial may
have potential applications in near-infrared temperature control imaging, optical encryption, and
information hiding.
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1. Introduction

Optical communication technology, based on electromagnetic waves [1], is particularly
favored owing to its high speed and parallel characteristics. Due to the fact that electro-
magnetic waves can carry and transmit a large amount of information, it is beneficial for
applications in optical information encryption [2–4]. In recent years, the emergence of
metamaterials that can manipulate various degrees of freedom of electromagnetic waves
has aroused great interest among researchers. Metamaterials are artificially engineered
materials composed of periodic arrays with subwavelength scale, which exhibit various
unnatural electromagnetic properties [5–8]. Since creatively proposed by Landy et al. [9],
metamaterial perfect absorbers (MMPAs) have been widely studied on account of their rela-
tively flexible design compared to traditional absorbers based on large-volume components,
which have potential applications in photovoltaic, photodetectors, and imaging [10–13].
Nowadays, many types of MMPAs have been proposed, ranging from visible light to
microwaves [14–16]. In particular, Y. Kivshar et al. demonstrated a plasmonic metasurface
absorber supporting high-Q resonances governed by quasi-bound states in the continuum
modes in the mid-IR frequency range [17]. However, most traditional MMPAs are dedi-
cated to a single function, which cannot meet the requirements of integrated multi-function.
In recent years, various tunable absorbers have been proposed by combining active materi-
als with metamaterials, such as phase change materials [18–21], graphene [22–25], liquid
crystals [26,27], and so on. For example, Li et al. utilized the toroidal dipole-bound state in
the continuum to achieve perfect absorption at any desired wavelength by integrating a
monolayer graphene on top of a silicon compound grating [28]. Zheng et al. proposed a
tunable ultra-wideband terahertz absorber, which can achieve the switching between wide-
band and narrowband absorption [29]. Qi et al. proposed and demonstrated a switchable
functional metamaterial device based on a hybrid graphene–VO2 configuration, which can
enable switching between the dual-band perfect absorption and tunable circular dichroism
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(CD) response in the terahertz region [30]. Furthermore, as an alternative phase change ma-
terial, Ge2Sb2Te5 (GST) [31,32] undergoes a fast phase transition from amorphous (a-GST)
to crystalline (c-GST) at around 160 ◦C. In particular, by precisely controlling the energy
and duration of the external stimulus, GST can remain stable in an arbitrary intermediate
state between a-GST and c-GST, which makes GST an ideal candidate for actively tunable
optoelectronic devices. For example, Li et al. constructed a phase change metamaterial
based on paired GST bars to achieve the dynamic control of the CD responses of chiral
quasi-bound states in the continuum [33]. Ge et al. achieved an active control of asymmet-
ric transmission based on topological edge states in paired photonic crystals with a-GST
films [34]. Tian et al. introduced a novel MMPA based on GST, achieving an overall absorp-
tion of 92.9% across a 350–1500 nm spectrum [35]. Zhang et al. proposed a multifunctional
metasurface based on GST, in which the polarization selectivity and absorption switch-
ing were achieved by controlling the phase of GST [36]. Sreekanth et al. experimentally
demonstrated a GST-based absorber with multi-narrowband perfect absorption at visible
frequencies [37]. In addition, there have been some exciting related works proposed for
near-field imaging based on the phase change materials. For example, Gao et al. pro-
posed a reconfigurable chiral metamaterial based on the phase change material of VO2,
which utilized the dual-THz band CD effect to achieve near-field imaging at 3.47 THz and
6.75 THz [38]. Xiong et al. designed and investigated a temperature tunable chirality-
selective meta-absorber based on the phase change material of VO2, achieving tunable
near-field imaging of letters and response code with information hiding characteristics [39].
Chen et al. presented an active broadband tunable metamaterial absorber based on GST
and used interferometric near-field scanning optical microscopy to investigate the near-field
amplitude and phase distribution [40]. Jiang et al. introduced a GST-based metamaterial,
enabling the switch between the CD intensity and display near-field images by dynamically
adjusting the phase of GST [41]. However, the near-field imaging effects of current works
are usually nonadjustable and difficult to be changed. Meanwhile, there are only a few
studies in the literature on the realization of MMPA for switchable imaging based on GST
under the excitation of linearly polarized lights.

In this paper, we theoretically investigate a thermally controlled broadband absorber based
on the phase change material GST. When GST is in the amorphous state, the proposed meta-
material acts as a broadband nearly perfect absorber. The absorption is over 90% within the
wavelength range of 0.9 to 1.41 µm. Then, we demonstrate the thermal control switchable
near-field imaging by utilizing the absorption characteristic of the proposed absorber. Further-
more, the imaging quality and contrast can be adjustable by modifying structure parameters.
The switchable near-field imaging based on GST shows potential applications in near-infrared
temperature control imaging, optical encryption, and information hiding.

2. Structure Model and Method

Figure 1a illustrates the unit cell structure of the metamaterials, which consists of four
elliptical cylinder a-GST arrays, a SiO2 film, and an a-GST layer deposited on Au substrate
from the top to the bottom. The thickness of SiO2 film and GST layer are set to 30 nm
and 290 nm, respectively. The gold substrate thickness is set to 50 nm so as to block the
transmission of the incident lights. The periodicity p of the unit cell in x- and y-direction
is set to 1000 nm. The related geometrical parameters are listed in the caption of Figure 1.
The refractive index of SiO2 is set to 1.45, and the optical constants of Au are taken from
the data of Palik [42]. The refractive indices of a-GST and c-GST are derived from the
experimental data in reference [43]. The complex refractive index consists of a real part and
an imaginary part. The real part n is the refractive index of GST, while the imaginary part k
represents the extinction coefficient, indicating the loss of energy. It can be seen that GST
has a large refractive index that is both real and imaginary, as shown in Figure 1b, which is
conducive to generating strong electromagnetic absorption [44,45]. It is worth mentioning
that both the real and imaginary parts of the refractive index undergo notable changes
after the transition from a-GST to c-GST. The proposed structure can be fabricated using
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standard deposition techniques [46] and dry etching methods, such as laser interference
lithography [47].
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Figure 1. (a) Schematic diagram of the proposed metamaterial perfect absorber based on GST.
(b) Real and imaginary parts of refractive index of a-GST and c-GST. The semi-major axis a and
semi-minor axis b of the GST elliptical cylinder are set to 150 nm and 100 nm, respectively. d = 500 nm,
h = 160 nm, θ = 45◦, t = 30 nm, and H = 290 nm.

To study the optical properties of the metamaterials, the 3D finite-difference time-
domain (FDTD) method is utilized to perform the electromagnetic responses. In simula-
tions, the periodic boundary conditions are set in the x and y directions, and the perfectly
matching layers (PMLs) are introduced in the z direction. The minimum mesh step is
0.25 nm and mesh type are set to auto non-uniform. The simulation time is 100,000 fs
to ensure the convergence of numerical results. The electromagnetic waves are normally
incident along the negative direction of the z-axis.

3. Results and Discussion

Figure 2a shows the absorption spectrum of the proposed metamaterials when GST is in the
amorphous state. It is observed that the structure exhibits a high absorption efficiency exceeding
90% within the wavelength range of 0.9 to 1.41 µm. Moreover, the absorption can peak at 96%
at the resonant wavelength λ = 1.37 µm (labeled by the black point). This demonstrates that the
proposed GST absorber possesses broadband and nearly perfect absorption properties when
GST is in the amorphous state. The inset of Figure 2a depicts the electric field distribution of the
structure in the x–o–y plane at the resonant wavelength of 1.37 µm. Then, one can see from the
picture that the electric fields are mainly concentrated at the edge of GST elliptical cylinders due
to the excitation of dipole resonance. As a comparison, we calculate the absorption spectrum
of the metamaterials when GST is in the crystalline state, as shown by the black line. It can be
seen that the absorption of the designed metamaterial in crystalline state exhibits a significant
decrease. Also, one can find that the absorption difference, that is, ∆A = Aa−GST − Ac−GST,
reaches 0.439 at the wavelength of λ = 1.37 µm. Figure 2b shows the absorption spectra of
the metamaterial with different configurations. When the elliptical GST array is replaced by
Si3N4 with a refractive index of 1.98, the absorption spectrum of the designed metamaterial
shows a further reduction in absorption as shown by the blue line, in which the GST layer is in
the crystalline state. The purple line represents the absorption of the designed metamaterial
when the GST layer is in the amorphous state. Therefore, considering the significant variation
in absorption spectra across different states, the designed metamaterial is intended to have the
capability of being implemented on applications of near-field imaging.
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If the c-GST array and Si3N4 array are integrated and illuminated with incident light
of a specific wavelength, the absorption difference between the two structures will cause
different intensities of electric field excitation, which can be used for imaging applications.
Herein, we designed a metamaterial array structure based on the GST elliptical array
structure as shown in Figure 3. The proposed metamaterial array consists of 18 × 16 cells,
with both the GST and Si3N4 elliptical arrays being identical. The GST elliptical array forms
the letter “C”, “Z”, and “U”, separately, while the Si3N4 array is positioned elsewhere.
The initials CZU stand for ChangZhou University. The GST array and GST layer can
be freely converted between a-GST and c-GST through a thermally controlled method.
At the resonant wavelength of 1.37 µm, taking a plane wave incident along the z-direction
as the source, the reflected electric field intensity is regarded as the image of the letter.
The images of the letters “C”, “Z”, and “U” are depicted in Figure 4a–c when GST is in
the crystalline state. It can be seen that the electric field of the letter is clearly distributed.
When GST switches to the amorphous state, the image of the letters completely disappears
(Figure 4d–f). Therefore, the proposed metamaterial array can achieve a switchable imaging
function by controlling the phase transition of GST through temperature adjustments.

Figure 5 shows the image variations when the geometric parameters take different
values to explore the influences of s, i.e., the height h, semi-major axis a, and azimuth angle
θ of elliptical cylinder GST arrays. Taking the letter “C” as an example, Figure 5(a1–c1)
present the images of the letter “C”, with h being 110 nm, 160 nm, and 210 nm, respectively.
It is noticeable that when GST behaves like crystals, the electric field intensity in the letter
region diminishes as h increases. When h is 110 nm, the image exhibits an obvious contrast,
but there are issues of color delamination and blurred edges. Additionally, the electric
field distribution in the central region is uneven, which is not ideal to display in practical
applications. When h is 160 nm, the image exhibits uniform distribution with high contrast
and a clear edge, achieving the desirable imaging quality. With a further increase in h, i.e.,
h = 210 nm, the image display is less distinct with low contrast. Figure 5(a2–c2) reveal
that when GST serves as crystals, the electric field intensity in the letter region increases
with a. Accordingly, a = 150 nm is a desirable choice. Figure 5(a3–c3) show that the
imaging quality gradually weakens when θ takes the values of 0◦, 45◦, and 90◦, separately.
Hence, when θ is 45◦, a good balance between imaging and switchable effect can be
achieved.

To quantitatively describe the imaging quality, here, we introduce the Weber contrast
model [48] to describe the image contrast. It is defined as Cw = ∆L

Lb
and ∆L = | Lt − Lb |,

where Lt and Lb represent the brightness of target and background, and ∆L is the brightness
difference between the two, respectively. We set the lowest brightness of the letter to Lt and
the highest brightness of the background to Lb. Figure 6a,b indicate that as h and a increase,
the image contrast rises, suggesting a gradual enhancement in the imaging quality. From
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Figure 6c, it can be seen that as θ increases, the image contrast decreases. Overall, compared to
its amorphous state, the imaging contrast of GST is higher when it acts as a crystal.
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Figure 6. (a–c) Image contrast and (d) switchable imaging effect under geometric parameters.

In order to visualize the switchable effect, we take the contrast of the image as the
“brightness”, and the contrast of c-GST and a-GST are set to the target brightness Lt and
the background brightness Lb, respectively. The calculated results using the Weber contrast
model are shown in Figure 6d. In this picture, “1” denotes the first set of data in Figure 6a–c,
namely h = 160 nm, a = 150 nm, and θ = 0◦, and so on. One can observe that the imaging
switchable imaging effect degenerates while the geometric parameters rise, confirming that
the imaging and switchable imaging effects of Figure 5 have been numerically verified.
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4. Conclusions

In summary, we theoretically propose and investigate a thermally controlled broad-
band absorber based on phase change material GST. When GST serves in the amorphous
state, the proposed metamaterial acts as a broadband nearly perfect absorber with absorp-
tion exceeding 90% in the wavelength range of 0.9 to 1.41 µm. Moreover, the thermally
controlled switchable near-field imaging can be achieved by utilizing the phase change
characteristics and the absorption difference of different configurations. The imaging
quality and contrast are adjustable by modifying the structural parameters. Our designed
metamaterial may have potential applications in near-infrared temperature control imaging,
optical encryption, and information hiding, etc.
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