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Abstract: Weakly coupled mode-division multiplexing (MDM) techniques supporting intensity mod-
ulation and direct detection (IM/DD) transmission are promising methods of enhancing the capacity
of short-reach scenarios in which low-modal-crosstalk-mode demultiplexers for degenerate linear
polarized (LP) modes are highly desired. In this paper, we review two degenerate-mode reception
schemes. Firstly, a low-modal-crosstalk orthogonal combined reception method for degenerate modes
is proposed based on all-fiber mode-selective couplers, in which signals in both degenerate modes are
demultiplexed into the LP01 mode of single-mode fibers and then are multiplexed into the mutually
orthogonal LP01 and LP11 modes of a two-mode fiber (TMF) for simultaneous detection. Secondly, a
novel degenerate-mode-selective coupler consisting of an input few-mode fiber and an output TMF is
proposed, which could demultiplex degenerate LP modes without any digital signal processing (DSP).
Both demultiplexers are achieved based on the taper and polish process. The fabricated devices are
characterized and compared. The results show that the proposed schemes can pave the way to the
practical implementation of DSP-free IM/DD LP-mode MDM transmission systems.

Keywords: mode-division multiplexing; mode multiplexers; intensity modulation and direct detec-
tion transmission

1. Introduction

New techniques for short-reach optical transmission applications such as optical ac-
cess networks, data centers, and super-computer interconnects are being used to break
the current bandwidth bottleneck [1]. In addition to wavelength-division multiplexing,
mode-division multiplexing (MDM) based on few-mode fiber (FMF) is a promising tech-
nique that utilizes linearly polarized (LP) modes as spatial transmission channels [2,3].
Since modal crosstalk is not suppressed in strongly coupled MDM transmission systems,
coherent detection and multiple-input multiple-output (MIMO) digital signal processing
(DSP) are always required at the receiver [4,5]. However, their huge computational com-
plexity is not suitable for short-reach transmission scenarios, where simple and low-cost
intensity modulation and direct detection (IM/DD) approaches without DSP are preferred.
Consequently, weakly coupled MDM transmission techniques have been proposed, in
which the modal crosstalk is suppressed as much as possible for the overall transmission
system including the fibers, optical components, and the coupling between them [6,7].
In weakly coupled MDM systems, high compatibility with conventional IM/DD optical
transceivers is expected.

Two kinds of modal crosstalk need to be handled to achieve IM/DD MDM transmis-
sion in circular-core FMFs. The first one is the inter-LP-mode crosstalk, which is inversely
related to the modal effective refractive index difference (∆neff) between two LP modes.
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The overall modal-crosstalk performance of a weakly coupled MDM system is mainly
determined by the minimum |∆neff| (min|∆neff|) among all the LP modes. As is known,
the min|∆neff| could be enlarged by increasing the core–cladding index difference or
decreasing the core radius. These changes will inevitably yield high fiber nonlinearities,
large attenuation, and severe modal birefringence [8]. A more effective approach is adopt-
ing perturbed ring areas in the fiber core to adjust the neff of all LP modes to approach
equal spacing as much as possible [9,10]. The second modal crosstalk is the intra-LP-mode
crosstalk between each pair of degenerate modes (LPlma and LPlmb, l ≥ 1). Because of
random perturbations and imperfect fiber fabrications, the modal field of the degenerate
modes will rotate randomly along the FMF propagation [11]. Since the two degenerate
modes cannot be distinguished at the end of the FMF, 4 × 4 MIMO DSP is needed to handle
the mode degeneracy and polarization [12,13]. IM/DD MDM transmissions less than 1 km
can utilize elliptical-core FMFs to break the modal degeneracy [14]. However, non-circular-
core FMFs may meet problems when expending to longer transmission distances and
more modes. Therefore, circular-core FMFs are required in IM/DD MDM transmission
longer than 1 km with more than one pair of degenerate modes. In order to avoid any DSP
including the 4 × 4 MIMO processing, it is necessary to utilize the two degenerate modes
as a whole LP mode. Consequently, the whole system is actually an LP-mode MDM trans-
mission link. However, regular mode demultiplexers for non-circular-symmetric LP modes
can only convert the mode with a certain spatial orientation to the fundamental mode of
a single-mode fiber (SMF) [15]. Optical powers in modes with other spatial orientations
will be abandoned at the receiver, which will induce severe power fluctuation. At a given
coordinate, non-circular-symmetric LPlm modes with any angular rotation can be regarded
as the linear combination of the degenerate LPlma and LPlmb modes [16]. Therefore, optical
powers in both degenerate modes should be collected to ensure a stable reception. Sev-
eral reception schemes for degenerate modes have been proposed so far. For instance, a
photonic lantern is employed to demultiplex signals in two degenerate modes into two
SMFs, respectively. Then, the optical powers in the two SMFs are combined and converted
by another photonic lantern to an FMF output [17]. Multi-plane light conversion is also
used to deal with the mode degeneracy by converting each pair of higher-order degenerate
modes to a different lower-order mode and coupling the optical powers to a multimode
fiber pigtail [18–20]. Another possible approach is based on angularly multiplexed volume
holograms [21,22]. However, the modal selectivity and demultiplexing efficiency of this
scheme need to be improved in order to achieve DSP-free IM/DD MDM transmission.

In this paper, we review our recent studies on degenerate-mode-reception schemes
for DSP-free IM/DD LP-mode MDM transmission. A low-modal-crosstalk orthogonal
combined reception scheme for degenerate mode demultiplexing is firstly investigated [23].
Then, a degenerate-mode-selective coupler (DMSC) is proposed, which could simplify the
demultiplexer [24]. The two schemes are realized by tapering and side-polishing techniques.
The fabricated demultiplexers are characterized and the results are discussed. Compared
to other degenerate-mode-reception schemes, the two approaches proposed in this paper
are based on all-fiber modal couplers, which have the advantages of insertion loss, modal
selectivity, and fabrication complexity.

2. Demultiplexers Based on All-Fiber Mode-Selective Couplers

In a polar coordinate, transverse field components of the LPlm mode of a FMF are as
follows:

E(r, φ) = AlJl(ur/a)cos(lφ − lα)/Jl(u), 0 < r ≤ a, (1)

E(r, φ) = AlKl(wr/a)cos(lφ − lα)/Kl(w), r > a, (2)

where Al is the amplitude of the transverse field components, Jl is the Bessel function of the
first kind, Kl is the modified Bessel function of the second kind, a is the radius of the core,
l is the azimuthal mode number, and u and w are the transverse propagation constants in
the core and cladding, respectively.
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The structure of the proposed all-fiber mode demultiplexers for LP-mode MDM
transmission is shown in Figure 1. Regular mode-selective couplers (MSCs) are adopted for
the reception of circular–symmetric LP modes. Since a single MSC can only demultiplex
degenerate LP modes with one spatial orientation, two orthogonally cascaded MSCs for a
pair of degenerate LP modes are utilized to demultiplex the two degenerate modes into
the LP01 mode of two SMFs. However, utilizing a 3 dB optical coupler to combine the
two signals into an SMF will induce additional loss. Therefore, an LP11 MSC is followed
as a combiner to multiplex the optical power in two SMFs into mutually orthogonal
LP01 and LP11 modes of a two-mode fiber (TMF) to achieve degenerate-mode reception.
The outputs of the mode demultiplexer are commonly followed by photo detectors (PDs)
for detection. The PDs could be spatially coupled or have a few-mode/multimode pigtail
fiber to detect the optical power in LP01 and LP11 modes. It should be noted that the two
branches before combining should have identical length to avoid temporal broadening
of signal.
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Figure 1. The proposed all-fiber mode demultiplexers for LP-mode MDM transmission.

The 4-LP mode demultiplexer consisting of four kinds of regular MSCs and a com-
biner LP11 MSC are fabricated based on taper and polish method [25]. Regular MSCs are
fabricated utilizing 4-LP-mode FMFs and SMFs, while the combiner MSCs are fabricated
using TMFs and SMFs. Figure 2a depicts the refractive index profiles of the 4-LP-mode
fiber. It supports 4 LP modes with a normalized frequency V of 4.8 and a refractive index
difference (∆n) between the fiber core and cladding of 0.6% at 1550 nm. Three perturbed
ring areas are applied to enlarge the mode spacing and a min|∆neff| up to 1.89 × 10−3

is achieved. A fluorine-doped trench is applied in the cladding to reduce the attenuation
and bending loss. An SMF with ∆n of 1.23% at 1550 nm is customized for the fabrication
of LP01 and LP11 MSCs. It has a step index profile which is depicted in Figure 2b. The
core and cladding radii of the SMF are 2.48 and 62.5 µm, respectively. A standard SMF is
adopted for the fabrication of LP21 and LP02 MSCs. For the combiner LP11 MSC, a TMF
with core/cladding radius of 5/62.5 µm and ∆n of 0.688% at 1550 nm is adopted, whose
index profiles are depicted in Figure 2c.

In order to be phase-matched, some fibers should be tapered on a biconical taper
station to decrease the neff of the desired modes. Figure 2d shows the neff of all the LP
modes in the standard SMF, customized SMF, and FMF as functions of the tapered radii. The
intersections of two dotted lines illustrate the desired radii for the fabrication of different
MSCs. The radius of customized SMF should be tapered to 58.5 and 49.2 µm, respectively,
for the LP01 and LP11 MSCs, while the radius of the FMF is supposed to be tapered to 57 µm
for the LP21 MSCs. For the LP02 MSC, the radius of the standard SMF should be tapered
to 49 µm. After the tapering process, the FMFs and SMFs are, respectively, inserted into a
quartz substrate and polished on a grinding platform. The two coupler halves are matched
together to form the all-fiber MSC. The LP11 MSCs acting as combiners are fabricated
similarly. The neff of the LP11 mode in the TMF and the LP01 mode in the standard SMF
versus the taper radius are shown in Figure 2e. The radius of the TMF was tapered to
57 µm for the MSCs, which are used as power combiners.
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4 LP modes in FMF and the LP01 mode in two kinds of SMFs versus tapered radius. (e) The neff of
the LP11 mode in TMF and the LP01 mode in standard SMF versus tapered radius.

The demultiplexing stability for LP11 and LP21 modes are investigated with the setup
shown in Figure 3a. The two LP11 (LP21) MSCs are cascaded by fusion splice and the
orthogonality is achieved by adjusting the FMF between them. The combiner LP11 MSC
is also connected by fusion splice. The lengths of the two input pigtail fibers of the
combiner LP11 MSC are precisely controlled to ensure the two branches before the combiner
are identical. Optical power is launched through an LP11 (LP21) MSC stimulated by a
tunable continuous-wave (CW) laser. The mode rotator is inserted before the demultiplexer
to rotate the lobe orientations as well as polarization of input modes, and the output
power of the demultiplexer is measured by a power meter. The mode rotator is a three-
paddle polarization controller wound by the FMF. The insertion loss (IL) and power
stability of regular MSCs for mode demultiplexing are also measured for comparison. IL
is measured 50 times by randomly adjusting the mode rotator and the results are shown
in Figure 3b,c. Only slight power fluctuation is observed for the proposed degenerate
mode demultiplexers, while the power fluctuation for regular MSCs is quite large. The
modal selectivity is evaluated by exciting each of the other three LP modes one by one.
The wavelength of probe signal is tuned over the C-band and the results are shown in
Figure 3d,e. The modal crosstalk of all modes is lower than −21 dB at 1550 nm and lower
than −19.6 dB over the C-band.
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3. Degenerate-Mode-Selective Fiber Couplers for Degenerate-Mode Reception

The scheme based on all MSCs requires a two-step process of converting and com-
bining which will inevitably introduce external IL. In addition, the length of the optical
paths of the two branches should be strictly identical during the combining so as to avoid
temporal delay. In order to solve these problems, a degenerate-mode-selective fiber coupler
is proposed for the reception of the degenerate modes. From the perspective of dimensions,
if the optical powers in both degenerate modes are converted by the DMSC into a single
output fiber, the fiber should sustain at least two spatial degrees of freedom. Consequently,
the output fiber has to be an FMF. A straightforward approach is to make the output fiber
the same as the original FMF. Then, the DMSC will be a symmetric two-core few-mode
fiber coupler. However, this is not the best solution. On one hand, the modal selectivity of
the DMSC will vanish by using two identical fibers. This is because the phase-matching
conditions are always satisfied between two identical FMFs and the DMSC will inevitably
extract energy from unwanted modes. On the other hand, the output fiber of the DMSC
is commonly coupled to a PD for optoelectronic conversion. Fibers with smaller core
diameters are easier to couple to high-speed PDs with smaller effective areas. Because all
degenerate modes only have the same two-fold degeneracy, utilizing a TMF as the output
fiber will provide enough dimensionalities and be very useful. Consequently, the DMSC is
an asymmetric few-mode fiber coupler which consists of an input FMF and an output TMF,
as shown in Figure 4a. In addition, since the LPlma and LPlmb modes can only couple to the
same kind of degenerate modes, the proposed LPlm DMSC functions as two independent
few-mode couplers. As can be seen in Figure 4b, the LPlma mode of the core B couples to
the LP11a mode of core A, and the LPlmb mode of the core B couples to the LP11b mode of
the core A.
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(b) Coupling behaviors of the LP modes in the DMSC.

The necessary conditions of the DMSC are investigated. Assuming that the FMF
initially carries unit optical power in LPlma mode and no power was exited in the TMF, the
power transfers for the FMF and TMF are as follows:

Plma(z) = 1 − Fasin2(Caz) (3)

where Plma(z) is the normalized optical power carried by LPlma mode in the FMF (as
functions of the axial distance z along the coupler); P11a(z) is the normalized optical power
carried by LP11a mode in the TMF. Fa is the normalized peak power and Ca is the power
coupling coefficient. The power transfers for the LPlmb and LP11b modes are similarly.
Provided the LPlm mode of the FMF is phase-matched to the LP11 mode of TMF, the power
in the LPlma and LPlmb modes of FMF B can completely couple to the LP11a and LP11b
modes of TMF A, respectively, when

κaL = (2p + 1)π/2 (4)

κbL = (2q + 1)π/2 (5)

are simultaneously satisfied (where κa is the coupling coefficient between the LPlma mode
of the FMF B and the LP11a mode of the TMF A). κb is the coupling coefficient between
the LPlmb mode of the FMF B and the LP11b mode of the TMF A. L is the coupling length,
p, q ∈ z. Equations (1) and (2) can be satisfied by tuning the core-to-core distance d and the
coupling length L.

In this paper, the LP11, LP21 and LP31 DMSCs are firstly designed using the beam
propagation method. We adopt an FMF with a min|∆neff| up to 1.49 × 10−3 among
all LP modes [26]. The radii of the core and cladding of the FMF are 8.25 and 62.5 µm,
respectively. The ∆n of the FMF is 0.748%. The radii of the core and cladding of the TMF are
5 and 62.5 µm, respectively. The ∆n of the TMF is 0.688%. In order to achieve the functions
of DMSC, the phase-matching condition should be satisfied by tapering the FMF or the TMF.
For the LP11 and LP21 DMSCs, the radii of the FMF should be tapered to 34.3 and 50.2 µm,
respectively. For the LP31 DMSC, the radius of the TMF needs to be tapered to 58.5 µm.
The index profiles of the two fibers of the LP11, LP21, and LP31 DMSCs after tapering
are illustrated in Figure 5a–c, respectively. The coupling length L and the core-to-core
distances d are designed by parameter sweeping. The coupling efficiencies versus L for
both degenerate modes are calculated for each value of d. After the optimization, the
core-to-core distances d are set to 12.53, 14.42 and 16.63 µm for the LP11, LP21, and LP31
DMSCs, respectively. The coupling lengths L are set to 6.17, 5.18 and 21.33 mm for the
LP11, LP21, and LP31 DMSCs, respectively. In this case, the coupling efficiencies of both
degenerate modes will reach the maximum simultaneously, as depicted in Figure 5d–f.
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(e) LP21, and (f) LP31 DMSC.

Similar to the regular all-fiber MSCs, the designed LP11, LP21 and LP31 DMSCs are
also fabricated utilizing the taper and polish method. We measured the power stability
and IL of the three DMSCs using the setup shown in Figure 6. The optical power in the
target LP mode is generated by a regular MSC. A mode rotator is employed to adjust the
orientations of the modal field before the DMSC. The demultiplexing performances of the
LP11, LP21 and LP31 MSCs are also characterized as a contrast. The wavelength of the light
source over the C band is tuned and the output optical power of the TMF of the DMSC
(the SMF of the MSC) is recorded. As can be seen, the best and worst insertion loss for the
LP11, LP21 and LP31 DMSCs(MSCs) after a 50 random adjustments of the modal field over
the C band are shown in Figure 7a,d,g. The results of the insertion loss measurements at
1550 nm are illustrated in Figure 7b,e,h, respectively. It can be seen that the variation in the
IL of the LP11, LP21 and LP31 MSCs is quite severe, and only minor variation happens in
the proposed DMSCs. The fluctuations of the optical power are all lager than 20 dB for
three regular MSCs over the C band. Meanwhile, the average variations are 2.7, 1.9 and
3.3 dB for the LP11, LP21 and LP31 DMSCs, respectively.
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The modal crosstalk performance of the DMSCs is characterized by inputting the
optical power of the other three modes, respectively. The experimental results for the LP11,
LP21, and LP31 DMSCs are shown in Figure 7c,f,i. Over the C-band, the largest modal
crosstalk for the LP11 DMSC is −15.7 dB, while it is −13.4 and −15.4 dB for the LP21 and
LP31 DMSCs, respectively. The modal crosstalk comes from phase mismatch during the
fabrication. Moreover, other LP modes may slightly couple to the LP01 mode of the output
TMF. The modal selectivity performance can be optimized during the manufacturing
process by more precisely phase-matching the conditions.
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4. Discussions and Conclusions

In this paper, we propose two kinds of degenerate-mode-reception scheme. The first
one is based on regular all-fiber MSCs which consist of converting and combing steps. Three
fiber couplers are required for each non-circular-symmetric LP mode in the first scheme,
which also requires precise time alignment to avoid signal broadening. The second method
is based on a novel DMSC, which could achieve the demultiplexing of both degenerate
modes independently. Therefore, the DMSC is superior in size and costs as a two-core fiber
coupler. However, according to the experimental results, the demultiplexing efficiency of
the first scheme is stabler than that of the second one. Modal crosstalk from the coupling
to the LP01 mode of the TMF should also be noted in the second scheme. Actually, the
schemes presented in this paper can not only be fabricated using an all-fiber solution; we
also expect to utilize other waveguide structures, such as femtosecond directly written
integrated couplers and three-dimensional polymer waveguides [27,28]. Since directly
written and polymer couplers are weakly guiding waveguides, the size of the core and
the coupling behaviors are similar to those of few-mode fiber couplers. In addition, it is
easier to achieve a directly written waveguide with a three-dimensional coupler than with
fiber-based devices.
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