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Abstract: For the silicon optical computing chip, the optical convolution unit based on the micro-ring
modulator has been demonstrated to have high integration and large computing density. To further
reduce power consumption, a novel, simple Fano resonant thermo-optic modulator is presented with
numerical simulation and experimental demonstration. This designed Fano resonator comprises
double T-shaped waveguides and a micro-ring with a radius of 10 µm. Compared with the free use of
bus waveguides, our double T-shaped waveguides generate a phase shift, along with a Fano-like line
shape. The experimental results show that the resonant wavelength shift of the designed modulator
is 2.4 nm with a driven power of 20 mW. In addition, the maximum spectral resolution and the
extinction ratio are 70.30 dB/nm and 12.69 dB, respectively. For our thermo-optic modulator, the
optical intensity power consumption sensitivity of 7.60 dB/mW is three times as large as that of the
micro-ring modulator. This work has broad potential to provide a low-power-consumption essential
component for large-scale on-chip modulation for optical computing with compatible metal oxygen
semiconductor processes.

Keywords: thermo-optic modulator; Fano resonance; micro-ring resonator; optical computing

1. Introduction

In recent years, with the gradual failure of Moore’s law, optical computing has rapidly
developed, which can break through the limitations of traditional electronic computers and
improve the energy efficiency ratio [1–4]. Shen Y. C. et al. first proposed a fully connected
neural network based on the Mach–Zehnder interferometer (MZI) photonic circuit [5].
However, its calculation density is lower than the wavelength division multiplexing (WDM)
based on micro-ring resonators (MRRs). Zhao X. et al. successfully demonstrated an
efficient MRR temperature sensor on the TiO2 platform. Still, it is unsuitable for large-scale
production with Multi-project Wafers (MPWs) [6]. Hsu W.C. et al. demonstrated an MRR-
based WDM scheme with high energy efficiency and computation density [7]. As the MRR
modulator has the advantages of compact structure, high integration, low insertion loss,
and low crosstalk, it has a bright future for application in optical computing.

Fano resonance can cause the optical intensity to abruptly change from 0 to 1 near
the resonance wavelength, enhancing optical spectrum resolution (SR). Hu T. et al. pro-
posed the incorporation of a single MRR in conjunction with a cross-waveguide as the
coupling point between the upper and lower arms of an MZI. This configuration offers
the advantage of achieving a significantly enhanced Fano resonance slope, effectively
mitigating the issue of diminished extinction ratio attributed to the dispersion of Fano
resonance wavelengths [8]. It is worth noting that the larger size of this structure poses
challenges in achieving higher levels of integration. Zhang J. et al. achieved low-power
electro-optic modulation using independent silicon nanobeam cavities to generate Fano
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resonance [9]. Gu et al. implemented a Fano resonator with a micro-ring and an air hole
bus waveguide [10], which exhibits high integration capability, but it is not compatible
with the prevailing 180 nm process.

To fabricate the Fano resonator with MPWs, L. Lu et al. have demonstrated by
simulation that the micro-ring-coupled double T-bus waveguide has a higher spectral
resolution for temperature sensors [11]. Based on all the above research, this paper proposes
and tests an efficient thermo-optic modulator composed of double T-bus waveguides
coupled with a micro-ring. A Fabry–Perrot cavity as a reflection unit of the double T-
waveguides can significantly change the phase [12]. Due to the asymmetric line shape of
the Fano resonance, the integrated component has a higher quality factor and a steeper
slope compared to the traditional Lorentzian line shape. At the same time, compared with
the conventional MRR modulator, our novel Fano resonance thermo-optic modulator has
lower power consumption by both numerical simulation and experimental demonstration.
Owing to the Fano line shape, our component of T-waveguide-coupled MRRs not only
reserves the advantages of the MRR as an optical computing convolution unit but also
further reduces power consumption.

This paper is organized as follows. First of all, the design of a double T-waveguide-
coupled MRR and the theoretical analysis of the Fano resonance are presented in Section 2.
Moreover, a co-simulation for the double T-waveguide-coupled MRR is performed using
FDTD and HEAT modules (Ansys Inc., Canonsburg, PA, USA) in Section 3. Then, the
optical and electronic microscopic images of the Fano resonator thermo-optic modulator are
illustrated in Section 4. The transmission spectra for MRRs within and without double T-
waveguide coupling are compared experimentally, and the SR and optical intensity power
consumption sensitivity (OIPCS) are calculated based on the acquisition of experimental
data. Finally, the future potential applications for this designed component are summarized
in Section 6.

2. Device Design and Theoretical Analysis

The structure of the designed Fano resonator is shown in Figure 1a, which consists of
double T-bus waveguides coupled with a micro-ring resonator (MRR). The cross-section of
the MRR is shown in Figure 1b. The Fano resonator device is fabricated on the standard
silicon on insulator (SOI) platform. The thickness of the top layer of silicon is 220 nm, and
the buried layer of silicon oxide is 2 µm. The thickness of the silicon substrate, the length
of the straight waveguide in the raceway micro-ring, the height of the T-waveguide, and
the distance between the double T-waveguides are 700 µm, 2 µm, 1.0 µm, and 1.55 µm,
respectively. To work in the state of the fundamental mode transmission, the width of the
bus waveguide is 450 nm. To obtain low bending loss transmission of the mode, the radius
of the raceway micro-ring is set as 10 µm.
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Figure 1. (a) Schematic diagram of the component structure. (b) Cross-section of MRR. Figure 1. (a) Schematic diagram of the component structure. (b) Cross-section of MRR.

Fano resonance is formed through the coupling between a continuous-mode cavity
and a discrete-mode cavity. In the double T-waveguide-coupled micro-ring, the discrete-
mode micro-ring and the continuous-mode double T-bus waveguide are coupled to form
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Fano resonance. The insertion of double T-waveguides causes a wavelength phase shift,
while the discrete resonant mode experiences no additional phase shift. Thus, the phase
difference between the discrete and continuous modes is no longer an integer multiple of
2π, resulting in an asymmetrical Fano resonance linearity.

Generally, the coupled-mode theory (CMT) [13] is used to analyze the Fano resonance
phenomenon for silicon photonic components. One integrated component structure can be
disassembled into basic silicon photonics component parts that all have their own transmis-
sion matrix. Furthermore, the output performance of the component can be obtained by the
multiplication of their own matrix. In this paper, the Transfer Matrix Method (TMM) is uti-
lized to analyze the double T-shaped waveguide coupled with the MRR structure. When the
incident optical field propagates in the bus waveguide with Ein = E0, the output electrical
field Eout in the bus waveguide MRR structure can be expressed by Formula (1) [10]:

Eout = tE0 + iκ1E1 + iκ2E2 + · · · =
(

t − κ2αeiδ

1 − tαeiδ

)
E0, (1)

where t and κ1 (κ2) are the coupling region’s transmission and coupling coefficients, respec-
tively. Here, α is the linear loss coefficient, and E1 and E2 represent the electrical field from
incident light that runs through one circle and two circles in the MRR. The continuous state
light is transmitted in the bus waveguide, represented with tE0 in Formula (1). The optical
field becomes E1 = iκαE0eiδ when the light propagates one circle in the micro-ring and
returns to the coupling region, where δ is the round-trip phase shift. δ can be represented
as δ = 2πnLR/λ, where n represents the effective refractive index of the waveguide, λ is the
working wavelength, and LR is the perimeter of the micro-ring resonator.

When incident light passes through double T-shaped waveguides, the bus waveguide’s
continuous propagating mode introduces phase ∆Φ. Thus, tE0 is transferred to te−2i∆ΦE0.
Without changing the MRR structure, the optical field in the discrete state does not introduce
phase shift. Therefore, the output field of MRR coupled with a double T-shaped waveguide
can be expressed as follows:

Eout =

(
te−2i∆Φ − κ1κ2αeiδ

1 − tαeiδ

)
E0, (2)

and the wavelength shift of the final transmission spectrum is as follows:

T(λ) =
∣∣∣∣Eout

Ein

∣∣∣∣2 =

∣∣∣∣∣te−2i∆ϕ − k1k2αei2πnLR/λ

1 − tαei2πnLR/λ

∣∣∣∣∣
2

, (3)

The device, shown in Figure 1, can be used as a thermal-modulated convolution unit.
A thermal resistor (TiN) is used as a thermal source, covered on the T-waveguide-coupled
micro-ring, leaving a suitable gap between them. As the voltage gradually increases, the
current in the micro-ring modulator also increases accordingly, generating Joule heat in
silicon (Si), causing a change in the refractive index of silicon, resulting in a shift in the
resonance wavelength. Micro-ring thermo-optic modulation originates from the thermo-
optic effect of the silicon material itself. The resonant wavelength change ∆λ caused by
temperature change can be expressed as follows:

∆λ =
λ∆T
ng

(
∂n
∂T

+
n
L

∂L
∂T

)
, (4)

where ng is the group refractive index of the resonator, L is the perimeter of the micro-ring,
and ∂n/∂T is the thermo-optic coefficient of silicon (Si) (1.86 × 10−4/K) [14].
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Taking advantage of the high slope of the Fano linear edge, power sensitivity can be
improved, and the limitation of the slope ratio of MRRs can be overcome. Moreover, power
sensitivity is expressed as follows:

Sp = k · Sλ, (5)

where k is the slope ratio of the steep Fano edge, and Sp is the optical intensity power
consumption sensitivity (OIPCS). Additionally, Sλ is the wavelength power consumption
sensitivity.

3. Numerical Simulation

Based on the theoretical analysis above, to obtain the Joule heating effect of the
double T-waveguide-coupled micro-ring component, one HEAT module is used to establish
a double T-waveguide-coupled raceway micro-ring model to analyze its temperature
distribution. The structure of the heating electrode of TiN is shown in Figure 1. The
TiN work function is 4.65 eV, and its thermal conductivity is 19.2 W/(m·K). As shown
in Figure 2a,b, when an electrical power of 9.12 mW is applied to the TiN electrode, the
highest temperature inside the component reaches 363 K, with an average temperature of
314 K.
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Figure 2. (a) Temperature distribution of double T-waveguide-coupled micro-ring under 0.7 V. (b) The
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The HEAT module is used to simulate the relation between the voltage and tem-
perature of the device and then imported into the FDTD module. The Fano resonance
normalized transmission spectrum of the double T-micro-ring with a wavelength from
1510 nm to 1600 nm with a change in voltages from 0 to 0.7 V is shown in Figure 3a, which
indicates an obvious Fano resonance with the change in driven voltages. As the voltage in-
creases, there are gradual redshifts for the Fano resonance spectrum. The result shows that
the wavelength of the double T-waveguide-coupled micro-ring has shifted by 4.45 nm at a
voltage of 0.7 V, as shown in Figure 3b. The electrical field distribution of the optical signal
at a resonant wavelength of 1581.38 nm and a non-resonant wavelength of 1587.35 nm for
the double T-waveguide-coupled micro-ring are shown in Figure 3c,d, respectively.

According to the simulation results from the HEAT module in Figure 2, it can be
observed that the square of the driven voltage and the average temperature for the double
T-waveguide-coupled micro-ring have a linear relationship, and the relation between the
silicon refractive index and temperature is linear. Therefore, the relation between the square
of the voltage and wavelength redshift is also linear. Owing to the thermo-optic effect-
induced change in silicon refractive index, the temperature variation of the component
causes significant wavelength shifts of the resonance peak for the micro-ring.
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Figure 3. (a) Normalized transmission spectra of double T-waveguide-coupled micro-ring as voltages
changing from 0 to 0.7 V. (b) Normalized transmission spectrum from 1580 nm to 1588 nm for
the double T-waveguide-coupled micro-ring. (c) The electrical field of optical signal at a resonant
wavelength of 1581.38 nm. (d) The electrical field of optical signal at a non-resonant wavelength of
1587.35 nm.

4. Experimental Demonstration

The double T-waveguide-coupled micro-ring is fabricated based on the above design,
and images taken from the optical and scanning electronic microscopes are shown in
Figure 4a,b, respectively. Although some fabrication errors may occur during the process,
such as large roughness and comparatively high loss, they can be ignored while only
considering the spectrum shift with the change in applied voltage.
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Figure 4. (a) Scanning electronic microscope image of double T-waveguide-coupled raceway micro-
ring without heating electrode. (b) Optical microscope image of double T-waveguide-coupled
raceway micro-ring with heating electrode.

To compare the performance between the basic MRR and components with T-waveguide
in the experiment, the experimental verification is carried out for MRRs with the help
of a semi-automatic coupling platform and probe. As shown in Figure 5a, a normalized
transmission spectrum ranging from 1530 nm to 1600 nm is measured by an optical spectral
analyzer (OSA). As shown in Figure 5b, voltages from 0 to 0.75 V are applied to the TiN
electrode, and the normalized transmission spectra are obtained from 1581 nm to 1583 nm,
which excludes the spectra of the light source, the optical link, and the grating coupler.
As shown in Figure 5c, the relation between driven voltage and current is measured for
the untuned micro-ring, and the total resistance between the two electrodes is calculated
from the voltage–current curve, which is about 41.66 Ω. Based on the above spectra and
experimental data, the relation between power and wavelength is calculated as illustrated
in Figure 5d, and a similarly linear relation between power and wavelength is obtained.
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A semi-automatic temperature-controlled coupling platform where the voltages are
applied by the probes to the double T-waveguide-coupled micro-ring is used. Except for
adding the double T-waveguide, the structure of the component is the same as that of
normal MRRs. As shown in Figure 6a, the full normalized transmission spectrum ranging
from 1530 nm to 1600 nm is measured by OSA. As shown in Figure 6b, the normalized
transmission spectra from 1581 nm to 1585 nm are selected by applying voltages ranging
from 0 V to 0.75 V, which excludes the spectra of the light source, the optical link, and the
grating coupler.
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Compared with the normal MRR, the double T-waveguide-coupled micro-ring has
higher wavelength power sensitivity, along with lower power consumption for multiplica-
tion operations in convolution. The relation between voltage and current for the double
T-waveguide-coupled micro-ring is also obtained in Figure 6c, which shows that there is a
similarly linear relationship between current and applied voltage. This experimental result
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is consistent with previous numerical simulation results. As shown in Figure 6c, the total
resistance between the two electrodes is calculated, which is about 36.75 Ω. Moreover, it
is shown in Figure 6d that the power–wavelength relation is calculated from the above
experimental results and data, revealing a similarly linear relationship between power
and wavelength.

5. Discussion

The silicon effective refractive index can be changed by the variation in temperature
due to the thermo-optic effect. Even a slight variation in temperature can change the
resonant peak of the transmission spectrum for MRRs. For applications in optical comput-
ing, it is necessary to obtain the relation between power consumption and light intensity.
Therefore, the formula of OIPCS is derived as follows:

d∆Po

d∆Pe
=

d∆Po

d∆λ
· d∆λ

d∆Pe
= SR· d∆λ

d∆Pe
, (6)

where d∆Po, d∆Pe, and d∆λ are optical intensity, power consumption, and wavelength,
respectively. Here, dPo/dPe represents the OIPCS, which is obtained by the multiplication of
SR and wavelength power consumption sensitivity (WPCS) for Fano resonators. According
to Formula (6), the experimental results of the MRR and the double T-waveguide-coupled
micro-ring and the SR of the normal MRR and the double T-waveguide-coupled micro-
ring are 35.20 dB/nm and 70.30 dB/nm, respectively. The OIPCS of the normal MRR
is 2.60 dB/mW, and the WPCS is 0.074 nm/mw. However, the OIPCS of the double T-
waveguide-coupled micro-ring is 7.60 dB/mW, and the WPCS is 0.108 nm/mW. Obviously,
the SR, OIPCS, and WPCS of the double T-waveguide-coupled micro-ring are significantly
improved compared with those of the normal MRR. The reason why there are obvious
performance improvements for the double T-waveguides component is mainly that the
optical intensity of the Fano resonator changes sharply from 0 to 1 near the resonant
peak of the transmission wavelength. For the same change in optical intensity, the power
consumption of the double T-waveguide-coupled micro-ring requires only 1/3 as much
as that of normal MRRs for the resonant wavelength, which brings higher modulation
efficiency and is more suitable for convolution units in optical computing.

6. Conclusions

In this paper, a novel essential component based on a micro-ring resonator for silicon
optical computing convolution units is proposed. By adding double T-bus waveguides, a
thermal–optical modulator is obtained with a Fano resonance linear transmission spectrum.
A large phase shift is obtained by comparatively low driven power around 20 mW in the
TiN electrode, where voltage changes generate Joule heat, resulting in a change in the
silicon refractive index as well as a wavelength shift for the Fano resonance. Numerical
simulation and experimental results demonstrate that the Fano resonance line-shaped
transmission spectrum for the double T-waveguide-coupled micro-ring has higher spectral
resolution (SR) and optical intensity power consumption sensitivity (OIPCS) than those
of the MRR transmission spectrum, which significantly reduces the modulation power
required. Besides optical computing, this work also has tremendous potential fields for
applications, such as optical switching, optical sensing, and optical communications. In the
future, the quality factor of T-shape waveguides can be further improved to enhance the
SR, along with superior component performance.
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