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Abstract: A giant electric field on a subwavelength scale is highly beneficial for boosting the light–
matter interaction. In this paper, we investigated a hybrid structure consisting of a hemispheric dimer
array and a gold film and realized resonant mode coupling of the surface lattice resonance (SLR)
and surface plasmon polariton (SPP). Mode coupling is demonstrated by observing anti-crossing
in reflection spectra, which corresponds to Rabi splitting. Although the resonance coupling does
not enter the strong coupling regime, an improved quality factor (Q~350) and stronger electric field
enhancement in the gap region of the dimer (i.e., hot spot) in our hybrid structure are obtained
compared to those of the single dimer or dimer array only. Remarkably, the magnitude of electric field
enhancement over 500 can be accessible. Such high field enhancement makes our hybridized structure
a versatile platform for the realization of ultra-sensitive biosensing, low-threshold nanolasing, low-
power nonlinear optical devices, etc.

Keywords: field enhancement; nanoparticle dimmer; mode coupling; surface plasmon polariton;
surface lattice resonance

1. Introduction

Plasmonics is a field that has emerged in recent years at the intersection of photonics,
electronics, and nanotechnology [1,2] So far, there have been tremendous advances and
new developments in plasmonics, as well as in nanophotonics and metamaterials [3]. Plas-
monics uses the collective motion of conduction electrons in metals to enable the coupling
of light to nanomaterials and to produce a range of optical effects on the nanoscale [4]. At
the same time, the collective oscillation of the electrons leads to a localization of the field
and its significant enhancement with respect to the excitation field [5]. Two of these prop-
erties, localization and enhancement, are among the main components of light that allow
guiding and manipulating the diffraction limit [6]. Field localization and enhancement are
central in applications such as surface-enhanced Raman spectroscopy (SERS) [7], single-
molecule detection [8], high sensitivity photoelectric detection [9], photocatalysts [10],
biomedicine [11,12], near-field optical capture [13], and nanoscale light sources [14].

One of the main powerful methods used in sensors is surface-enhanced Raman spec-
troscopy (SERS), which is the enhancement of the Raman signal achieved by placing
Raman-active molecules in the vicinity of the near field of a metallic nanostructure [15].
When two nanoparticles are in close proximity to form a cell, a strong field enhancement
and localization within a few cubic nano meters of space between the two nanoparticles is
created, which is called a hot spot [16]. Since the Raman signal is proportional to the fourth
power of the electric field, high field enhancement between dimer gaps can enhance the
Raman signal very well, and the field enhancement of small gaps can locate small molecules
between them very well. Nano-cubes, nanospheres, nanorods, and nano-bowtie dimers

Photonics 2024, 11, 183. https://doi.org/10.3390/photonics11020183 https://www.mdpi.com/journal/photonics

https://doi.org/10.3390/photonics11020183
https://doi.org/10.3390/photonics11020183
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/photonics
https://www.mdpi.com
https://doi.org/10.3390/photonics11020183
https://www.mdpi.com/journal/photonics
https://www.mdpi.com/article/10.3390/photonics11020183?type=check_update&version=1


Photonics 2024, 11, 183 2 of 8

are currently being studied [17–20]. How to obtain greater field enhancement between the
dimer gaps is what needs to be investigated at present.

Further ways to enhance the field strength between nanodimers are coupling effects
or the formation of Fabry–Perot (FP) thin film cavities, such as coupling between surface
lattice resonance (SLR) and surface plasmon polariton (SPP) and the formation of FP
cavity between arrays and gold films; in addition, the bound states in the continuum
(BIC) also proposes an effective method for achieving high Q resonance, and at the same
time, giant electric field enhancement simultaneously occurs in quasi-BICs [21,22]. Quite
recently, research was conducted on the structure composed of gold nanoparticle arrays
and metallic films, and it was found that there is a perfect absorption pair related to phase
singularities [23]. However, the explicit field enhancement effect in the systems of metallic
nanoparticle arrays and metallic films is still rarely reported. In this study, we investigate
structures consisting of metallic dimer arrays and metallic films. The array and the film
form an FP cavity, and the 2D array can excite the SLR and the SPP on the gold film. When
the gap between the array and the gold film is in a certain range, the SLR and the SPP are
coupled. Within this range, this structure can effectively reduce the plasmon linewidth and
produce a large near-field enhancement in the gap of a gold plasmonic hemispherical dimer.
The near-field enhancement of our dimer array coupled with the metal film structure is
about twice as large as that of the dimer array structure alone and has seven times the
quality factor increase compared with the SLR. Finally, our simulation results can be verified
by using a coupled oscillator model.

2. Simulations and Methods

Figure 1 shows a perspective view of the metal film and dimer array system studied
in this paper, which consists of a gold film and a periodic hemispheric dimer array placed
on the gold film. The thickness of the gold film is set to 200 nm, preventing any light
transmission. The dimer consists of two hemispheres with a radius of 75 nm and the gap g
between the two hemispheres is set to 6 nm. The dimer array is periodically arranged in the
x-y plane with the period in the x-direction Px = 800 nm and the period in the y-direction
Py = 800 nm, initially. The dielectric properties of the array and the gold films were taken
from the CRC database in the software ANSYS Lumerical [24]. The incident light source
is linearly polarized along the x-direction and impinges the structure vertically along the
z-direction. For simplicity without loss of generality, the ambient refractive index of the
structure was set to 1.0. The finite-difference time-domain (FDTD) method is used to
investigate the optical response of our hybrid structures.
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Figure 1. Schematic illustration of the hybrid structure composed of a gold hemispherical dimers
array on a thick gold film. The inset is the cross section in the x-z plane, which indicates that the
orientation of the dimer lies along the x-direction.

3. Results and Discussion

Before further investigating the structure consisting of a dimer array and a metal film,
we first study the hemispherical dimer array only. In order to simulate an infinite unit array
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structure, periodic boundary conditions are used in both the x- and y-directions, allowing
far-field coupling between dimers [25–27]. When the Rayleigh anomaly (RA) is coupled
with localized surface plasmon resonance (LSPR), SLR is formed. Each dimer in the array
can be regarded as a dipole, and the static field on each dipole includes the incident field
and the sum of the radiated fields of all other dipoles, excluding itself. This causes an
increase in the scattering intensity of the array, a narrowing of the spectrum linewidth, and
an accompanying strong enhancement of the incoming field [26,28]. Figure 2a illustrates
the scattering spectrum of a single hemispherical dimer and the reflectance spectrum of
the array structure. We can see that when an array structure is formed, a narrow reflection
peak can be found at the wavelength around the array period. Figure 2b,c show the electric
field distributions corresponding to the peak wavelengths of the single dimer and dimer
array, respectively. The electric field enhancement is mainly concentrated in the vicinity
of the hemispheres, with the maximum at the dimer gap. The SLR mode is excited after
the formation of the array, and the maximum electric field enhancement factor (|E|/|E0|)
between the gap can reach 350, which is about 5 times larger than that of the single dimer.
In addition, the Q factor is generally defined as Q = λres/∆λ (where λres is the resonance
wavelength, and ∆λ is the linewidth of the resonance [29]), and we can note that the Q
factor of the array is about 40.
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In the next step, we will study structures consisting of dimer arrays and gold films.
The dimer array above the gold film can also excite the SLR, and the RA can be derived
from the following:

λ
<i,j>
RAs = n/

√
i2

P2
x
+

j2

P2
y

(1)

where n is the ambient refractive index around the array, < i, j > is the diffraction order,
and Px and Py are the lattice period for the array. At the same time, the presence of the
array above the gold film allows the SPP mode to be excited at normal incidence, which
occurs approximately at [30] as follows:

λ
<i,j>
SPPs =

Px(y)√
i2 + j2

√
εdεm

εd + εm
(2)

where εd = n2 and εm are the dielectric constant of the surrounding medium and the metallic
film, respectively. The resonant wavelength of the SPP also varies with the period of the
array, which makes SPP mode and SLR mode couple even at normal incidence. It is worth
noting that under normal incidence, the diffraction orders degenerate with each other, and
the SPP modes and the SLR modes are standing waves due to the interference of oppositely
propagating waves [31].
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In addition, the resonance of the array can be affected by the formation of a mirror
image charge on the gold film. And the mirror image charge is influenced by the distance
between the bottom of the array and the top of the gold film (h). When the distance between
the array and the gold film is close, the image charge on the film will affect the SLR of
the array. When h is large enough, standing waves are generated between the array and
the film, leading to the development of FP cavity mode. Therefore, the distance h can be
referred to as the cavity length. Figure 3a shows the reflection spectra at different cavity
lengths. When the cavity length is between 50 and 150 nm, there are two resonance modes,
one of which is located at around 805 nm and does not change much with the cavity
length. This can be attributed to the excitation of the SPP mode because lattice spacing is
unchanged, and the wavelength of the SPP mode is less influenced. The other resonant
mode has a distinct blue shift, which can be attributed to the excitation of the local binding
mode of the hybrid structure. The local bonding resonance is governed by the coupling
between the dimer and the film, which is significantly influenced by the cavity length. In
order to differentiate the two modes, the resonant mode near 805 nm is designated as mode
I, and the resonant mode near 825 nm is designated as mode II. When the cavity length
exceeds 150 nm, the positions of the two resonance peaks remain basically unchanged.
Interestingly, the maximum field enhancement of the two modes is extracted and plotted
as a function of cavity length, which is shown in Figure 3b. The field enhancement of mode
I almost increases monotonously with the increase in the cavity length, while the field
enhancement of mode II drops gradually for the cavity length in the range from 50 nm
to 150 nm (reaching the minimum value). Subsequently, the rise of field enhancement of
mode II can be seen for the cavity length in the range from 150 nm to 300 nm. Remarkably,
field enhancement up to 580 and 480 is attained for mode I and mode II at h = 300 nm,
respectively. Up to a 1.7-fold increase in field enhancement is achieved compared to that of
SLR mode only (Figure 2c). Such high electric field enhancement is due to the coupling of
the SPP mode with the SLR mode, which will be further discussed later.

At this point, the two modes (modes I and II) presented in the reflection spectra are
considered the hybrid modes generated by the mode coupling in our array and film system.
Interference effect impacting the spectrum significantly, as in a previously reported sub-
wavelength structure [32], will play an important role in a large cavity length. Figure 3d,f
show the corresponding near-field enhancement distributions and z-component of electric
field (Ez) distributions for the two modes at h = 300 nm and 250 nm, respectively. It can be
seen that the Ez distribution of λ = 822 nm (h = 250 nm) is very similar to that of λ = 816
nm (h = 300 nm). And at h = 300 nm, the mode profiles of SLR and SPP are preserved for
the two hybrid modes. Further enlarging the cavity length h to 350 nm, there is only one
resonant mode which is caused by the destructive interferences of FP cavity mode leading
to the suppression of the excitation of SLR. This can be proved by the fact that the field
enhancement is rather weak at h = 350 nm compared to that of h = 300 nm, as is shown in
Figure 3c.

Generally, SPP can be excited by grating structure [33]. In order to clearly manifest
the origin of the mode coupling, we turn our dimer array into a one-dimensional grating
at h = 300 nm (all other parameters are kept the same), which can be seen in the inset of
Figure 4a. A single reflection valley can be seen at the wavelength of 820 nm. By examining
the electric field and Ez distribution of the valley wavelength in Figure 4b,c, typical SPP
profiles can be found, where maximum field enhancement occurs at the surface of the
metallic film. Therefore, the SPP mode is one of the main contributing modes leading to
the modal coupling.
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Finally, we will show that such a high electric field enhancement results from the
coupling between the SLR mode and the SPP mode at h = 300 nm. A coupled oscillator
model (COM) is used [34–36],[

eSLR + iγSLR g
g eSPP + iγspp

][
β
η

]
= e

[
β
η

]
, (3)



Photonics 2024, 11, 183 6 of 8

where eSLR and eSPP are the resonance energy of the SLR and SPP mode, respectively; γSLR
and γSPP are the half-widths at half-maximum (HWHM) of the SLR and SPP modes; g
is the coupling strength; e is the eigenvalue corresponding to the hybridized modes; and
η and β are the eigenvector components (Hopfield coefficients), where the eigenvector
components should be satisfied |β|2+|η|2 = 1. When the line widths of the SLR and SPP
modes are small compared to their energies, the new eigenvalues can be approximated as

e± = 0.5(eSLR + eSPP)±
√

g2 +
1
4

δ2. (4)

And the Rabi splitting energy (h̄Ω = 2 g) can be obtained when eSLR = eSPP, where
δ = eSLR − eSPP is the detuning. Considering the excitation condition (normal incident
along the z-axis and polarizing along the x-axis), the SLR mode mainly originates from
the diffraction coupling along the y-direction. Therefore, Py determines the SLR mode
dominantly. For the SPP mode, the propagation direction is mainly along the x-axis, and the
resonant wavelength of SPP is determined by Px. The above statement can be justified by
isolating the two modes, where we turn the material of either the film or dimer array into a
perfect electric conductor (PEC). Figure 5 shows the reflection spectra when changing Px
and Py, respectively. An obvious anti-crossing can be noticed in Figure 5. In addition, the
simulated reflection spectra are consistent with the calculated COM results. The coupling
strength g related to the Rabi splitting energy is extracted as 12.95 meV (11.05 meV) for
altering Px and Py, respectively. Although the interaction of the two resonant modes does
not enter the region of strong coupling, an increase in the Q factor (~350) for the hybrid
modes is obtained compared to that of SLR only in Figure 2.
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Figure 5. (a) Variation in the reflection spectra by adjusting the lattice spacing Px, Py = 800 nm. (b)
Variation in the reflection spectra by adjusting the Py, Px = 800 nm. The geometry parameters are kept
the same. The white dashed open-circle curves are the calculated results from the coupled oscillator
model (COM). The white dotted line in (a) is the <±1, 0> SPP mode. The white dotted line in (b) is
the SLR mode.

4. Conclusions

In conclusion, we investigated the optical responses of hybridized structures consisting
of gold films and hemispherical dimer arrays and delved into the role between SLR, SPP,
and FP cavity modes at different cavity lengths. The anti-crossings and Rabi splitting are
demonstrated in the reflection spectra, which is in agreement with the calculation of the
coupled oscillator model. Giant electric field enhancement up to 580 can be achieved due
to the coupling of SLR and SPP mode, which shows a 1.7-fold increase compared to that
of SLR only. Additionally, the Q factor can also be effectively increased for the hybrid
modes. Therefore, we expect that our proposed hybrid structures will provide a versatile
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platform for the realization of ultra-sensitive biosensing [37], low-power nonlinear optical
devices [38], low-threshold nanolasing [39], etc.
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