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Abstract: Aiming at the problem that traditional design methods make it difficult to control the
polarization aberration distribution of optical systems quickly and accurately, this study proposes
an automatic optimization design method for polarization optical systems based on deep learning.
The unsupervised training model based on ray tracing and polarized ray tracing was constructed by
learning the reference lens structural feature data from the optical lens library, and the generalization
ability of the deep neural network model was improved to achieve the automatic optimization design
of the polarized optical system. The design results show that the optical system structure optimized
by the network model is close to the reference lens in the full field of view and the full spectrum and
that the optical system structure can be designed for different focal length requirements. The success
rate of 1 million groups of initial structures designed is better than 96.403%, and the polarization
effect of the optical system is effectively controlled. The proposed deep learning approach to optical
design provides a new solution for future complex optical systems and also provides an effective
way to improve the design accuracy of special optical systems such as polarization optical systems.

Keywords: deep learning; polarization aberration; automatic optimization; ray tracing

1. Introduction

The design of an optical system can be understood as a process of finding the optimal
solution of the parameters. There is a complex nonlinear relationship between optical
aberration and structural parameters of an optical system [1]. Traditional optical design
usually selects an initial structure similar to the expected structure based on experience or
from a publicly available lens library. Then, the optical structure is optimized based on local
optimization algorithms such as damped least squares [2,3], an adaptive method [4] and
global optimization algorithms such as simulated annealing [5], genetic algorithm [3–6],
escape algorithm [7], particle swarm optimization algorithm [8].

In recent years, artificial intelligence algorithms have developed rapidly. Compared
with traditional algorithms, artificial intelligence algorithms have the advantages of high
efficiency and accuracy in solving nonlinear problems, which is expected to solve nonlinear
optimization problems of optical systems and improve the efficiency of the initial structural
design of optical systems. Therefore, the optimization design method of optical systems
based on deep learning has gradually become a research hot spot for scholars around
the world. In 2017, Yang Tong of Tsinghua University proposed a point-by-point design
method that can automatically obtain high-performance freeform systems [9]; after that,
Yang Tong successfully applied the deep learning algorithm to the design of a reflective
system and achieved the automatic generation of the initial structure of a freeform off-axis
three-mirror imaging system [10]. In 2019, Caleb Gannon of the University of Arizona used
machine learning methods to learn the relationship between freeform surface shape and
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design parameters and performance to improve the design efficiency of freeform lighting
systems [11]. In the same year, Geoffroi Côté of Laval University proposed a method
based on deep learning to generate the initial structures of optical systems, which can help
designers automatically generate the initial structures of refractive optical systems at the
required aperture and field of view [12]. In 2022, Geoffroi Côté used deep learning methods
to automatically generate different types of microscopy objectives, achieving automatic
optimization of the generation of specific systems, and the method enabled the generation
of multiple different microscopy objective structures for a set of specifications [13].

In addition, in recent years, emerging polarization detection techniques have become
a research hot spot. The polarization detection accuracy requirements are increasingly high.
There is an urgent need to control polarization aberrations effectively in the optical design
phase. In 2018, the Indian Institute of Astrophysics (IIA) used a 30 m telescope to develop
an analytical model to estimate polarization effects such as instrumental polarization,
crosstalk, and depolarization, and the variation in Mueller matrix elements with different
coatings, as well as polarized line-of-sight tracking of different input polarizations of a
point source (on-axis) using the optical design software Zemax 19.4 [14]. In 2021, Yilan
Zhang et al. from Changchun University of Science and Technology analyzed the effect of
polarization aberration on detection accuracy and imaging quality in spatial optical systems
with free-form surfaces based on Jones representation. In 2022, Yilan Zhang continued to
carry out in-depth research based on this study and researched and analyzed polarization
aberration of non-rotationally symmetric free-form surfaces, and verified that polarization
aberration of non-rotationally symmetric free-form surface systems is directly related to
the type of face of the free-form surface [15].

In summary, the optical design of free-form surfaces for deep learning has been
preliminarily achieved, and the off-axis triple inverse structures can be designed without
relying on the assistance of optical designers. However, traditional design methods usually
adopt the macro programming control optical design software to optimize and control
the polarization aberration, and this design method focuses only on the optimization of
polarization aberration. It is difficult to take into account the imaging quality of the optical
system. It is also difficult to control the polarization aberration distribution of an optical
system efficiently and accurately. Therefore, an automatic optimization design method is
urgently needed to optimize the design of optical systems and better control the influence
of polarization aberration.

In this study, an optimization design method for a polarization optical system based
on deep learning is proposed. Based on deep learning theory, an automatic optimization
design method for a polarization optical system is proposed, and a neural network model
is constructed. The structure of the optical system is automatically learned by constantly
optimizing network parameters, and the polarization aberration is automatically optimized
by using differentiable polarized light tracing processes. The polarization optical system
meeting the requirements is designed, and the possibility of using deep learning to design
the polarization optical system is verified. The purpose of this study is to provide the theo-
retical and technical basis for the automatic design and polarization aberration correction
of high-precision complex optical systems.

2. The Basic Principle
2.1. Design Process of Refractive Optical System Based on Deep Learning

The design process of a refractive optical system based on deep learning is divided
into two parts: the deep learning process and the automatic design process. In the process
of deep learning, a semi-supervised learning method combining supervised learning and
unsupervised learning is adopted [16], and large amounts of lens data are learned using a
deep neural network (DNN). In the automated design process, normalized parameters such
as entrance pupil diameter (EPD), field of view (FOV), focal length, and thickness range are
input, and the trained network is used to design the polarization optics system structure.
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In the process of deep learning, the samples for supervised learning are selected from a
library of lenses as reference lenses, and parameters such as EPD, FOV, and thickness range
are processed into normalized data; EPD and FOV parameters follow a specific combination
of reference lenses. The minimum thickness and thickness range are randomly generated
within the specified range. The normalized input parameters of the supervised training
were output by the neural network model, and then the normalized optical structure
parameters and the reference lens structure parameters were calculated as the supervised
loss. In the process of deep learning, unsupervised learning sample data are generated from
the selected normalized reference lens parameters. The maximum and minimum values of
EPD, FOV, and thickness are determined according to the reference lens range, and then
these unsupervised learning sample data are distributed equally among the determined
range. The normalized parameters are input into the deep neural network, and the output
optical structure parameters are obtained after training. The output polarization optical
structure parameters are used as the input of ray tracing and polarization ray tracing, and
the spot radius is taken as the evaluation standard to calculate the unsupervised loss. The
network parameters are updated by the decreasing value of the loss function, and finally,
the training of the network model is completed.

The automatic design process outputs the polarization optical structure parameters
from the input parameters directly. The designer inputs normalized design parameters
into the trained network model, and the trained network quickly outputs optical system
structural parameters that meet the designer’s requirements for optical structure and image
quality, thus completing the optical system design. The output polarization optical system
parameters include curvature, thickness, and glass parameters. The specific process is
shown in Figure 1.
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Figure 1. The learning process and design process of deep learning to design polarization opti-
cal systems.

2.2. Network Model Selection

Different network models are based on different network structures of the original
perceptron, and their application scenarios are different according to different structures.
Table 1 below summarizes and compares them.

Different network models have different application characteristics. DNN network is
more suitable for solving complex nonlinear relations, CNN is suitable for image processing,
and RNN is suitable for language conversion in this study. Through analysis, it is known
that optical design mainly solves the relationship between optical system parameters
and structural parameters. It is more suitable to use a DNN network for the automatic
optimization design of polarization optical systems.
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Table 1. Network structure and application of different networks.

Network Network Structure Apply

DNN Input layer, hidden layer, active
layer, output layer

Complex nonlinear fitting, complex
classification problems, simple

image recognition

CNN Convolution layer, pooling layer,
fully connected layer

Image recognition, image
classification, image segmentation,

speech recognition

RNN Input layer, hidden layer, output
layer, hidden state

Speech recognition, machine
translation, text and music

generation

It should be noted that this study takes an optical lens composed of two pieces of glass
as an example to generate sample data and train and learn. The aperture EPD, field of
view HFOV, minimum thickness tmin,1 · · · tmin,j, and thickness range trange,1 · · · trange,j are
input. The radius of curvature of the system r1 · · · rj−1, the refractive index of the glass,
Abbe number (gn,1, gv,1, · · · gn,k, gv,k), and thickness traw,1 · · · traw,j are outputs.

2.3. Verification of Ray Tracing Algorithm

In unsupervised training, it is necessary to design the corresponding loss function
based on the ray tracing algorithm. In this study, the ray tracing algorithm is written
in Python. The corresponding image intercept, image aperture angle, and image height
of the optical system are output. These data are compared and verified with the actual
calculated image intercept, image aperture angle, and image height of the optical system to
demonstrate the correctness of the algorithm. The specific comparison is in the Table 2.

Table 2. Error comparison between the actual optical path calculation and the algorithm written in
this study.

Contrast Parameter
Optical Path

Calculation of Actual
Optical System

This Study Compiled
the Algorithm

Calculation
Error Value

Paraxial ray image
distance 97.009 97.0092 0.0002

Paraxial image square
aperture Angle 0.100104 0.1002 0.000096

Second paraxial ray
ideal image height

distance
5.22816 5.2282 0.0004

Off-axis point
meridian plane main

ray distance
0.8052 0.8052 0

Off-axis point image
square aperture

Angle
−0.052 −0.0523 0.0003

Through comparison, it is found that the error between the actual calculation and
the programming algorithm remains at four decimal places after comparison, and the
calculation error between the two is very small, which has little impact on deep learning.
This indicates that the ray tracing algorithm written in this study is correct and can be used
for further loss function design and subsequent unsupervised training.
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2.4. Loss Function Based on Polarized Ray Tracing

To represent the change in the polarization state after the polarized light incident
through the polarization element, the Muller matrix is used to represent the relationship
between the incident polarized light and the outgoing polarized light. Meanwhile, the
Muller matrix can also represent the polarization characteristics of the polarization element
itself. The specific form is:

S′
0

S′
1

S′
2

S′
3

 =


M11 M12 M13 M14
M21 M22 M23 M24
M31 M32 M33 M34
M41 M42 M43 M44




S0
S1
S2
S3

 (1)

Stokes vector can be used to calculate the degree of polarization of light; the specific
form is:

DoP =

√
S2

1 + S2
2 + S2

3

S0
(2)

It is assumed that the incident polarized light is 0◦ or 90◦ linearly polarized light
1

pin
0
0

 Through calculation, it is found that the actual matrix parameters involved in the

calculation are M11, M12, M21, M22, and M12 = M21, M11 = M22. Combined with the
Muller matrix, the polarization degree of the ray is calculated as:

Pout =
|M12 + M11 × Pin|
M11 + M12 × Pin

(3)

where P is the degree of polarization. Given M11 > 0, M12 < 0 and 0 < Pin < 1, let’s say
P′

out =
M12+M11×Pin
M11+M12×Pin

, when Pin = 0, P′
out < 0, when Pin = 1, P′

out > 0, zero point theorem
tells us that in the range of 0 < Pin < 1, there must be P′

out = 0, and then in the range of

0 < Pin < 1, there must be Pout ≥ 0, by calculating Pin =
∣∣∣ M12

M11

∣∣∣, there is a minimum of 0. In
the actual optical system, to reduce the system’s influence on the polarization degree of
polarized light, Pout = Pin can be set, then, through the observation Pout =

|M12+M11×Pin |
M11+M12×Pin

,
it can be seen that when |M12| = 0, the system has the least influence on the polarization
degree of polarized light. According to the above conclusions, the Mueller matrix obtained
from polarized ray tracing can be calculated and combined into unsupervised learning of
deep learning and |M12| is taken as a constraint of unsupervised learning loss function.
The form of the specific function loss function is as follows:

Lpolarization = ∑
H,p,λ

1
NH

∑
NH

√
1

NλNp
∑
λ,p

[(yHλp − yH)
2 + MH,p,λ] (4)

where H represents the field of view, λ a represents the wavelength, p represents the entry
pupil, NH is the number of field of view, Nλ is the number of wavelengths, Np is the number
of apertures, yHλp is the image height of a certain wavelength under a certain aperture of a
certain field of view, yH is the image height under a certain field of view.

Supervised learning ensures that the network model can learn the nonlinear rela-
tionship among EPD, FOV, focal length, thickness range, and curvature, thickness, and
glass parameters; at the same time, the unsupervised learning process uses the curvature
solution formula and ray tracing formula derived in this study to solve the unsupervised
loss, to ensure that the network has a certain generalization ability and generate more initial
structures of refractive optical system with different aperture and different field of view.
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We have used a batch size of 1024, which gives a good performance in both loss
stability and training efficiency

2.5. Network Model Training Based on Polarized Light Tracing

The network model based on polarized light tracing further incorporates the process of
polarized light tracing, and the complexity of the network model will be further increased.
The initialization method of the network model adopted in this study is to zero out the
parameters of the network model, followed by updating the network parameters through
training, and therefore, there is a large gap between the initial network output and the
reference lens parameters, which may lead to errors in the calculation of the unsupervised
loss function for the unsupervised training of the network based on the optical ray tracing
and the polarized light tracing. For the unsupervised training process based on ray tracing
and polarized ray tracing, the lens structure of the initial network output may not conform
to the optical propagation process, which leads to the failure of light propagation in ray
tracing and polarized ray tracing, and the calculation of the unsupervised loss function
is wrong. To help the network model obtain the correct initialized network parameters,
this study proposes a pre-training method for the network model based on polarized ray
tracing, where the network model is trained superficially through supervised training to
obtain the network model that can output the correct optical system structure, and the
pre-trained network model parameters are used as the initialization parameters for the
formal training of the network model parameters.

The network model based on polarized light tracing uses the dynamic learning rate
method to train the network model, so the learning rate cannot be used as a parameter for
training tuning, which is performed here for the batch size. In this study, the batch size of
512, 1024, and 2048 are selected for training. After simulation, we used a batch size of 1024,
which gives a good performance in both loss stability and training efficiency.

3. Analysis and Discussion
3.1. Optical Image Quality Analysis

With 2 × 105 steps of training, the parameters of the neural network are undergone
2 × 105 updates to train a suitable deep-learning model. The trained deep learning network
model is completed, and the optical system is designed after the parameters of EPD, FOV,
focal length, minimum thickness, and thickness range are given. To facilitate comparison,
the focal length of the lens is set to 100 mm, while the focal length of the reference lens
with the same EPD and FOV is scaled to 100 mm. The specific comparison is shown in
Figures 2 and 3. The optical structure diagram, point sequence diagram, field curvature
diagram, and distortion diagram of the lens designed by deep learning and the reference
lens with the same EPD and FOV are compared, respectively. Upon comparison, it can be
seen that the RMS spot radius of the lens designed by deep learning is close to that of the
reference lens and even smaller than that of some deep learning lenses. It is shown that the
network model can design the initial structure of the refractive optical system, which can
meet the requirements of actual imaging quality.

In addition to verifying the optical performance of the deep learning network model
designed and the reference optical system with the same EPD and FOV, it is also necessary
to verify the generalization ability of the initial structure of the optical system under
different focal lengths. Figure 4a, Figure 4b, and Figure 4c show the corresponding RMS
spot size when the focal length is set to 1 mm, 100 mm, and 1000 mm, respectively. Aperture
is calculated by focal length and F-number, so F-number is used to represent EPD, and
F-number generates 1000 sets of data on average within the range. Similarly, the field of
view generates 1000 sets of data on average within the range, and the output of optical
systems with different EPD and FOV is 1 million sets. The radius of initial structures
generated under different EPD and FOV are represented using the heat map. It can be seen
from Figure 4a–c that under different focal lengths, the network model can generate not
only the optical system equivalent to the reference lens but also the corresponding optical
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system under different EPD and FOV. The spot radius decreases with an increase in the F
number; in other words, with the same focal length, the spot radius decreases as the EPD
decreases. Figure 4d, Figure 4e, and Figure 4f show the proportion of the optical system
generated by the model that meets the design requirements under focal lengths of 1 mm,
100 mm, and 1000 mm, respectively. Taking Figure 4d as an example, when the RMS spot
radius of the optical system generated at focal length 1 is less than 0.01 mm, the designed
optical system meets the requirements and is regarded as a successful design. As can be
seen from the pie chart, the success rate of the network design optical system is 96.403%.
Similarly, when the focal length is 100, the success rate of the network design optical system
is 98.799%; when the focal length is 1000, the success rate of the network design optical
system is 96.673%. It shows that the network model has good generalization ability and the
designed optical system meets the requirements.
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Figure 2. Comparison results of four groups of deep learning design lenses and reference lenses
under different apertures while F is 14, 8, and 7. (a) Deep learning design lenses and reference lenses
under different apertures while F is 14; (b) Deep learning design lenses and reference lenses under
different apertures while F is 8 and HFOV is 0.5◦; (c) Deep learning design lenses and reference
lenses under different apertures while F is 8 and HFOV is 0.75◦; (d) Deep learning design lenses and
reference lenses under different apertures while F is 7.
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Figure 3. Comparison results of four groups of deep learning design lenses and reference lenses
under different apertures while F is 6.4, 5, 4, and 2.8. (a) Deep learning design lenses and reference
lenses under different apertures while F is 6.4; (b) Deep learning design lenses and reference lenses
under different apertures while F is 5; (c) Deep learning design lenses and reference lenses under
different apertures while F is 4; (d) Deep learning design lenses and reference lenses under different
apertures while F is 2.8.

The above experiments make the network training stable by adjusting the hyperpa-
rameters, such as the learning rate. The network model trained by deep learning can design
an optical system comparable to the reference lens through a limited reference lens. At the
same time, the network can generate more initial structures of optical systems in proper
EPD and FOV, which have certain generalization abilities.
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3.2. Tolerance Analysis of Optical Systems

In addition to comparing the aberrations in the optical system and judging the de-
sign success rate and generalization ability, it is also necessary to conduct corresponding
tolerance analysis and comparison to judge whether the optical system designed by deep
learning meets the actual application standards in terms of tolerance. This study sets a
certain tolerance range for tolerance analysis. The modulation transfer function (MTF) of
the system designed by deep learning under different probabilities is compared with the
MTF of the reference lens. The specific comparison is shown in the following table.

The tolerances of eight groups of different apertures and fields of view are ana-
lyzed, respectively, in Table 3. Monte Carlo sampling calculation is used to obtain these
data. The specific tolerance range of the optical system in the tolerance analysis is set in
Tables 4 and 5 below.

Table 3. MTF of the optical system and reference lens is designed by deep learning under different
probabilities calculated by Monte Carlo sampling.

Optical System Probability
MTF for Deep

Learning
Systems

Reference Lens
MTF

The Absolute
Value of the
Difference

F = 14
HFOV = 0.5

90% 0.6657 0.6552 0.0105
50% 0.6780 0.6777 0.0003
10% 0.6862 0.6876 0.0014

F = 8
HFOV = 0.5

90% 0.3047 0.2540 0.0506
50% 0.4696 0.4186 0.0509
10% 0.6867 0.6324 0.0543

F = 8
HFOV = 0.75

90% 0.5596 0.7114 0.1517
50% 0.6917 0.76545 0.0737
10% 0.7585 0.79743 0.0388

F = 7
HFOV = 1

90% 0.5484 0.6983 0.1499
50% 0.6767 0.7841 0.1074
10% 0.7929 0.8187 0.0258

F = 6.4
HFOV = 1.5

90% 0.6245 0.6116 0.0129
50% 0.7159 0.7120 0.0038
10% 0.7702 0.7902 0.0199
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Table 3. Cont.

Optical System Probability
MTF for Deep

Learning
Systems

Reference Lens
MTF

The Absolute
Value of the
Difference

F = 5
HFOV = 1

90% 0.4197 0.3961 0.0236
50% 0.6082 0.5933 0.0149
10% 0.7473 0.7618 0.0144

F = 4
HFOV = 2

90% 0.2304 0.2178 0.0126
50% 0.3351 0.3349 0.0002
10% 0.4386 0.4084 0.0302

F = 2.8
HFOV = 1

90% 0.2108 0.2015 0.0093
50% 0.3064 0.3508 0.0444
10% 0.4797 0.4994 0.0197

Table 4. The surface tolerance range of the optical system.

Type Value

Radius of curvature (fringe) 1
Surface irregularity (fringe) 0.2

Thickness (mm) 0.1
Surface tilt (degree) 0.1

Refractive index 0.001
Abbe number 0.1

Table 5. The component tolerance range of the optical system.

Type Value

Thickness (mm) 0.1
Surface eccentricity (mm) 0.02

Surface tilt (degree) 0.1

Through the comparison of data in Table 3, it is found that after tolerance analysis,
the MTF gap between the optical system designed by deep learning and the reference lens
designed by traditional methods is not large under different probabilities, and the MTF of
the optical system designed by deep learning under some aperture and field of view has a
90% probability greater than 0.2, meeting the actual application requirements. Therefore,
the polarization optical system design method based on deep learning proposed in this
study can meet the practical application requirements in terms of tolerance.

3.3. Polarization Aberration Verification

1. Polarization degree change

The change in polarization degree reflects the influence of the optical system on
the polarization state of polarized light. In this study, the polarization aberration of the
polarization optical system designed by deep learning and the reference lens will be
compared. The incident polarized light will be set as linearly polarized light. The difference
calculation is carried out to compare the improvement of polarization change between the
deep learning design system and the reference lens. It is impossible to accurately compare
the percentage increase between the polarization degree change in the system designed
by deep learning and the reference lens only upon comparing the data graph. Therefore,
specific data are calculated using the following formula:

Pc =
Pr − Pd

Pr
(5)
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where Pr is the polarization change in the reference lens, Pd is the system polarization
change designed for the deep learning field.

Through ray tracing calculation, the comparison results of polarization change in eight
groups of deep learning design lenses and reference lenses are drawn, respectively, as
shown in Figures 5 and 6.
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To more intuitively compare the percentage increase in this variable between the deep
learning design system and the reference lens under the combination of different aperture
fields of view, the percentage increase in polarization degree change in different aperture
fields of view is summarized in a table, as shown in Table 6:
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reference lenses under different apertures while Field is 6.4, 5, 4, and 2.8 and FOV is 2, 1.5, and 1.

Table 6. Under the combination of eight groups of aperture field of view, the deep learning design
optical system and the reference lens polarization degree change increased by a percentage.

F = 14
HFOV = 0.5

F = 8
HFOV = 0.5

F = 8
HFOV = 0.75

F = 7
HFOV = 1

F = 6.4
HFOV = 1.5

F = 5
HFOV = 1

F = 4
HFOV = 2

F = 2.8
HFOV = 1

4.753% 12.349% 10.071% 10.001% 4.166% 15.625% 23.45% 23.75%

Through comparison, it is found that the polarization degree change in optical systems
designed by deep learning is improved; that is, the influence of the system designed by
deep learning on the polarization degree of polarized light is reduced. Due to the different
aperture and field of view combinations of the eight lens groups, through the comparison of
different F numbers, the system with the same field of view found that when the F-number
of the system was large, the polarization degree change in the optical system designed
by deep learning was less than that of the reference lens. Upon comparing the systems
with the same F number under different fields of view, it is found that when the field of
view of the system is larger, the polarization change in the optical system designed by deep
learning is less than that of the reference lens.

2. Stokes vector contrast

The first two sections compare the image quality of the optical system designed by
deep learning and the improvement in the degree of polarization change, indicating that
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the influence of the optical system designed by deep learning on the polarization degree of
polarized light is reduced under the premise of good image quality. This section compares
the Stokes vector parameter changes between the optical system designed by deep learning
and the reference lens. The influence of the optical system and the reference lens designed
by deep learning on polarized light is judged by the variation in the Stokes vector.

For the convenience of comparison, the calculation method of polarization degree
change contrast is adopted. The specific formula is as follows:

Sc =
Sr − Sd

Sr
(6)

In this equation, the Stokes vector parameter change amount after the reference lens
Sd is the Stokes vector parameter change amount after the optical system designed by
deep learning.

Take the optical system designed when the F-number is 4, and the field of view is 0.5◦

as an example. Upon comparing the changes in the parameters of the polarized Stokes
vector, Figure 7 shows the total light intensity between the optical system designed by
deep learning and the Stokes vector of the polarized light in the reference lens when the
F-number is 14, and the field of view is 0.5◦. Compared with the reference lens, the change
amount in the optical system designed by deep learning through the difference calculation
was increased by 0.00912%, and the change amount in the optical system designed by deep
learning was increased by 1.67%. The change amount in the optical system designed by
deep learning was increased by 0.00913% compared with that of the reference lens.
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Figure 7. Comparison results of Stokes vector of deep learning design lenses and reference lenses
under different apertures while Stokes is S0, S1, and S2.

To more intuitively compare the percentage increase in this variable between the deep
learning design system and the reference lens, the percentage increase in Stokes vector
parameter change is summarized in the Table 7:
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Table 7. When F is 14, and the field of view is 0.5◦, the polarization change in data in the deep
learning-designed optical system and the reference lens will increase by a percentage.

S0 S1 S2

0.00912% 1.67% 0.00913%

Through the comparison of Stokes vector parameters S0, S1, S2 between the optical
system designed by deep learning and the reference lens above, it can be seen that the
optical system designed by deep learning and the reference lens have little change in the
total light intensity S0 and the intensity difference S2 of polarized light in the direction
of 45◦ and 135◦. This is because the linear polarized light of 0◦ or 90◦ is used as the
incident light of the system in this study. Therefore, it has little influence in the directions
of 45◦ and 135◦. Upon comparing the intensity difference S1 of polarized light in the
horizontal direction and the vertical direction, it is found that the polarized light does have
a relatively large change in the intensity difference between the horizontal direction and
the vertical direction.

4. Conclusions

In this study, we propose a method to optimize the initial structure design of a
polarized optical system by using deep learning. Samples are trained by combining
supervised training and unsupervised training. Supervised training helps the deep neural
network model learn the structural features of the optical system. Through experimental
simulation, under different focal lengths, the network model can generate 1 million sets
of the initial structure of the optical system within the specified aperture and field of
view, and the design success rate under the specified RMS spot radius is better than
96.403%, indicating that the network model has certain generalization ability after deep
learning. The resulting system polarization change is 4.166% more than that of the reference
lens, indicating that the designed system has less influence on the polarization, and the
polarization effect is effectively controlled. The deep learning optical design method
proposed in this study provides a new solution for future complex optical systems and an
effective way to improve the design accuracy of special optical systems such as polarization
optical systems. It can be used to optimize the design of high-precision optical systems
such as space target detection, multi-dimensional optical remote sensing, high-precision
polarization release navigation, photoresist objective lens, etc., which provides a theoretical
basis for the design of a new generation of intelligent optical systems.

When using deep learning to optimize the design of optical systems, the spot size and
polarization of the optical system are used as the evaluation criteria for the optimization
design, which controls the optimization direction of the optical system to a certain extent.
Still, the actual design of the optical system optical aberration needs to take into account
spherical aberration, coma aberration, image dispersion, field curvature, aberrations, chro-
matic aberration, and so on. Polarization aberration needs to be considered as the phase
delay, attenuation, and so on. In the future, more evaluation criteria can be added to im-
prove the optimal design of neural networks for specific systems. This study only focuses
on the optimal design of simple optical systems and can only learn for a specific number of
lenses, and the subsequent introduction of new network models, such as recurrent neural
networks that can be trained according to the time series, will help the optimal design
of optical systems with different numbers of lenses under the same aperture and field of
view parameters.
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