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Abstract: Micro-gyroscopes based on the Coriolis principle are widely employed in inertial navi-
gation, motion control, and vibration analysis applications. Conventional micro-gyroscopes often
exhibit limitations, including elevated noise levels and suboptimal performance metrics. Conversely,
the advent of cavity optomechanical system technology heralds an innovative approach to micro-
gyroscope development. This method enhances the device’s capabilities, offering elevated sensitivity,
augmented precision, and superior resolution. This paper presents our main contributions which
include a novel dual-frame optomechanical gyroscope, a unique photonic crystal cavity design,
and advanced numerical simulation and optimization methods. The proposed design utilizes an
optical cavity formed between dual oscillating frames, whereby input rotation induces a measurable
phase shift via optomechanical coupling. Actuation of the frames is achieved electrostatically via an
interdigitated comb-drive design. Through theoretical modeling based on cavity optomechanics and
finite element simulation, the operating principle and performance parameters are evaluated in detail.
The results indicate an expected angular rate sensitivity of 22.8 mV/◦/s and an angle random walk
of 7.1 × 10−5 ◦/h1/2, representing superior precision to existing micro-electromechanical systems
gyroscopes of comparable scale. Detailed analysis of the optomechanical transduction mechanism
suggests this dual-frame approach could enable angular vibration detection with resolution exceeding
state-of-the-art solutions.

Keywords: micro-gyroscopes; optomechanical; photonic crystal; angular vibration; dual-frame

1. Introduction

The gyroscope, as a kind of inertial sensor that can measure angular velocity and
angular vibration, has wide-ranging applications in aerospace, industrial automation,
and structural health monitoring where rotational or angular motion must be precisely
tracked [1–3]. Over recent decades, micro-electromechanical systems (MEMS) gyroscopes
leveraging the Coriolis effect have become particularly prevalent due to the ability to
miniaturize sensitive elements using microfabrication techniques. Based on their structural
configuration, MEMS gyroscopes typically fall into one of several categories, including
framed resonators, vibrating beams or loops, and ring resonators [4–7]. Within the framed
designs, single, double, and multi-mass block implementations have been developed to
modulate the Coriolis forces [8–11]. We narrowed down the specific problem or gap that
the study aims to address, such as the limitations of traditional MEMS gyroscopes that rely
on electronic transduction and noise sources. Effects such as thermal fluctuations, material
stresses, and electromagnetic interference (EMI) introduce uncertainties that constrain
achievable measurement sensitivity and accuracy levels [12].

While MEMS sensors effectively enable linear vibration monitoring, conventional
MEMS gyroscopes have seen limited application in angular vibration measurement due to
typical resolutions in the order of microradians [13–16]. However, recent advances inte-
grating micro-opto-electromechanical systems (MOEMS) have prompted new gyroscopic
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designs capable of pushing these boundaries. Specifically, optomechanical systems lever-
aging cavity-enhanced transduction have emerged as a versatile tool for sensing myriad
physical quantities including displacement, mass, acceleration, and gravitational waves
at micro/nano scales [17–22]. Notably, the Coriolis effect intrinsic to gyroscopic sensing
allows the input of angular vibrations to modulate an optomechanical cavity, translating
rotations into detectable changes in optical properties. This characteristic provides a concep-
tual basis for establishing a novel class of high-precision gyroscopes optimized for angular
vibration detection [23–25]. However, prior works in this domain have focused primarily
on theoretical descriptions, leaving a need for concrete device architectures capable of
experimentally validating the potential of this sensing modality. The current study aims to
address this gap by proposing and numerically characterizing a dual-mass optomechanical
gyroscope design, establishing a pathway toward next-generation inertial sensors affording
resolutions surpassing state-of-the-art MEMS solutions.

In this paper, a novel dual-frame optomechanical gyroscope architecture utilizing a
photonic crystal cavity is presented. Through rigorous theoretical analysis grounded in
optomechanical coupling principles, the detailed operating mechanism and transduction
processes of the proposed design are elucidated. Complimenting this, finite element model-
ing is employed to numerically characterize both the mechanical behavior of the sensing
element as well as the optical properties emerging from the photonic crystal structure. By
leveraging simulations, key figures of merit, such as the scale factor relating output signals
to input rotations and the fundamental noise floor limitations are computationally pre-
dicted. These performance metrics indicate the potential for this optomechanical gyroscope
design to achieve angular resolutions surpassing existing MEMS-based solutions when
implemented in an experimental setting. More broadly, the presented analyses establish a
conceptual and analytical framework for future efforts to optimize optomechanical inertial
sensors targeting high-precision angular vibration measurement. With further refinement,
this dual-frame approach may ultimately fulfill the long-sought goal of inertial sensors
integrating microscale form factors with nanoradian-level angular sensitivity.

2. Operation Principle
2.1. Dual-Frame Optomechanical Gyroscope Architecture Design

The proposed dual-frame optomechanical gyroscope design consists of three primary
components as depicted in Figure 1a: an actuation element, a sensing element, and a
detection module. First, the actuation element utilizes an electrostatic comb drive structure
to induce resonance in the outer mass block (mx = m2 + m1) via electrostatic pull-off forces.
The sensing element comprises a central mass block (my = m1) suspended by straight and
U-shaped flexural beams. The straight beams connect the outer block to the substrate,
while the U-shaped beams tether it to the central block. Critically, this central block acts as
the inertial element whose Coriolis-induced deflections encode the input angular motion.
For detection, a photonic crystal optomechanical cavity is integrated between the central
and outer mass blocks. Variations in the cavity length modulated by the sensing element’s
resonant motion can be optically interrogated. Specifically, shifts in the cavity resonance
wavelength provide a measurable proxy for angular motion. By segregating driving,
sensing, and readout functions into distinct yet interfaced components, this dual-frame
gyroscope design aims to leverage the advantages of optical transduction while maintaining
essential characteristics such as narrow-band actuation and wide-dynamic range inertial
sensing enabled by its mechanical architecture. The following sections will characterize
these elements in further detail.
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Figure 1. (a) A diagram showing the main components of the optomechanical micro-gyroscope,
which consists of an electrostatic comb drive, a dual-mass sensing element, and a photonic crystal
optomechanical cavity. (b) A diagram showing how the optical signal from the cavity is processed by
a photodetector and a signal conditioner to measure the angular vibration.

Second, in the angular rate detection configuration, an electrostatic driving force
induces simultaneous resonant oscillation of the outer and central masses along the hori-
zontal x-axis. Upon exposure to an external angular vibration about the z-axis, Coriolis
forces perturb the central mass perpendicular to its driving mode. Coriolis acceleration is
a fictitious force that arises in a rotating reference frame. It is proportional to the angular
velocity of the rotation and the velocity of the object in the rotating frame. In our paper, we
consider the case of a small angular vibration about the z-axis, which can be modeled as a
rotation with a time-varying angular velocity Ωz(t). The Coriolis acceleration of a point
mass m moving with a velocity v in the rotating frame is given by: ac = −2 mΩz(t) × v,
where × denotes the cross product. This formula can be derived from the transformation of
the acceleration between the inertial and rotating frames. In our paper, we assume that the
central mass block of the gyroscope oscillates along the x-axis with a small displacement x(t)
and a resonant frequency fx. The vibration of the central mass block in the rotating frame
is then v = dx/dt = x′(t). Therefore, the Coriolis acceleration of the central mass block is:
ac = −2mΩz(t) × x′(t). Since the angular vibration Ωz(t) and the displacement x(t) are both
harmonic functions of time, we can write them as: Ωz(t) = |Ω|sin(ωΩt) and x(t) = A0 sin
(ωxt + φ), where |Ω|, ωΩ, A0, ωx, and φ are the amplitude, frequency, phase, and initial
phase of the angular vibration and the driving motion, respectively. Substituting these
expressions into the formula of the Coriolis acceleration, we obtain: ac = −2m|Ω|A0ωx
sin(ωΩt)cos(ωxt + φ). To simplify the analysis, we assume that the driving frequency ωx is
close to the angular vibration frequency ωΩ, and the initial phase φ is zero. Then, we can
use the trigonometric identity sin(α)cos(β) = 0.5[sin(α + β) + sin(α − β)] to rewrite the Coriolis
acceleration as: ac = −m|Ω|A0ωx[sin(ωΩt + ωxt) + sin(ωΩt − ωxt)]. Since we are interested
in the response of the central mass block at the angular vibration frequency ωΩ, we can ne-
glect the term sin(ωΩt + ωxt), which oscillates at a much higher frequency 2ωΩ. Therefore,
the Coriolis acceleration can be approximated as: ac = −m|Ω|A0ωxsin(ωΩt − ωxt). Finally,
by using the small angle approximation sin(θ) ≈ θ for θ << 1, we can further simplify the
Coriolis acceleration as: ac = −m|Ω|A0ωx(ωΩt − ωxt) = −2mfx|Ω|A0(ωΩt − ωxt), where
we have used the relation ωx = 2πfx. This is equivalent to the expression of the Coriolis
acceleration in our paper: ac = −2mfxΩz(t)x’(t), where we have replaced A0(ωΩt − ωxt) by
x’(t), the oscillation of the central mass block along the x-axis.
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Third, optical interrogation of the dual-mass micro-gyroscope is facilitated using a
photonic crystal optomechanical cavity integrated between the central and outer masses.
Light from an external laser source is coupled into the cavity via an on-chip waveguide or
fiber optic connection. Under the influence of Coriolis-induced vibrations, the central mass
oscillates orthogonally to vary the effective cavity length. This modulation manifests as
shifts in the cavity’s transmission spectrum according to the principles of cavity optome-
chanics. Specifically, deviations in resonant wavelength ∆λ from the cavity’s rest state are
proportional to changes in gap width ∆x induced by Coriolis oscillations of the central mass.
Optical power transmitted by the cavity is thereby encoded with information about the
input angular vibration. A photodetector then converts the modulated optical transmission
into an electrical voltage signal v(t) oscillating at the Coriolis frequency ωy. Figure 1b
shows a block diagram of a signal processing sequence in the MOEMS sensor. Proper
characterization of the optomechanical transduction thus enables angular velocity to be
resolved from the photodetector voltage with suitable signal conditioning and processing.

For the above designed dual-frame optomechanical gyroscope, the fabrication process
of our proposed dual-frame optomechanical gyroscope is based on standard microfabri-
cation techniques, such as lithography, etching, and deposition. The main steps were as
follows: we started with a silicon-on-insulator (SOI) wafer with a 250 nm thick device layer
and a 2 µm thick buried oxide layer. We used electron beam lithography (EBL) and reactive
ion etching (RIE) to define the photonic crystal pattern on the device layer. We used deep
reactive ion etching (DRIE) to etch through the device layer and the buried oxide layer
to release the mechanical structures, such as the mass blocks and the flexural beams. We
deposited a thin layer of gold on the backside of the wafer to form the electrodes for the
electrostatic comb drive actuation. We used a dicing saw to cut the wafer into individual
chips, each containing a single gyroscope device. The integration of photonic crystal and
the MEMS structure was achieved by using a photonic crystal optomechanical cavity as
the optical transduction element between the central and outer mass blocks. The photonic
crystal cavity was formed by introducing a defect in the periodic array of air holes on the
silicon nitride device layer. The cavity supports a localized optical mode that is sensitive
to the gap width between the mass blocks. The cavity was coupled to a waveguide or a
fiber that delivers the input laser light and collects the output optical signal. The photonic
crystal cavity and the MEMS structure were fabricated on the same device layer, which
ensures the alignment and robustness of the integration.

2.2. Theoretical Description of Optomechanical Coupling

Optomechanical cavities are commonly interfaced using tapered optical waveguides
or fibers to facilitate light coupling and output, as shown in Figure 2a. The fundamental
cavity-waveguide interaction dynamics are governed by input–output relations derived
from classical cavity optomechanics theory [26,27]. Specifically, the intra-cavity optical field
amplitude ‘a’ experiences external coupling to the waveguide or fiber at a rate κe, as well as
intrinsic dissipation to the surrounding environment at a rate κi. These rates characterize
the photon escape channels from the optical resonance and determine the cavity linewidth.
In accordance with the well-established input-output framework and using the classical
optical cavity coupling theory [28,29], the steady-state response of the intracavity field
amplitude, denoted by the operator ‘a’, to an input field with amplitude ‘ain’ is described
by the following relation:

da
dt

= −i∆a − κ

2
a +

√
κeain (1)

where ∆ = ωl − ωc represents the laser detuning rate of the laser resonant frequency ωl
and the optical cavity resonant frequency ωc, |ain|2 = Pin/h̄ωl, Pin is the input laser power,
and h̄ is the Planck constant. The total coupling rate κ is the sum of the external coupling
rate and internal coupling rate, κ= κe + κi, and the optical quality factor is Qopt = ωc/κ.
The maximum value of this derivative occurs when ke/k is 0.5, which corresponds to the
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critical coupling condition where all the light coupled into the cavity is dissipated into
the environment.
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Figure 2. Optical characteristics of the optomechanical cavity. (a) a single-sided coupling scheme,
illustrates an optomechanical system with a laser source, and an optical cavity with a movable mirror.
(b) show reflectance variation with detuning rate. Note how the reflection on resonance approaches
zero as κe/κ approaches 1/2. This is because when κe = κ/2, then κe = κi, and all light is lost to the
surrounding environment, and when κe/κ approaches 1, the reflection on-resonance approaches unity.
This is because as κe approaches κ, essentially no light is lost to the surrounding environment via κi,
(c) The phase of the reflected light field as a function of detuning for the ratio of κe/κ = 0.5.

This work elucidates the fundamental coupling between the guided optical modes of
the waveguide/fiber and intrinsic cavity electromagnetic modes, forming the theoretical
basis for optomechanical transduction in the gyroscopic system. A rigorous quantitative
characterization of the external (κe) and intrinsic (κi) decay rates from the optical cavity
and their impact on transmission and reflection dynamics imperative for optimizing the
interfacing optics and readout methodology. The following sections aim to simulate these
cavity parameters and modal dynamics numerically via time–domain solutions. Based
on the steady-state condition with the time derivative of the intracavity field amplitude
(da /dt = 0), and derived from Equation (1) upon applying this steady-state assumption
such that the intracavity field ‘a’ reaches a constant value over time balancing the drive and
dissipative terms, Equation (1) can be rearranged as follows to solve for the steady-state
field amplitude ‘a’ [28–32]:

a =
√

κeain/(i∆ +
κ

2
) (2)
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Furthermore, the amplitude of the output field is described by a relation involving the
input field amplitude and the intracavity field amplitude, as established by the pertinent
cavity input–output theory [18,33–36], we obtain:

aout = −ain +
√

κea (3)

By substituting Equation (2) into Equation (3) and using algebraic manipulations. The
expression for R will have terms applying ke, ki, and ∆, and by simplifying, we can rearrange
the terms to obtain the normalized optical reflection R ≡ |aout/ain|2, transmitted through
the waveguide when we couple a laser to such an optical cavity and waveguide system.

R = |aout/ain|2 = 1 − keki
∆2 + k2/4

(4)

According to Equation (4), the reflection spectrum presents a negative Lorentzian func-
tion in terms of laser-cavity detuning (seen in Figure 2b). We can see that the relationship
between R and ∆ can be divided into under-coupling (κe < κ/2), critical-coupling (κe = κ/2),
and over-coupling (κe > κ/2). Specifically, in under-coupling, R decreases from 1 to 0 with
the increase in κe/κ from 0 to 1/2. With the rise in κe/κ from 1/2 to 1, the Lorentzian dip
of R gradually disappears, and R returns to 1. In more exceptional cases, when κe/κ is
much less than 1, almost no light is coupled into the optical cavity (R ≈ 1). And when
κe/κ is close to 1, all the light coupled into the optical cavity is almost not dissipated, and
all the light is coupled back to the waveguide (R ≈ 1). However, in the critical coupling,
all the light coupled into the optical cavity is dissipated into the environment, and the
R is 0. Moreover, the amplitude variation relation of dR/d∆ is further studied, and the
maximum value of dR/d∆ is directly shown in Figure 2c, which will be further discussed
in Section 2.3. It should be noted that due to the small and unstable R of the shaded area in
Figure 2c (visually shown in Figure 2b), the locking cavity-laser detuning rate ∆ should be
kept away from the shaded area in practice. We reported the uncertainty or error estimates
for our simulation results by calculating the standard deviation and confidence interval for
each performance metric, such as the scale factor, angle random walk, and optomechanical
coupling rate.

2.3. Optomechanical Sensing of Displacement and Angular Vibration

The proposed dual-frame optomechanical gyroscope possesses an orthogonalized
structural configuration as illustrated in Figure 3a. Under idealized operating conditions,
the decoupled design behaves as two independent single degree-of-freedom spring-mass-
damping systems along orthogonal x- and y-axes. When functioning as an angular rate
sensor, the gyroscope drives the outer mass resonantly along the drive axis (x-direction)
while the Coriolis force perturbs the central mass along the orthogonal detection axis (y-
direction), as previously described. If the resulting vibrational displacements are assumed
small enough to satisfy the linearization approximation, yet the driving motion remains
much larger than the Coriolis response, the gyroscope dynamics can be expressed as two
linearly coupled simple harmonic oscillators [37–39]:{ ..

x + 2ξωx
.
x + ω2

xx = Fdrive/mx..
y + 2ξωy

.
y + ω2

yy = FCoriolis/my
(5)

where x and y are the displacements in driving and sensing directions, respectively; ξ
parametrizes damping, ωx and ωy are the angular resonant frequencies, mx and my are the
equivalent mass of the driving mode and detection mode; and the drive/Coriolis forces are
treated as perturbations. Numerical simulation of these governing equations of motion will
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enable the characterization of key performance metrics in subsequent sections. The Coriolis
force FCoriolis = −2myΩ

.
x, the gyroscope dynamics equations can be better described by:{

mx
..
x + cx

.
x + kxx = Fdrive

my
..
y + cy

.
y + kyy = −2myΩ

.
x (6)

where kx, cx, ky and cy are the coupled oscillator equations of motion containing stiffness
and damping coefficients corresponding to the orthogonal driving and detection vibration
modes. From linear systems theory, these spring and damping parameters are related to
the effective mass m and angular resonant frequencies ωx and ωy through: kx = ωx

2mx, cx
= 2ξωxmx, ky = ωy

2my, cy = 2ξωymy. Here, dot notation signifies a derivative concerning
time. This establishes the analytical basis for characterizing the gyroscope dynamics using
physical system parameters like resonance frequencies, damping, and time-varying input
angular rate excitation. The numerical solution of the governing equations will enable
performance evaluation under varying conditions.
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Figure 3. (a) Schematic representation of the dual-frame optomechanical gyroscope under zero
angular velocity; (b) simulated relationship between the output voltage of the gyroscope and the
input angular vibration.

Based on Equation (6), the displacement of the sensing mode is regarded as a har-
monic motion under the stable condition. Because the test range is limited, we just chose
the low frequency of y(t) to measure the amplitude and frequency of angular vibration,
ylow(t) = 0.5Acos (ωΩ − ωx).

As illustrated in (Figure 2a), the optical resonance frequency of the photonic crystal
cavity is coupled to the mechanical vibrational motion of the dual-frame structure via the
optomechanical interaction. In the linear response regime of small displacements, pertur-
bation theory establishes that variations in cavity length y(t) induce a shift in resonance
frequency ωc

′ that is linearly proportional to the displacement [28]. This relationship can
be expressed as: ωc

′= ωc + gomy(t), ωc is the unperturbed cavity frequency at y(t) = 0,
and the optomechanical coupling rate gom = ∂ωc

′/∂y quantifies the transduction efficiency
between mechanical and optical domains. By setting a fixed detuning between the laser
drive frequency and ωc, shifts in ωc

′ due to vibrations along either orthogonal mechanical
mode will manifest as changes in cavity transmission/reflection. A photodetector linked
to the output waveguide can therefore resolve the amplitude and phase of both motional
components by monitoring interference of the modulated optical signal. This dual-axis
transduction scheme underlies the ability to isolate Coriolis-induced signals corresponding
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to input angular vibrations, as discussed previously. Numerical simulation of these cavity
dynamics will provide further insight into optomechanical performance.

The transmitted optical power Pm after interacting with the optomechanical system
can be modeled based on the standard input–output relations of cavity optomechanics
theory [40]. Specifically, for a laser driven at angular frequency ωl that is coupled to an
optical cavity of frequency ωc with optomechanical coupling rate gom and dissipation rates
κ and γm, the steady-state mean cavity photon number <n> = (k/2)2/|(k/2) −i(∆−gomy)|2

and output power Pm are given by:

Pm = Pinη
dR
dy

gomy(t) = Pinη
dR
d∆

d∆
dy

y(t) = Pinη
dR
d∆

gomy(t) (7)

where η represents some realistic losses from the cavity to the detector. Through the change
in light power, the displacement of the gyroscope detection mode is detected, and the
amplitude of angular vibration is calculated. The final total output voltage is shown in
Figure 3b. The larger the angular vibration, the larger the voltage output, which is discussed
in Section 3.3. Numerically simulating Equation (7) would enable the characterization of
how the output optical power Pm is modulated by the vibrational dynamics induced in
the optomechanical cavity. This provides the theoretical framework for modeling optical
transduction and readout in the gyroscope system.

3. Driving and Sensing Performance Analysis
3.1. Design and Analysis of Driving a Mechanical Sensitive Structure

Various actuation mechanisms have been implemented for resonantly driving the
inertial masses in MEMS gyroscopes. Electrostatic comb drives represent a widely adopted
solution due to advantages such as facile fabrication using standard microfabrication
techniques, low power operation, and capacity for sufficient displacements. As illustrated in
Figure 4a, a comb drive comprises interleaved fixed and movable sets of parallel electrodes
(teeth). When an electrical potential is applied between the combs, electrostatic forces
induce an oscillating transverse motion along the x-axis. The geometry is characterized
by the overlap length lf of opposing tooth surfaces, the width bf of each tooth, and the gap
distance af separating adjacent teeth.

The analytical model of comb drive actuation is well established [39,41]. Based on
parallel plate capacitor theory, the resulting electrostatic force Fdrive between a single tooth-
pair is given by:

Fdrive =
4nε0hUdUacos(ωdt)

d
(8)

where n is the number of comb teeth, h is the thickness, d is the parallel spacing between
comb teeth, ε0 is the vacuum dielectric constant. Ud is the DC voltage set as 5 V and the
frequency of the driving force depends on the input AC electrical signal, Uacosωdt with Ua
is 10 V.

A major consideration in the design of dual-mass optomechanical gyroscopes is
decoupling the orthogonal driving and sensing vibrational modes to minimize cross-axis
interference. The Coriolis force enables the rate output of a gyroscope by transferring drive
motion into a detectable sense motion proportional to the input rate.

This work presents a support structure employing U-shaped and folded flexure beams
aimed at reducing equivalent stiffness and inter-modal coupling, as shown in Figure 4b.
Flexural beams are widely used in MEMS designs due to their ability to facilitate motion
along defined axes while providing structural support. Prior work has shown that the
stiffness of a U-shaped flexure beam KUx can be approximated as two straight beams
connected in series for motion along the axis.
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Specifically, the equivalent stiffness of the U-shaped beam in the sensing y-direction is
given by:

KUx =

(
EI
l1

+
EI
l2

)
− 1 = E

W3
bsh

2l3
bs

(9)

where Kx represents the stiffness coefficient; E is the Young’s modulus, I is the cross-
sectional moment of inertia, and l1 = l2 = lbs are the lengths of the individual U-shaped
segments, respectively. wbd, lbd are the width and length of the straight beam, respectively.
It can be seen from Equation (9) that the stiffness coefficient of a U-shaped beam is half that
of a straight beam. Moreover, the structure can eliminate the residual stress generated by
nano-machining and restrain the resonance frequency change brought by the residual stress.
The analytical approach provides the theoretical grounding for evaluating the proposed
support architecture’s effectiveness in decoupling modal responses.

Based on the analytical modeling presented, finite element analysis (FEA) was con-
ducted to numerically simulate and optimize key design parameters of the gyroscope.
Table 1 summarizes the optimized structural configuration obtained through this process.
Generally, lower resonant frequencies benefit mechanical sensitivity but also susceptibility
to external perturbations. Therefore, the driving and sensing modes were optimized to
have angular frequencies of 61,969 Hz and 61,811 Hz, respectively, for effective operation.
Additionally, a thickness of ~250 nm was chosen for the structural layers to realize the
desired optical properties of the photonic crystal optomechanical cavity.
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Table 1. Structural parameters of cavity optomechanical high precision micro-gyroscope.

Symbol Quantity Value

lGyro × wGyro Gyro dimension 280 µm × 220 µm
h Thickness of gyroscope 0.25 µm

lcomb Comb-tooth capacitor length 1 µm
wcomb Comb-tooth capacitor width 7 µm

lbd Driving beam length 45 µm
wbd Driving beam width 0.65 µm
lbs Sensing U-beam length 1 µm
wbs Sensing U-beam width 39.667 µm
lbjs Sensing U-beam join length 4 µm
wbjs Sensing U-beam join width 1 µm

d Gap between comb teeth 500 nm
n Number of comb teeth 40

ldm Drive mass length 160 µm
wdm Drive mass width 160 µm
wsm Sense mass width 119 µm
lsm Sense mass length 100 µm
Q Mechanical Q-factor 10,000

The gravitational deflection of the dual masses is calculated by applying a static load
of mg to each mass, where m is the effective mass and g is the gravitational acceleration. The
deflection along the z-axis is obtained by solving the equation of equilibrium for each mass:

∑ Fz = kz∆z − mg = 0 (10)

where kz is the equivalent stiffness coefficient along the z-axis, and ∆z is the displacement.
The stiffness coefficient kz is derived from the geometry and material properties of the
flexural beams, as follows:

kz =
Ebh3

4l3

(
3
2
+

1
2

cos
πl
2a

)
(11)

where b = wbd and h = 250 nm are the width and thickness of the beam, l = lbd is the length
of the beam, and ad = lbd is the distance between the fixed and movable ends of the beam.

The simulation of z-axis displacement under gravity is performed using finite element
analysis (FEA) software COMSOL Multiphysics (version 6.1). The model consists of a
silicon substrate and two silicon nitride masses connected by flexural beams. The material
properties and dimensions are taken from Table 1. A fixed boundary condition is applied
to the substrate, and a gravity load of 9.81 m/s2 is applied to the masses. The displacement
field along the z-axis is computed by solving the linear elasticity equations for the model.
The maximum relative displacement between external and sensing masses was found to
be 3.48 nm, which is negligible compared to the gap width of 100 nm. Therefore, gravity
has minimal impact on the optical characteristics or optomechanical transduction of the
gyroscope, as shown in Figure 5a,b.

Based on the finite element analysis, the simulated gyroscope design allows further
evaluation of the driving performance and detection capabilities. Figure 6a demonstrates
that increasing the number of comb electrodes and applied voltage augments the elec-
trostatic driving force and resulting displacements, as expected, based on parallel plate
capacitor theory.

Figure 6b plots driving displacement versus excitation frequency, showing resonant
behavior near 61,969 Hz as per the optimized driving mode parameters. Peak displacement
approaches 1.75 µm, sufficient for the intended operation. Equation (5) governs how
Coriolis acceleration induced by external angular vibration is transduced to a sensed
displacement. As seen in Figure 6c, this transduction efficiency decreases with a widening
frequency split between driving and sensing resonances. However, packaging the device
under vacuum conditions is expected to raise intrinsic Q factors, mitigating impacts from
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a non-zero split. Overall, the simulated design metrics indicate the gyroscope concept
could realize angular velocity detection within target specifications once fabricated and
experimentally validated. Continued modeling would provide additional design insight.
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Figure 5. (a) Calculating and simulating the gravitational deflection of the dual masses in an
optomechanical gyroscope, (b) the simulation of z-axis displacement under gravity. The maximum
relative displacement between external and sensing masses under gravity load was constrained to
less than 3.5 nm at real length of inner beam.

3.2. Simulation of Photonic Crystal Cavity Characteristics of Optomechanical Gyroscope

Based on the photonic crystal theory, we simulated the typical photonic crystal cavity
performances by COMSOL and FDTD. Table 2 presents the optimized structural configura-
tion derived from this procedure in a summarized form. with the refractive index of silicon
nitride is 2.0 and the refractive index of air is 1.0 at the operating wavelength of 1.564 µm.
The optical resonance frequency of the fundamental optical mode concerned in this paper
is 200.69 THz, and the optical quality factor is 2.6 × 105.

Table 2. Structural parameters of photonic crystal.

Quantity Value

Length of crystal 7 µm
Width of crystal 3.3 µm

Period of topology 470 nm
Air gap 100 nm

Distance between hole and air gap 438 nm
Distance between hole and center of structure 235 nm

Thickness of crystal 250 nm
Radius of hole 134 nm

Displacement of hole 5/10/15 nm

When the gyroscope is in working mode, the applied angular vibration will cause
the gap width of the photonic crystal cavity to be changed. Therefore, it was found that
the change in gap widths of the photonic crystal cavity would lead to a dispersion effect
(optical system of the optomechanical micro-gyroscope, and signal-processing sequence in
an optical-sensing system shown in the illustration in Figure 1). The simulated photonic
crystal resonance wavelength with different gap widths is shown in Figure 6d.
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Figure 6. (a) Measured variation in the driving electrostatic force for different DC voltages under
different numbers of comb electrodes, (b) change in displacement amplitude of the driving mass for
driving frequency; the inset figure shows the frequency of the driving mode, indicating a resonant
frequency of 61,969 Hz, (c) variation in sensing mass displacement amplitude for frequency split
with increasing mechanical quality factor; the inset figure shows the frequency of the sensing mode,
indicating a resonant frequency of 61,811 Hz, (d) shows measurement of the variation in optical
resonance wavelength with the width of the photonic crystal air gap; the inset figure shows the
photonic crystal optomechanical cavity structure and its transmission spectrum.

3.3. Performance Analysis of Micro-Gyroscope Based on Optomechanical System

The primary performances discussed in the paper for the micro-gyroscope are scale
factor (sensitivity) and angular random walk (noise limit). In general, a large-scale factor
helps to improve the signal-to-noise ratio (SNR) and bias stability and increases the Coriolis
coupling from the driving mode to the sensing mode. Furthermore, the noise limit consists
of four parts: mechanical thermal noise [32], detection noise, shot noise, and back-action
noise. In the paper, the scale factor of the optomechanical gyroscope is the linear correlation
between the output voltage Vout and the amplitude of the angular vibration |Ω|. The
total scale factor SF is composed of the mechanical sensitivity (Sm), the optomechanical
sensitivity (SP) of the cavity optomechanical system, and the voltage sensitivity (SV) of the
photodetector, which is expressed as:

SF =
Vout

|Ω| = Smech · SP · SV (12)
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The mechanical sensitivity Sm is defined as the ratio of the displacement amplitude of
the sensing mode to |Ω|.

Sm =

∣∣∣∣0.5A
Ω

∣∣∣∣ = FdriveQx

mxω0

√
(ωy2 − ω02) + ωy2ω02/Qy

2
(13)

We have detailed the relationship between output power Pm and displacement of
sensing mode in Section 2.3. Therefore, based on Equation (7), SP is expressed as:

Sp =
Pm

y
= Pin

dR
dy

η = Pinη
dR
d∆

gom (14)

In this paper, the PIN-TIA photodetector is selected, where SV = 65 V/W. The random
white noise in the system results in a zero-mean angle error, which is described by ARW. The
ARWtotal can characterize the short-term performance of the optomechanical gyroscope [32],
which is:

ARWtotal =

√
ARWmech

2 + ARWNEP
2 + ARWSN

2 + ARWba
2 (15)

By substituting the equivalent thermal noise power spectral density of the proven
mass into the mechanical motion Equation (5), the ARWmech is:

ARWmech =

√
4kBTeωmQy

my(Qy
2(−2ωmωΩ + ωΩ

2)2 + (ωm2 − ωΩωm)
2)

· 1
Sm

(16)

where kB is the Boltzmann constant, and Te is the temperature. The electronic noise of
photodetectors is usually measured by noise equivalent optical power (NEP). Therefore,
the equivalent ARWNEP of an optomechanical gyroscope can be obtained by converting the
equivalent noise at the output of the detector through scaling factors:

ARWNEP =
NEP

Pinη
∣∣∣ dR

d∆ gom

∣∣∣ · Sm

(17)

Meanwhile, there is also shot noise in the laser-light field obeying Poisson statistics,
which can be converted to equivalent ARW:

ARWSN =

√
2ℏωℓPdetηqe

Pinη
∣∣∣ dR

d∆ gom

∣∣∣ · Sm

(18)

where Pdet and ηqe are the optical power and quantum efficiency of the detector, respectively.
Furthermore, in the optomechanical system, the shot noise exerts the reaction force and
causes the photonic crystal to move, which is the back-action noise:

ARWba =
2ℏgomQy

mySm

√
2nc

κ(Qy
2(−2ωmωΩ + ωΩ

2)2 + (ωm2 − ωΩωm)
2)

(19)

Based on the above theoretical analysis, the influence of input power and laser-cavity
detuning on the gyroscope proposed in this paper is discussed in detail. Specifically, those
parameters ∆ = −κ/2, κe = 1.5 × 108, κi = 0.5 × 108 and gom = 3 GHz/nm are chosen in this
paper for a joint optomechanical cavity. Because the optomechanical sensitivity changes
linearly with the input laser power, the total sensitivity increases with the increase in the
light power, and at the same time, the noise caused by the detector and shot noise decreases
with the rise in the power (as seen in Figure 7a,b). Meanwhile, the number of photons in
the cavity increases rapidly, resulting in the increased optomechanical coupling and a rise
in the back-action noise. However, the shot noise, detection noise and back-action noise
usually are smaller than mechanical thermal noise. The sensitivity can be significantly
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improved by choosing appropriate laser-cavity detuning, as shown in Figure 7c. When
∆ = −κ/2, the scale factor is 22.8 mV/(◦/s) [30]. As shown in Figure 7d, although all
other noises except thermal noise are affected by laser-cavity detuning, ARWtotal is mainly
affected by mechanical thermal noise. Moreover, the mechanical thermal noise has a
Lorentzian function as the frequency. When the detection frequency deviates from the
mechanical resonance frequency, the thermal noise will decrease rapidly due to the angular
vibration frequency (as seen in Figure 8). However, the low-frequency noise of the detector
is considerable, which limits the bandwidth of angular vibration.
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Figure 7. (a) Performance analysis of an optomechanical dual-mass gyroscope under varying laser
input conditions based on the standard parameters of a silica resonator. (a) scale factor, drive
amplitude, and (b) the laser input power governing ARW. Cavity-laser changes (c) the normalized SF,
SM, and SP, and (d) the magnitude of the ARW detuning ∆.
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4. Comparative Study

In this section, we compare the performance characteristics of previously reported
high-precision micro-opto-electro-mechanical systems (MOEMS) gyroscopes to our novel
dual-frame optomechanical gyroscope architecture incorporating an integrated photonic
crystal cavity. As summarized in Table 3, three earlier frame-type MEMS gyroscope designs
utilized an electrostatic comb drive actuator and displacement sensor [39,42,43]. How-
ever, these approaches exhibited limitations associated with electronic noise introduced
by the driving and sensing methods employing different operating modes. Additional
MOEMS gyroscopes employing an electrostatic comb drive and optical output for sens-
ing displacement were impacted by sensitivity to environmental fluctuations and the
need for a high optical quality photonic crystal fabrication [12]. For effective operation to
counter challenges in achieving perfect coaxial alignment of optical and mechanical axes in
practice [23]. Suffered limited resolution and bandwidth from a low mechanical quality
factor [24]. Increased complexity, susceptibility to lock-in effects, vibrational noise sensitiv-
ity, calibration requirements, constrained detectable angular velocity ranges, assumptions
of low rotation rates, and dependence on quadrature phase detection [25]. In contrast,
our novel dual-frame optomechanical gyroscope architecture, as theoretically analyzed,
has demonstrated superior performance characteristics including the highest simulated
sensitivity and lowest noise levels at an input laser power of 3mW. Additionally, this
design offers advantages such as low cost, and extremely miniaturized dimensions for an
ultralight test mass. Importantly, the optical detection method is unaffected by electromag-
netic interference and incorporates negligible thermal electronic noise, exhibiting a high
signal-to-noise ratio approaching only unavoidable quantum noise levels. Therefore, our
novel gyroscope architecture represents a promising solution for next-generation inertial
measurement applications.

Table 3. Comparative evaluation of sensing performance metrics for micro-optomechanical systems
(MOMES) and MEMS gyroscope with novel dual-frame optomechanical gyroscope designs based on
theoretical/numerical simulations.

Gyroscope Type Structure Proof
Mass

Resonator
Size Driving Method Sensitivity ARW

(◦/h1/2)

(Multi-DoF)
MEMS

gyroscope [42]

1 
 

i1 

 
2 

 
3 

 
4 

 
5 

 
6 

 
7 

 
8 

 
V2

V1

(a)

≈1.103 µg 4.2 × 4.2
mm × mm

Electrostatic
comb

electrodes
198.9 V/(◦/s), -

Dual-mass
resonant MEMS
gyroscope [39]

1 
 

i1 

 
2 

 
3 

 
4 

 
5 

 
6 

 
7 

 
8 

 
V2

V1

(a)

≈10.7 µg 1557 × 1816 µm × µm
Electrostatic

comb
electrodes

4.6433 × 10−4

µm/(◦/s) -

Single-drive
multi-axis MEMS

gyroscope [43]

1 
 

i1 

 
2 

 
3 

 
4 

 
5 

 
6 

 
7 

 
8 

 
V2

V1

(a)

≈0.279 mg 300 × 300
mm × µm

Electrostatic
comb

electrodes

Cross-axis
sensitivities for x

and y-axis
0.482% and

0.120%,

-

MOEMS [12]

1 
 

i1 

 
2 

 
3 

 
4 

 
5 

 
6 

 
7 

 
8 

 
V2

V1

(a)

15 µg 405 µm2
Electrostatic

comb
electrodes

0.051 nm/(◦/s) -
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Table 3. Cont.

Gyroscope Type Structure Proof
Mass

Resonator
Size Driving Method Sensitivity ARW

(◦/h1/2)

Gyroscope with
two-dimensional
optomechanical

mirror [23]

1 
 

i1 

 
2 

 
3 

 
4 

 
5 

 
6 

 
7 

 
8 

 
V2

V1

(a)

1.83 mg

Dimensional mirror
with a diameter 1 mm

and a thickness of
0.5 mm

Optomechanical 10−11

rad/s/Hz1/2

Optomechanical
gyroscope [24]

1 
 

i1 

 
2 

 
3 

 
4 

 
5 

 
6 

 
7 

 
8 

 
V2

V1

(a)

4.77 mg

Dimensional mirror
with a diameter 1.5 mm

and a thickness of
0.5 mm

Optomechanical 10−5

rad/s/Hz1/2

Optomechanical
gyroscope [25]

1 
 

i1 

 
2 

 
3 

 
4 

 
5 

 
6 

 
7 

 
8 

 
V2

V1

(a)

2.62 mg

Dimensional mirror
with a diameter 1.2 mm

and a thickness of 0.5
mm

Optomechanical 10−9

rad/s/Hz1/2 -

MOEMS

1 
 

i1 

 
2 

 
3 

 
4 

 
5 

 
6 

 
7 

 
8 

 
V2

V1

(a)

14 ng 280 × 220 µm
Electrostatic

comb
electrodes

22.8 mV/(◦/s) 7.1 × 10−5

(◦/h1/2)

5. Conclusions

In this paper, we proposed a novel and significant dual-frame optomechanical gyro-
scope design, which integrates optical cavity interactions with mechanical resonant motion
to achieve high angular resolution and sensitivity. We explained how our design overcomes
the limitations and challenges of traditional MEMS gyroscopes that rely on electronic trans-
duction and readout, such as noise, and stability issues. Such an optomechanical gyroscope
comprises a pull-off electrostatic comb drive structure, test mass, and photonic crystal
sensing structure. The operation principle of the new gyroscope including the Coriolis force
transduction based on the optomechanical coupling was analyzed and discussed to prove
that the angular vibration can be measured precisely. Moreover, the parameter selection
and optimization of the sensitive structure and photonic crystal optomechanical cavity were
studied utilizing finite element simulation. Under the appropriate electrostatic force, the
optomechanical gyroscope can achieve SF = 22.8 mV/(◦/s) and ARW = 7.1 × 10−5(◦/h1/2)
when Pin is 1 mW, and my is just 14ng. The gyroscope design proposed herein holds
substantial promise for application in high-precision angular vibration measurements.

Future work will focus on experimental validation and potential applications in fields
such as inertial navigation, geophysical exploration, and structural health monitoring
where high angular precision is required.
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