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Abstract: A physics-driven generative adversarial network (GAN) was utilized to demonstrate
a single-pixel hyperspectral imaging (HSI) experiment in the infrared spectrum, eliminating the
need for extensive dataset training in most data-driven deep neural networks. Within the GAN
framework, the physical process of single-pixel imaging (SPI) was integrated into the generator, and
its estimated one-dimensional (1D) bucket signals and the actual 1D bucket signals were employed as
constraints in the objective function to update the network’s parameters and optimize the generator
with the assistance of the discriminator. In comparison to single-pixel infrared HSI methods based
on compressive sensing and physics-driven convolution neural networks, our physics-driven GAN-
based single-pixel infrared HSI exhibits superior imaging performance. It requires fewer samples
and achieves higher image quality. We believe that our physics-driven network will drive practical
applications in computational imaging, including various SPI-based techniques.

Keywords: physics-driven generative adversarial network; single-pixel imaging; hyperspectral
imaging; deep learning

1. Introduction

Deep learning (DL) [1], originally known as machine learning [2], is a subfield of
artificial intelligence, with its origins in the 1950s and 1960s. It aims to mimic human neural
networks for intelligent tasks. Nowadays, after several decades of development, it finds
applications in healthcare [3,4], natural language processing [5], transportation [6], science
and technology [7], and more. Recently, the integration of DL with various optical imaging
techniques has opened up extensive prospects for the academic community, significantly
enhancing the imaging performance of both traditional and emerging imaging methods,
including microscopy [8], ghost imaging (GI) [9], and single-pixel imaging (SPI) [9–14],
among others. In the field of imaging, the primary DL neural networks are classified into
two categories based on their driving types: data-driven (trained) and physics-driven
(untrained) neural networks. The former were initially introduced into various imaging
fields and image processing, especially in GI or SPI [9,11], showing excellent performance.
However, these networks require a large amount of input and output data pairs to train,
which results in inherent issues related to generalization [15,16], interpretability, and
extended model training time. To address the issues present in data-driven neural networks,
the latter, which is based on them and the theory of deep image priors (DIP) [17], has been
introduced. The theory of DIP elucidates that a meticulously designed neural network with
randomly initialized weights possesses a prior capability biased toward natural images.
Currently, this approach has been extensively applied to a variety of optical imaging
scenarios [18–21]. It not only significantly alleviates the issue of generalization in physical
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imaging at a low computational cost but also further enhances interpretability, and can save
a substantial amount of data training time, showcasing promising potential in this field.

Hyperspectral imaging (HSI) is an advanced imaging technique that typically employs
multiple well-defined optical bands in a wide spectral range to capture objects, thereby
acquiring a set of two-dimensional (2D) images at different wavelengths [22], providing a
richer and more extensive set of spectral information compared to RGB and multispectral
imaging. Over the last twenty years, HSI has transitioned from its initial use in remote
sensing via satellites and aerial platforms to a wide range of applications, encompassing
mineral exploration [23], medical diagnostics [24], environmental monitoring [25], and
more. However, the need for high-resolution images in HSI to capture fine scene details
inevitably leads to substantial data acquisition, increased sampling time (rate), and higher
processing and storage costs. The introduction and fusion of compressed sensing (CS)
algorithms and SPI provide one of the promising alternative solutions for HSI [26–33],
effectively addressing the challenges associated with HSI by utilizing undersampling and
single-pixel detection. An illustrative study demonstrates the effectiveness of a CS-based
single-pixel HSI method for detecting the chemical composition of targets in the near-
infrared spectrum. It highlights the method’s potential for efficient and cost-effective
chemical composition detection through high-compression spectral analysis [34]. The other
approach is to introduce deep neural networks on the foundation of CS-SPI and other
techniques [26–28,31–33,35–40]. A physics-driven convolutional neural network (CNN)
was integrated with a single-pixel HSI model to achieve high-quality image reconstruction
across a wide range of visible wavelengths at an ultralow sampling rate [26], inspired
by the first GI scheme using a physics-driven deep CNN constraint (e.g., GIDC) [41].
Then, a residual degradation learning unfolding network was provided to be applied in
compressive spectral imaging [42], and a blind unsupervised neural network was designed
to deal with hyperspectral and RGB images, all achieving high-level HSI reconstruction [43].
Furthermore, the integration of computational spectral imaging with physical priors was
employed to address the spectral imaging reconstruction challenges [44]. Until now, among
various DL networks, only CNNs have been employed in the study of single-pixel HSI,
while other potentially more powerful networks, particularly those based on physics-driven
principles, remain unexplored.

In this paper, a physics-driven approach based on GAN was proposed to demonstrate
a single-pixel infrared HSI experiment by effectively integrating the physical process of SPI
and network units of GAN, resulting in the elimination of the need for extensive dataset
training in the data-driven deep neural networks. In our study, a comparison was made
between our method and the CS algorithm, as well as a physics-driven CNN network, i.e.,
GIDC, for single-pixel HSI. This comparison was conducted through numerical simulations
and experiments, revealing that better imaging quality of the recovered infrared hyperspe-
tral images can be achieved at lower sampling rates (SR) using our approach. Validation
was further provided through measurements of peak signal-to-noise ratio (PSNR) and a
comparison of the details in reconstructed images under the same conditions.

2. Principle and Method
2.1. Experimental Setup

Our single-pixel HSI experimental apparatus is depicted in Figure 1, which is similar to
the typical SPI scheme but with the use of a spectrometer instead of a single-pixel detector.
An optical beam from a near-infrared lamp was projected onto an object O(u, v, λ). The
reflected light from the object was imaged onto a digital micromirror device (DMD) via an
imaging lens. We employed the Hadamard matrix Hm(u, v) as the measurement matrix to
be loaded onto the DMD (see Figure 1a), where m = 1, 2, . . . , M, M denotes the number of
modulation pattens (i.e., the number of measurements). After modulation, one reflection
beam of the DMD was converged onto a fiber spectrometer and dispersed into several
spectral channels. The modulated signals were transformed into one-dimensional (1D)
bucket signals of the same length (see Figure 1b) [45], denoted as Im = Hm(u, v)O(u, v, λ).
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To mitigate the impact of environmental noise, we used a differential GI (DGI) algorithm
for image reconstruction, utilizing the following formula [46].

ODGI = DGI(H, I) = ⟨Im Hm⟩ −
⟨Im⟩
⟨Sm⟩

⟨Sm Hm⟩, (1)

where Sm = ∑(u,v) Hm(u, v) denotes the pixel summation performed on the Hadamard pat-
tern Hm, ⟨Im⟩ = 1

m ∑m
i=1 Ii denotes the ensemble average of the signal Im. ODGI represents

the recovered image of N × N pixels. Here, the SR was defined as SR = m/N2. The details
of the DGI-based single-pixel hyperspectral imaging can be found in Ref. [26], on the basis
of which we will introduce our physics-driven GAN framework for its reconstruction in
the following.

Figure 1. Schematic diagram of the experimental setup. (a) Modulation pattern Hm. (b) 1D bucket
signals across different spectral channels.

2.2. Image Reconstruction

After data collection, we would use a physics-driven GAN framework to reconstruct
the images.

In the SPI field, data-driven DL algorithms have proven effective in mitigating imag-
ing challenges arising from ultra-low SRs, which is a common issue for conventional
CS methods. Regrettably, obtaining sufficient training data is still a challenge in many
tasks, and the limited model generalization remains a critical issue in real-world imag-
ing [15,16]. The introduction of physics-driven CNN methods provides new solutions
for the model generalization issue, relying solely on the use of mean squared error (MSE)
objective function.

Inspired by the above physics-driven mechanism, we proposed a physics-driven
GAN approach for single-pixel infrared HSI reconstruction, where the physical process
was integrated with the generator. The method optimized the parameters by using both
the MSE objective function and the adversarial objective function, thereby enabling the
recovery of high-quality images without the need for dataset training. This physics-driven
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GAN-based image reconstruction method could be formulated as a min–max optimization
problem (see Refs. [47,48]).

min
Gθ

max
Dθ

V(Dθ , Gθ) =EIm∼p(Im)[log Dθ(Im)]

+ Ez∼p(z)[log(1 − Dθ(HmGθ(z)))].
(2)

Here, Er∼p(r) represents the mathematical expectation of r (r = Im, z), z stands for the
speckle map as the random input, V(∗) is the value function of the GAN, Gθ indicates
the generator model for generating the estimated 1D bucket signals HmGθ(z), and Dθ

denotes the discriminator model for distinguishing between the estimated 1D bucket signal
HmGθ(z) and the actual 1D bucket signal Im. The discriminator needed to maximize its
discriminative ability between HmGθ(z) (fake) and Im (real). The primary role of the GAN
used here was to adjust the parameters of Gθ to make the estimated signal Ĩm = HmGθ(z)
much closer to the real measured signal Im. When Ĩm and Im are very close to each other,
Gθ(z) at this point is the final output reconstructed image (Figure 2).

As mentioned above, we would optimize the parameters of Gθ through the objective
function, which consisted of parts from both the MSE objective function and the adversarial
objective function. The MSE objective function was defined as follows [48,49]:

IMSE = ∥HmGθ(z)− Im∥2. (3)

Figure 2. The image reconstruction process by using the proposed physics-guided GAN method.

In principle, there are infinitely many Gθ(z) that can satisfy the objective function.
Hence, it is necessary to add prior information about the image to select a feasible solution
from all options. However, existing work empirically demonstrated that an appropriately
designed neural network with randomly initialized weights possesses a prior bias towards
natural images [18–21]. Therefore, we also employed the randomly initialized prior in our
generator network.

Next, we would use the objective function ladv to optimize the network parameters.
The purpose of the adversarial constraint was to make the output much closer to the real
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data. Since this objective function was related to the discriminator network, we minimized
the negative log-likelihood of the discriminator, thereby increasing the probability that the
generator’s output values HmGθ(z) become close to Im. The adversarial objective function
ladv could be written as [49]

ladvend = − log Dθ(HmGθ(z)), (4)

where Gθ(z) is the output of the generator and Dθ(HmGθ(z)) signifies the probability that
the estimated 1D bucket signal HmGθ(z) and the actual 1D bucket signal Im were very close
to each other. The final objective function was

l = lMSE + ladv. (5)

The generator network parameters could be optimized through the following formula:

G∗
θ = arg min

(
∥HmGθ(z)− Im∥2 − log Dθ(HmGθ(z))

)
, (6)

where θ in G∗
θ represents the optimal parameters for the generator. By minimizing the

objective function in Equation (6), the optimal parameters for the generator were obtained,
making HmG∗

θ (z) much closer to Im. At this point, the reconstruction G∗
θ (z) was at its best.

It is worth noting that SPI-based GAN [48] also employs GAN but reconstructs images
through the following formula:

G∗
θ = arg min

(
1

WH

W

∑
i=1

H

∑
j=1

(Os − Gθ(z)i,j)
2 − log Dθ(Gθ(z)i,j)

)
, (7)

where Ok is the ground truth image in the dataset. The SPI-based GAN learns the mapping
from low-quality images to high-quality images in the dataset s = {(ODGI

s , Os), s = 1, 2, . . . , S,
to optimize the parameters of the generator Gθ . Conversely, our proposed method up-
dates the parameters in the neural network through the objective function constrained by
HmGθ(z) and Im, which can be seen as the combination between the GI physical model Hm
and Gθ . In contrast, by using our approach, the reconstructed image O∗

Ours = Gθ(ODGI)
was obtained without any dataset training, where O∗

Ours denoted the reconstructed image.
It is also noteworthy that the input of our proposed neural network can be a rough image
Gθ(ODGI) restored by any traditional GI algorithm, or even a random noise image Gθ(z).
Hereinafter, we used Gθ(z) for convenience.

The principle process of the proposed method is described as follows (see Figure 2).
Step 1: the measured 1D bucket signal Im is input into the discriminator, which ap-
plies a cross-entropy objective function for solving the maximum and minimum problem
(Equation (2)). The parameters of the discriminator Dθ are updated by using the backprop-
agation algorithm, enhancing its ability to distinguish between real and fake data. Step
2: a random noise image z is input into the untrained generator to produce the image
Gθ(z), which is then converted into a 1D bucket signal I by using the modulation patterns
H, i.e., I = HGθ(z). The objective function of the generator (Equation (6)) is computed
and used to guide the update of the generator’s parameters Gθ(z), also by employing the
backpropagation algorithm. We need to execute Steps 1 and 2 in turn. By this means, the
iterative process of the generative adversarial network can be regarded as a dynamic game
process, where the generator and discriminator improve their performance through mutual
antagonism and cooperation. Alternate iterations until the generator and discriminator
reach an ideal performance level or the number of iterations reaches the set value.

The network framework of the proposed method is shown in Figure 3, where the
generator consists of two processes: up-sampling and down-sampling. In down-sampling
process, there are convolution blocks (5 × 5 convolution (stride 1) + batch normalization
(BN) + leaky ReLU) and 2 × 2 max pooling operations (stride 2). The up-sampling involves
deconvolution blocks (5× 5 deconvolution (stride 2) + BN + leaky ReLU). The discriminator
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comprises four fully connected layers, each of 4090 × 1, ending with a sigmoid function.
The number N in the generator network is set to 64. Both networks use a learning rate
(LR) of 0.001 and employ leaky ReLU as the activation function. Here, an Adam optimizer
is used to optimize the network parameters. In the experiments, we utilized an NVIDIA
RTX2060 graphics card with a memory of 16 GB and an Intel i7-10875H processor.

Figure 3. The network structures of the proposed method, consisting of (a) the generator network
and (b) the discriminator network.

3. Results and Discussion

In order to verify the effectiveness of our method, we conducted a comparison with
the CS and GIDC algorithms through simulations and experiments. We employed the
peak signal-to-noise ratio (PSNR) (a commonly used metric) and structural similarity
(SSIM) index to quantitatively analyze the reconstruction quality. We then compared the
differences between the reconstructed image and ground truth image. The formula for
calculating PSNR is

PSNR = 10 · log10(
MAX2

K
MSE

), (8)

where MAXK is the maximum value of the image, and MSE is expressed by

MSE =
1

xy

x

∑
a=1

y

∑
b=1

[J(a, b)− K(a, b)]2. (9)

Here, J(a, b) and K(a, b) represent the ground truth image and the reconstructed image,
respectively, while a and b denote the row and column coordinates of images. The SSIM is
a criterion for evaluating the similarity between two images and is commonly used in the
field of image processing to assess image quality. It is based on the computation of three
terms that compare the luminance, contrast, and structure of the test and reference images.
The formula for the SSIM can be written as

SSIM(J, K) =
(2µJµK + c1)(2σJK + c2)

(µ2
J + µ2

K + c1)(σ
2
J + σ2

K + c2)
, (10)
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where J and K are the two images to be compared, µJ and µK are their average luminances,
σJ and σK are their standard deviations, σJK is the covariance between both images, and c1
and c2 are small constants for avoiding a zero denominator. The value of the SSIM ranges
from −1 to 1, where 1 indicates perfect similarity between two images.

3.1. Simulations

Since each wavelength channel in the single-pixel HSI is discrete, we first performed
the numerical simulation for a single spectral channel by using our physics-based GAN.
Here, a building image of 64 × 64 pixels (see Figure 4(a1)) was used as the target to be
imaged, which was considered as the image to be imaged onto the DMD. We applied
M = 614 modulation patterns to generate the 1D bucket signal (which was of 1 × M in
length), leading to the SR = 614/4096 ≈ 15%. The LR was set to 0.001. According to our
proposed scheme, the physical process was simulated as follows. The Hadamard patterns
were rearranged by following the Harr wavelet transform ranking method [50]. By this
means, each modulated image was summed pixel by pixel to obtain the 1D bucket signal
Im (Figure 1b), which was fed into the discriminator, while the random noise map was
treated as the input of the generator. By following the steps in the principle section and
optimizing the parameters using the objective function (see Equations (2) and (7)), the
optimal generator G∗

θ and reconstructed image Gθ(z) were obtained. We set the number of
iterations to 10, 50, 100, and 150 and obtained their corresponding reconstructed images,
as shown in Figure 4(b1). Evidently, the image quality improves with the increase in the
number of iterations, proven by PSNRs and SSIMs. When the number of iterations is less
than 50, the quality improvement is obvious, and, when the number of iterations is greater
than 150, the quality improvement tends to be saturated as the network tends to converge
at this point. This is explained through Figure 4(c1,d1). It can be observed that the loss
functions of the generator and discriminator tend to stabilize around 150, indicating that
the network has reached convergence.

To compare the performance of our network with other algorithms, another simulation
was performed. Another boat image of 64 × 64 pixels (see Figure 4(a2)) was used as the
target, and its corresponding noisy image was shown in Figure 4(b2). The CS-based SPI
(with well-known total variation augmented Lagrangian alternating direction (TVAL3) [51]
algorithm) and SPI-based CNN (with commonly used “GI using deep neural network
constraint” (GIDC) [26,41] algorithm) were utilized for reconstruction under the same
conditions. The SR varied from 5% to 30%, and the corresponding results for the three
methods are shown in Figure 4(c2–e2). The image quality improved as the SR increased.
For each given SR, our method performed the best, followed by GIDC and TAVL3. Based
on the visual analysis of Figure 4(c2–e2), it becomes apparent that the utilization of TVAL3
and GIDC resulted in a notable decline in image quality at an SR of 10%. On the contrary,
even when the SR is reduced to 5%, images restored using our proposed method still
remain distinguishable for the target.

In order to perform a quantitative analysis of the image quality, the PSNRs and SSIMs
of images reconstructed by the above three methods at various SRs were also calculated and
provided in Figure 4(c2–e2). At different given SRs, the PSNR and SSIM of our proposed
method surpass those of GIDC and TVAL3. As the SR decreased, the PSNRs of the images
recovered by all three methods showed a decreasing trend, which was consistent with the
trend indicated in the images. At an SR of 5%, the PSNR and SSIM of our method reached
17.21 dB and 0.39, respectively, while the PSNR and SSIM of the TVAL3 and GIDC methods
were only (15.74 dB, 0.18) and (14.48 dB, 0.36), respectively, almost equivalent to the images
reconstructed by GIDC and TVAL3 at an SR of 10%. Based on the above analysis, it was
evident that our method was proficient at reconstructing target images even at extremely
low SRs, and it consistently yielded significantly better image quality compared with the
other two methods. This exceptional performance underscored the promising potential of
our proposed method for practical imaging scenarios.
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Figure 4. Simulation test of the proposed method. (a1,a2) represent the ground truth images.
(b1) shows the changes in the reconstruction quality of our method as the number of iterations
increased. (b2) stands for the noisy image. (c1,d1) represent the changes in the generator and
discriminator loss functions with the number of iterations. (c2–e2) represent the images recovered by
the TVAL3 method, GIDC, and our method as the sampling rate (SR) increased, respectively.

3.2. Experiments

In the previous subsection, we demonstrated the outstanding performance of our
physics-driven GAN method in SPI through a comparative analysis with two other image
reconstruction techniques in numerical simulations. In this subsection, we continue to verify
the performance of our physics-driven GAN in infrared single-pixel HSI experiments. The
experimental setup is shown in Figure 1, where we used a toy train model as the imaging
target. The hardware configuration is shown in Table 1. An infrared beam emitted from a
lamp with a wavelength range of 880 nm to 1600 nm illuminated the toy train, which was
then imaged onto the DMD (ViALUXV-7001) through an imaging lens ( f = 60 cm) with a
focal length of 60 mm. Then, after modulation, one of the beams reflected from the DMD
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passed through a collecting lens onto an infrared spectrometer (FUXIAN, NIR17+Px), and
the recorded signal was dispersed into 512 spectral channels with a step of ∼ 2 nm. All the
bucket signals, denoted as Im, extracted from the spectrum were stored.

Table 1. Hardware configuration used in the experiment.

Hardware

DMD (ViALUXV-2517001)

Imaging lens (f = 60 cm)

Spectrometer (FUXIAN, NIR17+Px)

In our physics-driven GAN, a random noise image z was used as the input for the
generator, the result Gθ(z) of which was multiplied by modulation patterns Hm to produce
Ĩm. Simultaneously, the 1D bucket signals Im of 512 distinct wavelengths were sequen-
tially fed into the discriminator network. The SR was set as 10% and 20%. Upon the
network’s completion, a total of 512 near-infrared hyperspectral images were sequentially
reconstructed. For comparative purposes, we utilized the TVAL3 and GIDC methods to
reconstruct an equivalent set of 512 near-infrared hyperspectral images under identical
conditions. To ensure a concise presentation, we deliberately selected only 14 images for
each method, spaced at 50 nm intervals. These selected images are showcased in Figure 5
to underscore the key findings. As the SR increases, the quality of the images improves.
For each given SR, our method outperforms the others, while, at 20% SR (Figure 5a), the
GIDC method successfully reconstructed the train model image, but there were clarity
issues in the wavelength range of 900 nm to 1000 nm and 1200 nm to 1400 nm. Although
the GIDC method reconstructed clearer train model images, it still struggled with clarity
and contrast in the 1000 nm to 1050 nm and 1300 nm to 1350 nm ranges. In contrast, our
proposed method consistently produced images with significantly enhanced contrast and
clarity across all wavelength ranges. At 10% SR (Figure 5b), the images reconstructed by
the TVAL3 and GIDC methods were indistinguishable and had contrast issues, whereas our
method could reconstruct images with better contrast and clarity. Consequently, when com-
pared to the other two methods, our proposed approach demonstrated superior imaging
performance at low SRs in the single-pixel infrared HSI scheme.

Figure 5. Results of reconstructing the physical train model using different methods. (a,b) represent
the reconstruction results obtained using TVAL3, GIDC, and our method at SR = 20% and SR = 10%,
respectively. From left to right, the wavelengths of light range from 880 nm to 1600 nm, with a step of
50 nm.
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To further assess the performance of our proposed single-pixel infrared HSI method,
we conducted a quantitative analysis. We obtained reconstructed images at various wave-
lengths by using three different methods. As shown in Figure 6a, once the light intensity
had been normalized, pixel ① corresponded to the light transmission portion of the recon-
structed object image, with an intensity of 1, while pixel ② corresponded to the non-light
transmission portion of the background image, with an intensity of 0. To evaluate the recon-
structed image’s quality, we compared the light intensity differences at the specific pixels
for each method with actual light intensity. A closer match between the pixel values of the
reconstructed image and actual values indicated a more accurate imaging performance.
By this means, it allowed us to quantitatively evaluate and compare different methods in
terms of reconstructed image quality, providing a more precise assessment of our proposed
method’s performance in single-pixel infrared HSI applications.

Figure 6. Quantitative analysis results of single-pixel infrared HSI. (a) Two specific pixel locations
were selected on the image, separately representing the reconstructed object part and the background
part. (b,c) represent the results obtained at pixel 1⃝ and 2⃝ by three methods at different wavelengths.
The black squares, red circles, and blue triangles stand for the TVAL3 method, GIDC method, and the
proposed method, respectively.

The specific comparison results are presented in Figure 6b (corresponding to pixel
①) and Figure 6c (corresponding to pixel ②). The black curve, red curve, and blue curve
represent the performance of the reconstructed images by the TVAL3 method, GIDC
method, and the method we proposed, respectively, under the condition of an SR = 20%.
It is clearly observed that, at pixel ①, the light intensity values obtained by the TVAL3
method are far from the actual light intensity x = 1 across all wavelengths, while the GIDC
method performs better than TVAL3, but not as well as the method we proposed. This can
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be observed from the blue curve, which is significantly higher than the other two curves
and approaching x = 1. Similarly, at pixel ②, the light intensity values measured by the
GIDC method are more accurate than those by TVAL3, but the light intensity measured by
our proposed method is closer to the actual value x = 0 at different wavelengths. It is worth
mentioning that our method does not show a significant change in intensity at different
wavelengths for the selected pixel location ① (see Figure 6b) because the light intensity at
this pixel location is within the object part, where the light intensity is relatively strong
and uniform. Moreover, this subfigure is mainly to show that the reconstruction of our
method is superior compared to the TVAL3 and GIDC methods. When at the pixel position
② in the background part (see Figure 6c), the reconstructed grayscale values of our method
show significant changes at different wavelengths. Therefore, the train object we selected in
our experiments has different spectral absorbance in each respective spectral regime. Here,
as a demonstration of the principle, and without loss of generality, the used train object
has proven that our method is effective for the general complex object. Therefore, these
results once again corroborate the significant advantage of the method we proposed in
object reconstruction, showcasing its robust reconstructive performance. The data provided
above lend strong support and validation to the powerful performance of the method we
proposed in the domain of single-pixel hyperspectral imaging.

To further compare the stability and efficiency of our proposed method and the GIDC
method, both methods underwent 450 iterations at a 20% SR. Eight images from each
method were selected as shown in the following Figure 7. In a large number of experiments,
the images reconstructed by GIDC (Figure 7a) from iterations 10 to 50 were indistinguish-
able, and the quality of the reconstructed images deteriorated after 250 iterations. In
contrast, our method (Figure 7b) produced reconstructed images with significantly im-
proved contrast and clarity after just 30 iterations, and the quality of the reconstructed
images did not decline with an increase in thea number of iterations. Compared to GIDC,
our method demonstrates more stable and efficient image quality in the single-pixel infrared
HSI scheme.

Figure 7. Comparisons of the efficiency and stability of different methods. (a,b) represent the results
of the reconstructions at different iteration counts by our proposed method and the GIDC method,
respectively.

In the preceding paragrabphs, we compared the experimental results of three differ-
ent methods, demonstrating convincingly that our proposed physics-driven GAN could
achieve better image quality under the same conditions. The configuration of network
parameters also plays a crucial role in the effectiveness of image recovery. Therefore, we fur-
ther demonstrated this point by investigating the network parameters. Here, we set SR to
20% and the number of network iterations as 120, spaced at 20 intervals. In our network, the
LR is an important parameter. It could be observed from Figure 8, with the increase in the
number of iterations, that the image quality of the reconstructions under different LRs using
our proposed method improves. It can be observed that images reconstructed with an LR of
0.00001 remain blurry within 120 iterations (Figure 8a), while those reconstructed with an
LR of 0.0001 show improved image quality after 40 iterations(Figure 8b), although they are
still blurry at 20 iterations. In contrast, images reconstructed with an LR of 0.001 reach high
quality just after 20 iterations(Figure 8c). However, when the LR is increased to 0.01, the
reconstructed images again become blurry within 120 iterations(Figure 8d). This is because
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setting the LR at 0.0001 is too low, which leads to a slower convergence of the generator’s
loss function, and thus requires more iterations. At an LR of 0.0001, the convergence
speed increased, requiring fewer iterations. When the LR was 0.001, the convergence was
the fastest, requiring the least number of iterations. However, when the LR reaches 0.01,
images cannot be clearly reconstructed. The optimization process constantly overshoots
the minimum points, making it difficult for the model to find the optimal point of the loss
function. This leads to an inability to clearly reconstruct images. Therefore, appropriate
setting of the LR is crucial not only for image quality but also for reducing the number of
iterations, accelerating network convergence, and improving imaging speed.

Figure 8. Comparisons of the impact of LRs on the results of image reconstruction. (a–d) represent
the resulting images reconstructed by our proposed method at different LRs as the number of
iterations increases.

A comparison of computation time (which characterizes the computational complexity)
using different methods at various sampling rates is provided in Table 2. We can see from
the results that the CS method runs the fastest, followed by the GIDC method, and our
proposed method is the slowest. Since both the GIDC approach and our method involve
iterative processes, they require more time than the CS method. Meanwhile, our method
requires alternating iterations and updates for the generator and discriminator, leading to a
longer computation time than the GIDC method. Our future work will focus on optimizing
the network structure to reduce computation time.

Table 2. Comparison of image reconstruction time using different methods at different SRs.

SR = 10% SR = 20%

Ours 51 s 62 s

GIDC 28 s 36 s

TVAL3 6 s 9 s

4. Conclusions

We proposed a physics-driven GAN framework, which was successfully applied
to single-pixel infrared HSI. Over 500 spectral images of the imaging target have been
achieved at a 20% SR. The fusion of physical processes and the GAN primarily exhibits
two advantages. First, through 1D bucket signals, we are able to impose constraints
on the MSE objective function and adversarial objective function of the GAN, thereby
updating the network parameters and eliminating the dependency on datasets for training,
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which significantly enhances the generalization capability of the network. Second, the
constraints of multi-objective functions contribute to a notable improvement in the quality
of the reconstructed images. Our numerical simulations and single-pixel infrared HSI
experiments have provided strong evidence for the excellent performance of the physics-
driven GAN in achieving high-quality image reconstruction at low SRs. This forms a robust
foundation for its application in areas such as infrared spectral detection. Although such a
configuration might incur some time consumption, it enables a broader spectral detection
range and lower costs. Although our proposed method significantly reduces the time
required for data-driven network training, it still requires more computation time compared
to commonly used CS algorithms. The feasible approaches to enhance the computational
efficiency of the proposed scheme include designing a more optimal neural network
architecture, adopting improved initialization strategies, and utilizing a more advanced
computing platform. Another practical challenge is that the image reconstruction method
of combining untrained neural networks with specific imaging physical processes requires
more accurate imaging models, posing an extremely challenging task in computational
spectral imaging fields.
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