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Abstract: Phase unwrapping is a technique used to recover the original phase from the wrapped phase
in the range (−π, π]. Various methods have been proposed for phase unwrapping. In particular,
methods using convolutional neural networks (CNNs) have been extensively researched because
of their high robustness against noise and fast inference speed. However, conventional CNN-based
methods discard the local position information and relationships between pixels in the convolution
process, resulting in poor phase-unwrapping performance. To obtain better phase unwrapping results,
we propose a module that combines a global convolution network, which applies convolutional
layers with a kernel size equivalent to that of the feature maps, and CoordConv, which acquires
the positional relationships between pixels. We validated the performance of the proposed method
by comparing it with a quality-guided path algorithm and deep learning-based phase unwrapping
methods and found that the proposed method is highly robust against noise.

Keywords: holographic memory; holographic data storage; neural network; diffractive neural network

1. Introduction

Phase unwrapping is used to measure physical quantities, such as variations and
surface shapes, in various practical fields, including magnetic resonance imaging [1],
synthetic aperture radar [2], fringe projection techniques [3], and digital holographic
interferometry [4]. In general, the phase measurement is typically acquired using the
arctangent function, which is limited to the range of (−π, π]. Consequently, if the phase
shift exceeds this range, the resulting image exhibits discontinuities with jumps of 2nπ
(where n denotes an integer). Hence, to obtain the true physical quantity, it is necessary to
add a suitable multiple of 2 to the observed values, thereby restoring the phase distribution
to a truly continuous state. This process is known as phase unwrapping [5,6]. The formula
for phase unwrapping is expressed as follows:

ϕ(x, y) = ψ(x, y) + 2πk(x, y), (1)

where ϕ denotes the true phase, ψ is the wrapped phase, (x, y) is the pixel coordinates, and k
is an integer coefficient known as the “wrap count” utilized to derive the true phase ϕ. Phase
unwrapping can easily calculate the true phase in an ideal noiseless environment; however, it
is a difficult task in an environment with noise, discontinuities, or sudden changes.

According to [7,8], conventional phase-unwrapping methods can be classified into
two approaches:

• Path-following approach: several proposed methods include the quality guided path
algorithm, which determines the unwrapping path using a quality map or reliability
criteria [9–11], and the branch cut algorithm [12], which imposes constraints on the
unwrapping path to traverse line segments connecting two endpoints.
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• Minimum norm approach: An approach to phase unwrapping by minimizing the norm be-
tween the gradient of the wrapping phase and the unwrapping phase. Phase unwrapping
using the least-squares method [13] is the most typical minimum norm approach.

The path-following approach is computationally efficient, but less robust against noise.
However, the minimum-norm approach is computationally inefficient and highly robust
against noise.

In recent years, deep learning [14], a data-driven method, has achieved great success in
various fields such as image recognition and natural language [15–17]. In the field of image
recognition, Convolutional neural networks (CNNs) [18] have demonstrated remarkable
performance in practical tasks [19,20]. To address the problem of phase unwrapping,
several studies have applied CNN [7,8,21,22].

Two primary approaches are commonly utilized when employing a CNN to address
the phase-unwrapping problem. The first approach is regression-based [8,21], where the
wrapped phase serves as the input, and the CNN directly predicts the true phase value for
each pixel. This approach achieves excellent performance while minimizing computational
time through the direct inference of the true phase. While training has required large amounts
of training data, the method proposed in [8] achieves excellent performance with small ones.
The second approach is semantic segmentation-based [7,20,22–24], and involves inferring
the wrap count for each pixel and subsequently calculating the true phase. Specifically, the
segmentation-based approach determines the wrap count, an unknown integral multiple of 2π
added to each pixel of the wrapped phase, and recovers the true phase based on Equation (1).
In this approach, when a pixel is misclassified, the error for that pixel will be at least 2π or
more. CNN-based models demonstrate robust performance even in noisy environments and
outperform traditional methods that are less effective under such conditions.

Phase unwrapping involves the estimation of the true phase based on the wrapped phase,
and achieving accurate unwrapping necessitates the consideration of spatial continuity and
global relationships among the pixels. Conventional CNN-based methods employ repeated
convolutions with relatively small kernels for feature extraction. Although these methods
excel in terms of localization robustness, they disregard local location information and pixel
relationships during the convolution process. To address this problem, we propose a CNN-
based feature extraction method that considers phase continuity and global relationships.

In this study, we propose a new module called the spatial relation awareness module
(SRAM) that combines a global convolution network (GCN) [25], which applies a convolution
layer with a kernel size equivalent to that of the feature maps, and CoordConv [26], which
strengthens the consideration of the positional relationships between pixels. Figure 1 illustrates
the integration of SRAM and the CNN-based architecture utilized in this study. SRAM is
specifically applied to the skip connection of the encoder–decoder model, imparting global
features to the decoder that considers the pixel positional relationships crucial for effective
phase unwrapping.

The key contributions of this study are as follows:

• We demonstrated that the performance of phase unwrapping can be improved by
applying the proposed module SRAM, which takes into account the continuity of
phase and the relationships between pixels, to the encoder–decoder model.

• The SRAM proposed in this study is easy to implement, highly reusable, and can be
applied to a wide range of encoder–decoder models.

• In terms of the performance of phase unwrapping on wrapped phases containing
noise, the proposed method achieved a 4.98% improvement in normalized root mean
square error (NRMSE) compared to the conventional method, quality-guided phase
unwrapping (QGPU) [9]. Furthermore, it outperformed the CNN-based method,
spatial quad-directional long short term memory (SQD-LSTM) [8], by 0.65%.
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Figure 1. Overview of our proposed spatial relation awareness module (SRAM). (a) shows the structure
of the CNN architecture applying the SRAM used in this verification, and (b,c) show information on the
detailed structure of the SRAM. For (a), the number of channels in each convolutional block is indicated
above it, and the number of channels in each transposed convolution layer is indicated below it.

2. Related Work

This section describes the general phase unwrapping methods.

2.1. Quality-Guided Phase Unwrapping Algorithm

QGPU [10,11] is a traditional method of phase unwrapping. QGPU consists of two
main steps: computing the reliability value and creating an unwrapping path. The reliability
value is a metric calculated based on the differences between the target pixel and its
neighboring pixels, using the second difference between orthogonally and diagonally
adjacent pixels. Initially, the second difference D for the (x, y) pixel within a 3× 3 window
is calculated using the following equation:

D(x, y) = [H2(x, y) + V2(x, y) + D2
1(x, y) + D2

2(x, y)]1/2. (2)

H(x, y) = γ[ϕ(x− 1, y)− ϕ(x, y)]− γ[ϕ(x, y)− ϕ(x + 1, y)]. (3)
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V(x, y) = γ[ϕ(x, y− 1)− ϕ(x, y)]− γ[ϕ(x, y)− ϕ(x, y + 1)]. (4)

D1(x, y) = γ[ϕ(x− 1, y− 1)− ϕ(x, y)]− γ[ϕ(x, y)− ϕ(x + 1, y + 1)]. (5)

D2(x, y) = γ[ϕ(x + 1, y− 1)− ϕ(x, y)]− γ[ϕ(x, y)− ϕ(x− 1, y + 1)], (6)

where x, y are the coordinates given in the phase image, H, V are the horizontal and vertical
directions, respectively, and D1, D2 are the differences in the diagonal components. γ(·) is
an unwrapping operation that adds or subtracts 2π phase jumps, and ϕ is the phase value.
Next, the confidence level was calculated based on the differences in the windows using
the following equation:

R = 1/D. (7)

In the initial state, each pixel in the phase image is considered to belong to no group,
and the reliability of an edge is calculated by summing the reliabilities of the two adjacent
pixels, as shown in Figure 2 Then, all the edge reliabilities are sorted, and the phase
unwrapping process starts from the two adjacent pixels with the highest edge reliability.
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Figure 2. Overview of the calculation of QGPU. (a) shows the calculation of reliability and (b) shows
the calculation of edge reliability.

In [9], an algorithm was proposed that replaces the strict sort processing of [11] using
a faster approach. This modification led to a near-real-time performance. However, QGPU
suffers from a lack of robustness against noise when the phase image is corrupted by noise,
yielding unreliable results.

2.2. CNN Approach

There has been considerable research on methods using CNNs, which are faster and more
robust to noise than conventional methods. Refs. [7,22,23,27] consider phase unwrapping as a
segmentation task and employ methods such as SegNet [28], DeepLabV3+ [24], and UNet [20]
to infer the wrap count of each pixel. The ground truth of the wrap count can be expressed as

k(x, y) = round

(
ϕ(x, y)− ψ(x, y)

2π

)
, (8)

where ϕ(x, y) and ψ(x, y) represent the true and wrapped phase values, respectively, at
pixel (x, y). Function round(·) denotes the operation of rounding a value.

The approaches proposed in [8,21] consider phase unwrapping as a regression task
to directly estimate the true phase from the wrapped phase. As a regression task, this
formulation typically involves selecting the mean squared error (MSE) as the loss function.
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However, according to [8], the use of the MSE loss leads to poor convergence during
training and degradation of the phase-unwrapping performance. This is because it is
possible to generate the same wrapped phase ψ from multiple true phases ϕ, making the
MSE loss, which aims for a unique solution, unsuitable for phase-unwrapping tasks that
do not possess a unique solution. Therefore, in [8], a loss function was designed to enhance
the similarity between the predicted phase ϕ̂ and the true phase ϕ, while allowing for other
solutions during convergence as follows:

Lc = λ1Lvar + λ2Ltv, (9)

Lvar = E[(ϕ̂− ϕ)2]− (E[(ϕ̂− ϕ)])2, (10)

Ltv = E[|(ϕ̂x − ϕx)| − |(ϕ̂y − ϕy)|], (11)

where λ1 and λ2 represent the weights assigned to each loss function and E[·] denotes the
expectation value. The variance of the error loss, denoted by Lvar, enables the learning of
multiple alternative solutions, whereas the total variation in the error loss, denoted by Ltv,
increases as the similarity between ϕ̂ and ϕ improves by forcing the network to match the
gradients of ϕ̂ and ϕ.

Furthermore, in [8], a CNN incorporating SQD-LSTM module was introduced as a
remedy for phase unwrapping, addressing the challenges through regression tasks. It has
been reported that incorporating SQD-LSTM into the bottleneck of the encoder–decoder
model improves the performance of phase unwrapping. The architecture of the SQD-LSTM is
illustrated in Figure 3. The SQD-LSTM module employs four distinct LSTMs [29] to extract
spatial relationships in four directions (specifically, left-to-right, right-to-left, top-to-bottom,
and bottom-to-top) from the encoded features. The four features obtained from each direction
are represented as y→, y←, y↓, and y↑, respectively. The SQD-LSTM facilitates the recovery of
a continuous true phase by learning the spatial relationships of features.

However, global features can be lost during the process from the input layer to
the bottleneck layer. To address this issue, we introduced a novel skip connection to
complement the lost global features.

C

C

C

Input future map Output future map

Conv Layer

Conv Layer

SQD-LSTM module

𝒚← 

𝒚↑ 

𝒚→ 

𝒚↓ 

Concatenation

Figure 3. Overview of SQD-LSTM module [8], which utilizes four LSTMs to learn the spatial
relationships of features.
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3. Proposed Method

The proposed method employs a regression approach that directly infers the true
phase in an encoder–decoder model. The architecture of the proposed method is illustrated
in Figure 1.

In conventional CNNs, as the convolution process is repeated, local positional in-
formation and pixel relationships are discarded. However, it is crucial to consider the
relationships between pixels for phase unwrapping. In our proposed method, we apply an
SRAM to skip connections between the encoder and the decoder. This SRAM incorporates
GCN [25] and CoordConv [26] layers to preserve pixel positional information, thereby
considering the relationships between pixels during phase unwrapping.

We have provided a detailed description of the architecture used in this study. To capture
the global spatial dependencies, we adopted the SQD-LSTM module proposed in [8] at the
connection point (bottleneck) between the encoder and decoder. However, even with the
SQD-LSTM module at the bottleneck, as the convolution and pooling operations are repeated
in the encoder, global spatial dependencies can be lost in the process. To address this issue, we
employed SRAM in skip connections that transferred the features extracted from the encoder
to the corresponding resolution in the decoder.

SRAM is a module that combines a GCN, which performs convolution using kernels
of the same size as the input, with CoordConv to retain positional information. This
combination enables the learning of specific spatial structures within the phase images.
CoordConv is a simple extension of the input feature map of the convolution layer, which
can be realized by adding two channels: in the vertical (i coordinate channel) and horizontal
directions (j coordinate channel). Figure 4 shows an overview of CoordConv. Specifically,
for a feature map of height h and width w, the i-coordinate channel has the same size as
the feature map, with its first row filled with 0, the second row filled with 1, and the third
row filled with 2. The j-coordinate channels are similar, with columns filled with constant
values instead of rows. Finally, linear scaling is applied such that the i and j coordinate
values fall within the range [−1, 1]. Reference [26] also proposes a pattern of adding a
channel whose location information is the distance from the center of the image, but the
proposed method uses a simple i, j coordinate channel. The implementation of SRAM is
simple and can be applied to any network in the encoder–decoder models.

Input feature maps

c

w

h
w

h

w

h

i coodinate j coodinate

−1.0 −1.0

+1.0         +1.0

0.0

−1.0 +1.0

− 1.0         +1.0

0.0

CoordConv layer

C+2

w

h

Concatenate

Figure 4. Overview of the CoordConv [26].

4. Results

This section describes the validation results that demonstrate the effectiveness of the
proposed method.

4.1. Data Generation

For this validation, the phase data were generated using a mixed Gaussian distribution,
following an approach similar to that in [8]. The dataset used in this study consists of a
synthetic phase image containing random shapes and a corresponding wrapped phase
image, which is realized by adding and subtracting multiple Gaussian distributions with
different shapes and positions. The formula for generating a phase image is expressed as
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ϕ(x, y) = m1x + m2y + C +
N

∑
n=1

An exp
[
−
( (x− µx)2

2σ2
x

+
(y− µy)2

2σ2
y

)]
∀(x, y) ∈ [−128, 127)2, (12)

where x and y represent the spatial coordinates of the pixels. m1, m2, and C are lamp phase
parameters, each with random gradients and shifts. This can be expressed as follows:
m1, m2 ∈ R | 0 ≤ m1, m2 < 0.5 and C ∈ N | 1 ≤ C < 10. Here, R represents real numbers,
and N represents natural numbers. N denotes the number of Gaussian distributions gen-
erated within a single-phase image and ranges from N ∈ N | 2 ≤ N < 5. A represents the
weight of a Gaussian distribution with A ∈ N | 50 ≤ A < 1000. µ and σ are the mean and
standard deviation of the Gaussian distribution, respectively, with µ ∈ N | 20 ≤ µ < 235
and σ ∈ N | 10 ≤ σ < 45. By combining the Gaussian distributions, we generated phase
images of irregular and arbitrary shapes. Furthermore, we incorporated lamp phases with
randomly selected gradients in the vertical and horizontal directions.

A noisy image is generated by introducing Gaussian noise with a arbitrary signal-to-noise
ratio (SNR) to a noise-free image. The formula for calculating (SNR) is expressed as

SNR = 10 log
PS
PN

, (13)

where PS and PN represent signal-power and noise-power. SNR represents the ratio of
signal to noise, and is expressed in decibels (dB). In this experiment, we set PS to 1.0 and
calculated PN using

PN =
PS

10
SNR

10
, (14)

which is a rearrangement of Equation (13). Next, Gaussian noise with mean 0 and variance
1, scaled by the calculated PN , is added to the noise-free image to generate a noise image.
As evident from Equation (14), lower SNR values correspond to higher noise-power.

4.2. Implementation Details

A GeForce RTX 3070 graphics card was used. We used TensorFlow version 2.5.0
and CUDA version 11.2 to implement the proposed method. The proposed method was
implemented based on [8]. The SRAM and boundary refinement (BR) were used for skip
connections to pass the features directly from the encoder to the decoder. The BR is a simple
module consisting of several convolutional layers applied to refine the object boundary
information proposed by the GCN in [25]. The parameters related to the model structure
are presented in Figure 1.

The size of the input layer was 256 × 256 pixels with 1 channel grayscale image.
Equation (9) was used as the loss function, and the hyperparameters λ1 and λ2 were set
to 0.1 and 1.0, respectively, following [8]. The batch size was set to eight, and ADAM [30]
was employed as the optimization function. The learning rate was set to 10−3, β1 = 0.9,
β2 = 0.999, epoch=100.

4.3. Quantitative Evaluation

This section describes the results of the phase unwrapping performance verification.
The data used for the validation were generated according to Equation (12), and the size of
the phase images was 256× 256 pixels. We created two datasets comprising 2000 phase
images. One of these datasets was randomly assigned additive Gaussian noise levels of
0, 5, 10, 20, and 60 dB before wrapping to simulate the noise commonly encountered in
real-world wrapped-phase images. This dataset was labeled as the “Noisy” dataset, while
the other clean dataset was labeled as the “Noise Free” dataset. Both datasets were split into
1000 images each for the training and test data. Table 1 lists the details of these datasets.
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Table 1. Details of the dataset used to evaluate the performance of phase unwrapping.

Dataset Noise (dB)
Number of Images

Train Test

Noisy [0, 5, 10, 20, 60] 1000 1000

Noise Free None 1000 1000

The following model was used to demonstrate the effectiveness of the proposed method:

• QGPU: the algorithm by Lei et al. proposed in [9], and the OpenCV implementation [31]
was used in this verification.

• SQD-LSTM: The CNN model proposed in [8] and shows better performance than PhaseNet
2.0 [7], a typical phase unwrapping model using deep learning, and UNet [20], an encoder–
decoder deep learning model. In this verification, we used publicly available implemen-
tations [32].

• SRAM (Ours): a proposed CNN model employing SRAM for skip connection.
• −CoordConv: An ablation model that removes CoordConv [26] from the proposed

SRAM. In other words, a model in which only GCNs are applied to skip connections.
• −GCN: An ablation model that removes GCN [25] from the proposed SRAM. In other

words, a model in which only CoordConv is applied to skip connections.

In this validation, we have employed early stopping based on the validation loss to
prevent overfitting the training data. The training loss curves for each model are shown in
Figure 5. Inset (a) shows that in the early stages of training, the SQD-LSTM with the fewest
parameters steadily reduces the loss. Conversely, inset (b) represents the second half of
training, showing that our proposed SRAM achieves the lowest loss.
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Figure 5. Graphs of training loss for each model trained on the noisy dataset. The inset graph (a) has
been enlarged to the range of epoch from 0 to 10, and training loss up to 6, the inset (b) has been
enlarged to the range of epoch from 40 to 70 and training loss up to 0.5, allowing for a detailed
examination of the data.

The NRMSE was used as a quantitative measure of phase unwrapping. The NRMSE
is defined by

NRMSE(%) =

√
E[(ϕ− ϕ̂)2]

ϕmax − ϕmin
× 100, (15)
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where ϕmax and ϕmin are the max value and min value of the true phase ϕ. Table 2 lists the
performance evaluation results for the trained models on the noisy dataset, calculating the
NRMSE for the noisy and noise-free test datasets. The average NRMSE values for each
model, trained five times with different initial weight parameters, are presented.

For the processing time, we used the noisy dataset, noise-free dataset, and dataset
generated with a noise level of 0 dB; inferred 1000 images for each dataset; and calculated
the average inference processing time per image.

Table 2. Performance evaluation (NRMSE) results using the noisy/noise free datasets.

Method
NRMSE Computational Time (ms)

Noise Free Noisy Noise Free Noisy 0 (dB)

QGPU [9] 0.00% 7.08% 12.33 14.68 243.12
SQD-LSTM [8] 2.19% 2.75% 42.26 42.60 42.22

SRAM (Ours) 1.65% 2.10% 44.86 45.05 44.81
−CoordConv 2.12% 2.33% 44.89 45.06 45.11
−GCN 1.87% 2.39% 42.18 42.37 42.03

The QGPU achieved perfect phase unwrapping for a noise-free dataset. However,
significant performance degradation was observed for the noisy dataset. The proposed
method improved the performance on both datasets by applying SRAM, thereby demon-
strating its robustness against noise. We also evaluated the performance of the proposed
method using a model that removed CoordConv and GCN as the ablation dies. The results
showed that the performance of both ablation models decreased, indicating that the combi-
nation of CoordConv and GCN enhanced their ability to account for pixel continuity and
global relationships. The computation time for the QGPU was 12∼14 ms for both the noisy
and noise-free datasets. In contrast, the CNN models required 42∼45 ms to process the
noisy and noise-free datasets. However, CNN models have a constant computation time
independent of the input data. In contrast, the QGPU was highly influenced by the noise
level of the inferred images, resulting in a computation time of 243.12 ms per image for
data with a noise level of 0 dB. The proposed method is based on the SQD-LSTM model
with the addition of SRAM, which slightly increases the computational cost of the added
network. The computation time of the proposed method is independent of the input data
and is robust to noise, indicating that it is a practical method.

Next, to comprehensively evaluate the robustness of each model against noise, we
created 200 noise-free original images and generated datasets by adding 0, 5, 10, 15, 20, and
25 dB of noise to them. This enabled the creation of validation datasets with varying noise
levels, derived from the same source images. Using the models trained on the noisy dataset,
we evaluated the performance on the generated datasets. The results are listed in Table 3,
and the resulting images of phase unwrapping for each model are presented in Figure 6,
while the NRMSE values for each noise level are displayed graphically in Figure 7.

Table 3. Evaluating responsiveness (NRMSE) to noise using models trained on noisy dataset.

Noise Level (dB)

0 5 10 15 20 25

QGPU [9] 25.56% 4.50% 1.81% 0.91% 0.54% 0.27%
SQD-LSTM [8] 3.96% 2.73% 2.66% 2.41% 2.70% 2.44%

SRAM (Ours) 2.32% 1.90% 1.92% 1.86% 1.96% 1.86%
−CoordConv 2.76% 2.35% 2.38% 2.22% 2.44% 2.23%
−GCN 3.18% 2.71% 2.73% 2.46% 2.75% 2.47%
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Figure 6. The resulting images of phase unwrapping for each model trained on the Noisy dataset.
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Figure 7. NRMSE at different noise levels using Noisy models (w/o QGPU). The results of QGPU are
not depicted in the graph because the range of RMSE values differs from other methods, but detailed
information is provided in Table 3.

QGPU exhibited significantly lower performance when dealing with data with strong
noise levels of 0 and 5 dB. Compared with other methods, including ablation models, the
proposed method achieves high-precision phase unwrapping across a wide range of noise
levels, demonstrating its high robustness against noise.

As a supplementary experiment, a model trained on a noise-free dataset was used to
verify the response to noise in a manner similar to the experiment described above. The
results are listed in Table 4 and Figures 8 and 9. Note that the QGPU results are the same as
those in Table 3 and Figures 6 and 7, which are the results of training on the Noisy dataset.

When CNN models are not trained on noisy images, their performance in the phase
unwrapping of data containing noise is lower. This aligns with intuitive expectations and
confirms the importance of training noisy data. The proposed method shows a higher
performance than SQD-LSTM, even though it is trained on a noise-free dataset. This is
believed to be a result of the GCN and CoordConv in the SRAM functioning effectively,
learning pixel continuity, and global spatial dependencies.

Table 4. Evaluating responsiveness (NRMSE) to noise using models trained on the noise-free dataset.

Noise Level (dB)

0 5 10 15 20 25

QGPU [9] 25.56% 4.50% 1.81% 0.91% 0.54% 0.27%
SQD-LSTM [8] 33.90% 28.81% 7.28% 2.70% 2.54% 2.46%

SRAM (Ours) 24.42% 9.81% 3.79% 2.02% 1.59% 1.38%
−CoordConv 25.74% 16.68% 5.61% 2.63% 1.83% 1.65%
−GCN 26.25% 13.72% 4.27% 2.55% 2.15% 1.84%



Photonics 2024, 11, 175 12 of 16

𝑄
𝐺

𝑃
𝑈

T
ru

e
 P

h
a

se
 𝛷

−
𝐶

𝑜
𝑜

𝑟𝑑
𝐶

𝑜
𝑛

𝑣
𝑆

𝑄
𝐷

‐𝐿
𝑆

𝑇
𝑀

𝑺
𝑹

𝑨
𝑴

 (𝑶
𝒖

𝒓
𝒔

)
−

𝐺
𝐶

𝑁
W

ra
p

p
d

 P
h

a
se

 Ψ

10 db0 db 5 db Noise Free

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

Figure 8. The resulting images of phase unwrapping for each model trained on the noise-free dataset.
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Figure 9. NRMSE at different noise levels using the noise-free models. The inset graph has been
enlarged to the range of noise levels from 10 to 25 dB and NRMSE up to 6%, allowing for a detailed
examination of the data.

5. Discussion

The proposed SRAM method is considered to have improved the phase-unwrapping
performance as a result of training the global pixel-to-pixel relationship. SRAM introduces
CoordConv to preserve the positional relationships between pixels. However, the insertion
layers where CoordConv is the most effective, such as the convolution layer closest to the
input layer and the encoding process, need to be carefully verified.

The SRAM uses a GCN internally. An intuitive understanding of the role of the
GCN is to perform convolution using kernels of the same size as the input feature maps
(k × k) for feature extraction considering global pixel relationships. However, instead
of handling kernels of the same size as the input feature maps (k × k), convolution is
performed using two kernels, (k × 1) and (1× k), and the results are added to produce
the feature maps. This reduces the number of computational steps compared with using
the (k× k) kernel, which is advantageous in terms of speed. The GCN was also applied
to a general image segmentation task in [25], and it was confirmed that the (k× k) kernel
exhibited performance degradation, possibly due to overlearning caused by the increase in
parameters. We expect to see a similar trend in the phase-unwrapping task as well.

The SRAM is a module designed to train global features, and can be easily applied to
encoder–decoder models. The effective handling of global features is crucial not only in the
phase-unwrapping task, but also in tasks such as segmentation, reconstruction, and image
generation. In fact, Ref. [25] demonstrated the use of a GCN to improve segmentation models,
and Ref. [26] reported performance enhancement in image generation models using CoordConv.
In this study, a dataset was generated using a simulator and subsequently validated. To
demonstrate the practical applicability of the proposed method, we aimed to further validate it
using measured data obtained from optical experiments in real-world scenarios. In addition,
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we have focused primarily on the validation of smooth phases, such as cell data. However, for
practical applications, it is crucial to investigate the effect on phases with discontinuities, such
as industrial products. In future work, we will verify whether the preservation of global pixel
relationships by SRAM can perform discontinuous phase unwrapping.

As shown by the validation in this study, deep learning can create models with high
robustness by learning a large amount of data. Preparing large amounts of real data is
time-consuming and expensive. Therefore, we aim to explore a more practical scheme
by utilizing domain adaptation [33], which involves pretraining using a large amount of
data from simulated domains and optimization of real-world domain data, taking into
consideration operational considerations.

6. Conclusions

Phase unwrapping is the task of estimating the true phase from the wrapped phase,
and it is used in various practical fields to measure physical quantities such as mutations
and surface topography. Various phase unwrapping methods have been proposed. Among
these, CNN-based methods have been extensively researched in recent years because of
their high robustness against noise and fast inference speeds.

However, conventional CNN-based methods discard local position information and
pixel relationships in the convolution process. Therefore, we designed a CNN-based feature
extraction module that considers phase continuity and global relationships. We propose a
new module called the SRAM, which combines a GCN that applies a convolution layer
with a kernel size equivalent to the feature map size and CoordConv, which strengthens
the consideration of positional relationships among pixels. SRAM applies to the skip
connection of encoder–decoder models and provides the decoder with global features that
consider pixel–positional relationships that are useful for phase unwrapping.

We evaluated the performance of the proposed method against QGPU, which is a
non-deep learning phase-unwrapping method, and SQD-LSTM, which is a CNN-based
method that performs better than PhaseNet 2.0, which is a classical CNN-based method.
The proposed method exhibited high performance on noisy and noise-free datasets and
high robustness against noise. The inference speed of the proposed method is comparable
to that of the SQD-LSTM, with a slight increase owing to the addition of SRAM. SRAM is
simple to implement and can be applied to encoder–decoder style architectures; thus, it has
a wide range of applications.
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