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Abstract: Analogous to the Poincaré sphere, a hybrid order Poincaré sphere is used to represent the
ellipse field singularities (C-points). We study the tight focusing properties of generic bright and dark
hybrid order Poincaré sphere beams in the presence of primary coma. The role of the polarization
singularity index and handedness of the polarization of the hybrid order Poincaré sphere beams
on the focused structure has been discussed. Results have been presented for the total intensity,
component intensities, and component phase distributions for left- and right-handed bright and dark
star and lemon types singularities. The presence of primary coma distorted the focal plane intensity
distributions for both positive and negative index generic C-points. Coma is known to disturb the
circular symmetry of the focal plane intensity distribution. Similarly in tight focusing polarization is
known to disturb the symmetry. Therefore, a beam with structured and inhomogeneous polarization
distribution tightly focused under the influence of coma is a fit case to study. It is found that the
presence of primary coma aberration in the focusing system produces a positional shift of the high-
intensity peaks and a reduction of the intensity on one side of the center. As the strength of the
primary coma increases, the focal plane intensity distributions shift more and more toward the right
from the initial position. Unlike the scalar vortex case, in the case of hybrid order Poincaré sphere
beams, the focal plane intensity distribution undergoes rotation, as the helicity of the hybrid order
Poincaré sphere beams is inverted, in addition to shifting. All the component phase distributions are
found to be embedded with phase vortices of charge ±1.

Keywords: laser beam shaping; Debye-Wolf Integral; high numerical aperture optics; hybrid order
Poincaré sphere; polarization; singular optics

1. Introduction

The three-dimensional structure of the optical field in the focal plane of a high-
numerical-aperture optical system has been widely studied in recent years for various
applications. The focal plane intensity distribution can be modified by pupil function engi-
neering [1–3]. It was shown that suppression of side lobes in the focal field is possible by
apodization [4]. Apertured beams in paraxial [5,6] and non-paraxial focusing [7] were tried
to achieve a perfect focal spot. Generation of longitudinal components can be achieved by
providing spherical curvature to the beam in high numerical aperture (NA) systems. The
dominating role played by the polarization in tight focusing using high numerical aperture
to shape the point spread function (PSF) was later recognized [8]. Since polarization plays
the dominating role in the high numerical aperture systems [9–16], the scalar diffraction
theory does not give accurate results. Polarization engineering, to shape the PSF by using
spatially inhomogeneous polarization, due to its increasing number of applications [17–23]
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has come under scrutiny in recent years. In tight focusing, generation of significant longitu-
dinal polarization component [19,24], realization of smallest focal spot [24], generation of
3D-polarization structures and singularities [25,26], and topological structures [27,28] and
optical Möbius stripes [29–32] are possible by polarization engineering.

Polarization degrees of freedom of light have been studied extensively [33,34]. In polariza-
tion optics, the state of polarization (SOP) of an optical field can be represented geometrically
by a point on the surface of a sphere, known as the Poincaré sphere (PS) [35]. The Poincaré
sphere representation provides a simpler yet powerful tool to understand complex prob-
lems such as polarization modulation from multiple optical components. The use of PS is
abundant for homogeneously polarized optical fields. The limitation of PS representation
can be seen in the spatially varying polarization distributions. The PS approach can not
be used to represent a spatially varying polarization distribution as a point on it. The spa-
tially varying polarization distributions are represented by a region on the surface of the
PS. Recently topological spheres, namely higher-order Poincaré sphere (HOPS) [36–38] and
hybrid order Poincaré sphere (HyOPS) [39–41] are constructed to represent spatially varying
polarization distributions embedded with polarization singularities. The spatially varying
polarization distributions hosted with polarization singularities can be realized by the coaxial
superposition of orthogonal spin and orbital angular momentum (OAM) states of light.

In pupil function engineering, the focal plane intensity distributions can be tuned
using phase and polarization degrees of freedom. A phase vortex can be used to produce a
doughnut intensity distribution, whereas a polarization vortex can be used to produce the
smallest focal spot [19,24]. In a practical optical system, the focal plane intensity distribu-
tions may deteriorate due to the presence of various aberrations. Coma is known to disturb
the circular symmetry of the focal plane intensity distribution. Similarly, in tight focusing,
polarization is known to disturb symmetry. Therefore, a beam with structured and inho-
mogeneous polarization distribution tightly focused under the influence of coma is a fit
case to study. For a monochromatic optical field, the combined effect of aberrations such
as astigmatism, coma, spherical aberration, etc., may be responsible for the deterioration
of the image quality. To know the effect of individual aberrations on the focal spot each
aberration has been studied separately. Tight focusing of generic hybrid order Poincaré
sphere beams in the presence of primary coma was never studied, which we have studied
in the current manuscript.

Optical aberration is a property of optical systems, which causes light to be spread
out over some region of space rather than focused on a point [34,42,43]. In other words,
aberration can be interpreted as a departure in the performance of an optical system
from the predictions of paraxial optics. In an optical imaging system, aberration happens
when the light from one point of an object does not converge into (or diverge from) a
single point after transmission through the optical system. The presence of aberrations
deformed the image formed by an optical imaging system and the nature of deformation
depends on the type of aberration. L. Seidel in 1856 was the first to investigate and derive
the desired mathematical expressions for the primary aberrations for their identification.
Hence, the primary aberrations are called Seidel aberrations. These aberrations are also
called third-order aberrations. The third-order aberrations of a system in monochromatic
light are spherical aberration, coma, astigmatism, distortion, and field curvature. An
optical system can suffer from one or more aberrations simultaneously and the combined
effect is responsible for image degradation. Therefore, it is customary that each of these
aberrations is dealt with separately to understand the contribution of each of them. The
spherical aberration can be seen as the variation of the focal spot with the aperture. The
comatic aberration of an optical system can be viewed as the variation of magnification
with aperture. When the tangential and sagittal images do not coincide the astigmatism
occurs. The field of curvature aberration is the function of the refractive index of the lens
material, and the surface curvatures of the lens. When the image of an off-axis object is
formed farther away from the optical axis or closer to the axis then the image quality is
distorted from the ideal image decided by the paraxial optics. The third-order aberrations
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play a very important role in telescope design. For telescopes, the aperture is considered
as the linear diameter of the objective, whereas the microscope aperture is based on the
entrance pupil of the object. The condition for designing telescope objectives free from
third-order coma is known as Fraunhofer’s condition. In this manuscript, we consider the
coma for our discussion. Coma is an off-axis aberration for a rotationally symmetrical lens
system. Coma is absent on the axis and increases with field angle or distance. In a practical
optical system, coma may appear on the axis, where coma should be zero. This on-axis
aberration is not dependent upon field position and is additive. It can result from tilted
and/or decentered optical components in the system due to misalignment.

High numerical aperture optical systems can be found in several fields such as optical
microscopy and optical information storage, etc. Hence, it is necessary to understand the
fundamental limitations of optical focusing and imaging systems. Aberrations are found to
affect the structure of the focal plane field distributions of a focusing system. Several articles
have been concerned with the effects of aberrations in high-aperture systems [13,44–48].
These articles have explained the structural changes in the focal plane intensity distributions
that happened in the presence of various Seidel aberrations in a high numerical aperture
optical system. Therefore a systematic study on the effect of aberrations is needed.

The present work is the first of its kind. We have summarized previously reported
works in this paragraph to find out the novel aspect of our work. Recently tight focusing of
vector vortex beams in the presence of spherical aberration has been studied [49]. Tight
focusing properties of HyOPS beams have been studied in ref. [50]. Generation and tight
focusing of hybridly polarized vector beams have been studied in refs. [51,52]. To date, the
effect of coma aberration on the tight focusing of HyOPS beams has not been investigated
by anyone. This is the first report that examines the influence of primary coma in a
tight-focusing system. The tight focusing of phase singular beams is studied in ref. [53].
In the tight focusing of phase singular beams, the intensity rings become lobes in the
presence of primary coma. In a tight focusing system, polarization is found to play a critical
role, and hence homogenous and spatially varying polarization distributions can not be
considered as the same. This work is important in polarization engineering methods using
structured HyOPS beams. The effect of primary coma differs for phase and polarization
singularities in a tight focusing system. In this manuscript, we study the tight focusing
properties of generic bright and dark HyOPS beams such as star-type and lemon-type
C-points of different helicity in the presence of primary comatic aberration. We show
that the strength of comatic aberration, sign, the absolute value of the C-point index (IC),
amplitude, and helicity of the HyOPS beams play an important role in tailoring the focal
intensity landscapes.

Polarization singularities are points at which the azimuth (γ) of the polarization
ellipse is indeterminate and are characterized by contour integral

∮
∇γ · dl ̸= 0 around the

singularity. The value of the contour integral for a HyOPS beam, also known as C-point
singularity or ellipse field singularity [54–56], is pπ, where p is an integer. The C-point
index is IC = p/2. The index IC can have fractional and integral values. The positive and
negative sign of the index IC is decided by the counter-clockwise and clockwise rotation of
the azimuth of the state of polarization in the neighborhood of the singular point in the
polarization distribution. The SOP distribution for a C-point consists of ellipses and hence
a C-point has helicity [57,58]. On the other hand, there are V-point singularities [56,59,60],
characterized by Poincaré-Hopf index η in which the contour integral takes value 2πη. V-
points consist of spatially varying linear SOP distributions. They have no helicity associated
with them. A HyOPS beam can be generated by the superposition of two vortex beams
with right and left circular polarization states. One of the interfering beams for a bright
HyOPS beam is a non-vortex Gaussian plane beam. A HyOPS beam can be bright or dark
depending on the intensity distribution at the singular point (C-point). In the case of a
dark HyOPS beam both the interfering beams have non-zero orbital angular momentum.
Unlike the C-point, the intensity distribution at a V-point is always zero. The neighborhood
polarization distribution around a V-point is linear, whereas it is elliptical for a C-point. In
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terms of orientation angle the C-point index and V-point index are defined as 1
2π

∮
∇γ · dl.

The C-point index can take integer and half-integer values, whereas the V-point index can
only take integer values.

Spatially varying polarization distributions embedded with polarization singular
points can be visualized using the complex Stokes fields [61], defined as Sij(x, y)

(i, j = 1, 2, 3) = Uij(x, y)eϕij(x,y), where Uij =
√

S2
i + S2

j and ϕij = arctan(Sj/Si), re-

spectively. The normalized Stokes parameters are given by Si(x, y)(i = 1, 2, 3). Note
that for optical fields with spatially varying polarization distributions, the Stokes param-
eters are the functions of position coordinates (x, y). The three complex Stokes fields can
be expressed as S12 = S1 + iS2 = |S12| exp(iϕ12), S23 = S2 + iS3 = |S23| exp(iϕ23), and
S31 = S3 + iS1 = |S31| exp(iϕ31). The phase distributions of these three complex fields are
given by ϕ12 = arctan(S2/S1), ϕ23 = arctan(S3/S2), and ϕ31 = arctan(S1/S3). The phase
distributions of these complex Stokes fields are called Stokes field phase distributions. In
the complex Stokes field S12 = S1 + iS2 = |S12| exp(iϕ12) representation, C-points and
V-points singularities appear as phase vortices [56]. The phase distribution of the S12 Stokes
field and azimuth distribution of the polarizations are given by ϕ12(x, y) = 2γ(x, y). It can
be shown that ϕ12 is the phase difference between left and right-handed components, i.e.,
ϕ12 = ϕL − ϕR. Therefore, phase vortices of S12 Stokes field are polarization singularities.

Helicity is decided by the dominant circular polarization component in the state of
polarization. For example, a right elliptically polarization can be decomposed into right
and left circularly polarized components and the dominant component is right circular
polarization that decides the handedness of the resultant state. Helicity is an important
parameter associated with the ellipse field singularities such as bright and dark C-points.
Similarly, for polarization singularities, the orbital angular momentum content of the
superposed states decides the helicity of the polarization singularity. For example, a bright
right-handed C-point can be generated by the superposition of a Gaussian beam in right-
circular polarization (RCP) and a Laguerre-Gaussian (LG) beam with azimuthal index 1
in the left-circular polarization (LCP) state. At the singular point in the resultant field, the
LCP component is zero as the LG beam has a helical phase that demands the presence of
intensity null at the singular point. As a result, the helicity of the C-point singularity is
decided by the helicity of the right circularly polarized Gaussian beam. In the case of the
bright C-point singularity, the non-vortex circularly polarized interfering beam decides the
helicity of the resultant C-point, whereas, for a dark C-point, the helicity is decided by the
interfering beam with a lower absolute value of the orbital angular momentum.

Some of the recently reported applications of HyOPS beams are in optical chirality
measurements [62], flattop focusing with full Poincaré beams [63], and focus shaping
and optical manipulation using highly focused second-order full Poincaré beam [64]. The
HOPS beams have found applications in a variety of research fields such as particle accelera-
tion [65–67], polarization-based microscopy [68], optical trapping and manipulation [69–71],
Mueller matrix polarimetry [72,73], underwater communication [74], and optical commu-
nications [75]. Recently, the HOPS beams have been used to generate entangled hybrid
quantum states [76], optical signal processing [77], optical lattices [78,79], material machin-
ing [80], optical skyrmions [81], and structured illumination microscopy [82].

2. Theory of Tight Focusing for Circular Basis HyOPS Beams

The expression of HyOPS beams for paraxial optical fields, under circular polarization
basis decomposition [31,54], can be written as,

E⃗(ρ, θ) = E0e−Γ2ρ2
[B1ρ|m|eimθ êL + B2ρ|n|einθ êR], (1)

where êL and êR are left and right circular unit basis vectors, respectively. In Equation (1),
the integers m, n are the topological charges of the phase vortex beams with amplitude
scaling factors B1 and B2, respectively, θ is azimuthal angle. E0 is the amplitude of the
beam, ρ = sinϕ/sinϕmax is the radial distance of a point from the center, normalized
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by the radius (a) of the lens. The truncation parameter is given by Γ = a/w, where w
is the beam waist. It measures the beam’s fraction inside the lens’s physical aperture.
For a bright C-point either m or n is zero and m ̸= n. So far, most studies concentrated
on this type of beam [54,56]. Recently tight focusing of spatially varying optical fields
embedded with polarization singularities such as bright C-points [83], dark C-points [32,84]
and V-points [85] have been studied. The superposition described by Equation (1) can
be realized by the Mach–Zehnder type interference, where the two arms carry the right
circular and left circularly polarized beams, respectively. The bright HyOPS beams can
be generated from Equation (1) by putting either of l1 or l2 as zero. For a dark C-point,
both l1 and l2 are non-zero and |l1| ̸= |l2|. For realizing bright and dark HyOPS beams
we consider A = B in Equation (1). By putting B1 = 0 (B2 = 0) in the Equation (1) a right
(left) circularly polarized phase singular beam can be realized. For realizing right and
left circularly polarized plane beam the parameters n and m in the Equation (1) can be
set to 0.

Introducing the conic angle ϕ, the term E0e−Γ2ρ2
in Equation (1) can be written as

E0e−Γ2ρ2
= E0e(−Γ2sin2ϕ/sin2ϕmax) = E2(ϕ), (2)

where ϕ is the focusing angle and ϕmax is the maximum angle of convergence as depicted in
Figure 1. The numerical aperture of an optical system is given by NA = n0sinϕmax, where
n0 is the refractive index of the focal region. The condition of aberration-free is an idealistic
situation and the aberration-free condition is much stronger than the aplanatic condition,
as the aplanatic condition is only free for all orders of spherical aberration, third-order
coma, and third-order astigmatism. Aberration-free is sufficient and clearer because it says
explicitly that the wavefront error of primary coma is embedded onto an ideal converging
spherical wavefront without considering other effects. In the literature, aberration-free
and aplanatic conditions are considered together [10,53]. For an optical system shown in
Figure 1, the electric field components in the focal region of an aberration-free aplanatic
lens are given by [10,53]

E(u, v) = (−iA/λ)
∫ ϕmax

0

∫ 2π

0
E2(ϕ)P(ϕ, θ)A2(ϕ)× e(ikW(ρ,θ))

×e(−i v
sinϕmax sinϕcos(θ−θP)) × e

(−i u
sin2ϕmax

cosϕ)
sinθdϕdθ

, (3)

where A is linked to the optical system parameters and λ is the wavelength of light in
the medium with refractive index (n0) in the focal region. Any point in the observation
plane can be defined by the coordinates as P(rP, ϕP, θP), where rP (radius vector connecting

the point P with the origin of the coordinate system) and ϕP are given by
√

x2
P + y2

P,
and arctan(yP/xP), respectively. The azimuthal angle in the observation plane is given
by θP. In Equation (3), W(ρ, θ) corresponds to primary coma aberration. The primary
coma aberration function is given by W(ρ, θ) = Acρ3cosθ [53,86], where Ac is the comatic
aberration coefficient in units of wavelength. P(ϕ, θ) denotes polarization distribution at
the exit pupil and A2(ϕ) is the apodization factor.

The combined effect of the apodization and the intensity distribution of the beam (or
the truncation parameter) play an important role in the focal plane beam shaping. To study
the role of apodization in a tight-focusing optical system we must choose an appropriate
form for the apodization function. We consider anodization A2(ϕ) = cosqϕ, so that q = 1

2
corresponds to the perfect aplanatic case [10,87,88]. The value q = 0 corresponds to the
case of a constant angular variation, and for the higher values of q, the apodization drops
faster with the focusing angle (ϕ). The real microscope objectives exhibit an anodization
condition [89–91] that occurs from the Fresnel reflections at the surfaces of the optical
elements. The effect of aberrations and apodization on the performance of coherent optical
systems has been studied in the past [92–94]. The role of the intensity distribution of the
input beam has been investigated in the literature [95]. Focus correction in an apodized
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system with spherical aberration has been investigated by Bernal et al. [96]. Recently
Naresh et al. have shown the effect of a parabolic apodizer on improving the imaging
of optical systems with coma and astigmatism aberration [97]. The apodization can be
intuitively thought of as a circular aperture that can be considered as the first zone of a
diffractive zone plate in which the focal length has a dependence on the zone diameter.
There are also studies available on the focal length shift from the Gaussian focus due to the
presence of helical phase distribution [98]. Polarization singularities are superposition of
phase singularities and the size of dark cores (radial intensity distributions) of singularities
depends on the index. These facts may play a role in the focal shift. However, our main
discussion is on the tight focusing of HyOPS beams with fixed truncation parameters in
the presence of primary coma.

Figure 1. Geometric configuration for tight focusing of a right-handed bright star-type HyOPS beam
in the presence of primary coma.

The polarization distribution of the input field can be expressed as

P(ϕ, θ) =

a1(cosϕcos2θ + sin2θ) + b1(cosϕsinθcosθ − sinθcosθ)
a1(cosϕsinθcosθ − sinθcosθ) + b1(cosϕsin2θ + cos2θ)

−a1sinϕcosθ − b1sinϕsinθ

, (4)

where a1 and b1 are the strengths of the x and y components of the input field, respectively.
Optical coordinates at the observation plane or focal plane (xPyP-plane) are defined as

u = krPcosθPsin2ϕmax, v = krPsinθPsinϕmax, (5)

where k = 2π/λ is the propagation vector. The parameters u and v are the dimensionless
normalized parameters as described by Equation (5).

In this article, we study the tight focusing of generic star-type and lemon-type bright
and dark HyOPS beams in the presence of primary coma. The left-handed lemon-type
bright HyOPS beam can be realized from Equation (1) by putting m = 0, and n = +1,
respectively. For generating a right-handed lemon-type bright HyOPS beam we consider
m = −1, and n = 0 in the Equation (1). Similarly, a right-handed star type and a left-
handed star type bright HyOPS beams can be realized from Equation (1) by putting (m = 1,
n = 0) and (m = 0, n = −1), respectively. A left-handed and right-handed lemon-type
dark HyOPS beams can be realized from Equation (1) by putting (m = 1, n = 2) and
(m = −2, n = −1), respectively. For generating left-handed and right-handed star-type
dark HyOPS beams we consider (m = −1, n = −2) and (m = 2, n = 1) in Equation (1).
Focal plane intensity distributions of these eight different HyOPS beams are calculated by
using Equation (3). Tight focusing of circularly polarized plane beams and the circularly
polarized phase singular beams can be done by using Equation (3). The simulation results
obtained from Equation (3) can be compared with the results presented in the [53] for
the validation of our simulation and results. The parameter ϕ in our article is similar to
parameter θ in the reference [53] and vice versa.
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3. Intensity Landscapes of Circular Basis HyOPS Beams

Various parameters such as polarization distribution, total intensity distribution, and
S12 Stokes field phase distribution of bright and dark generic HyOPS beams at the entrance
pupil of the lens are numerically evaluated using Equation (1). Debye-Wolf integration
(Equation (3)) is used to compute the focal plane transverse and longitudinal components
of the input HyOPS beams for NA equal to 0.95. The focal plane field distributions are
plotted in the normalized coordinates (u, v). All the simulation results presented in the
paper are for u = 0 and −10 ≤ v ≤ 10. We consider wavelength λ = 633 nm for all the
computations. At the entrance pupil of the lens, the normalized Stokes parameters are
computed by using transverse components of the HyOPS beams. Further, these normalized
Stokes parameters are used to compute polarization parameters such as azimuth and
ellipticity distributions. The azimuth and ellipticity distributions are used to demonstrate
the polarization distributions of various HyOPS beams. Polarization, normalized intensity,
and S12 Stokes field phase distributions of input HyOPS beams are depicted in row I of
Figures 2–7. The intensity distributions of the bright HyOPS beams, as shown in Figures 2–4,
at the entrance pupil of the lens corresponds to the Gaussian distribution. The intensity
distributions of the dark HyOPS beams, as shown in Figures 5–7, at the entrance pupil
of the lens corresponds to the Laguerre-Gaussian (LG) distribution. In all the figures,
Figures 2–7, the focal plane intensity distributions of transverse (x and y) and longitudinal
(z) components are depicted in row II, row III, and row IV, respectively. In each case, the
total intensity distribution is presented in row V. A HyOPS beam can be either left (hL) or
right (hR) helicity [57,58]. For each HyOPS beam, the intensity and phase distributions
corresponding to left and right helicity are shown in the left and right columns, respectively.
For an aberration-free optical system, the focal plane intensity and phase distributions
corresponding to bright lemon and star-type HyOPS beams are depicted in Figure 2. In
Figure 2, column I and column II correspond to the intensity distributions of left and
right-handed lemon singularities, respectively, and the corresponding component phase
distributions are depicted in column III and column IV, respectively. The right side of
Figure 2 shows the intensity and phase distributions corresponding to bright left and
right-handed star-type HyOPS beams. In a tight focusing system, a HyOPS beam and its
index inverted field show completely different intensity distributions at the focal plane in
terms of shape and symmetry. Even for the same polarization singularity index the focal
plane intensity and phase distributions are found to be dependent on helicity and intensity
of the HyOPS beams.

Next, we study the effect of primary coma on the focal plane intensity and phase
distributions for HyOPS beams as shown in Figure 2 for an optical system with NA 0.95.
When the strength of the primary coma is Ac = 0.50, the focal plane intensity and phase
distributions corresponding to bright lemon and star-type HyOPS beams are shown in
Figure 3. When the strength of the primary coma is Ac = 0.75, the focal plane intensity and
phase distributions for bright lemon and star-type HyOPS beams are shown in Figure 4.
From Figures 3 and 4, it can be seen that the presence of primary coma in the optical system
distorted the focal plane intensity distributions for both positive and negative index HyOPS
beams. It is found that the presence of primary coma aberration in the focusing system
produces a positional shift of the high-intensity lobes and a reduction of the intensity on one
side of the center. As the strength of the primary coma increases, the focal plane intensity
distributions shift more and more toward the right from the initial position. In the case of
HyOPS beams, the focal plane intensity distribution undergoes rotation, as the helicity of
the HyOPS beams is inverted, in addition to shifting in the presence of coma aberration.
In all three cases, the focal plane field components are found to be embedded with phase
vortices of charge ±1. The appearance of phase vortices in the individual field components
may be due to the superposition of polarization components of the electric field.
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Figure 2. Bright HyOPS beams with (A) IC = 1
2 ; and (B) IC = −1

2 are tightly focused. Focal plane
component intensities are shown in row II (|Ex|2), row III (|Ey|2) and row IV (|Ez|2), respectively.
Normalized total intensity (|E|2) distributions are shown in row V. Left and right helicity are denoted
as hL and hR, respectively. Phase distributions of the constituent field components are shown on the
right side of the intensity distributions.

Figure 3. Bright HyOPS beams with (A) IC = 1
2 ; and (B) IC = −1

2 , as shown in Figure 2, are tightly
focused in the presence of primary coma with primary coma strength Ac = 0.50.
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Figure 4. Bright HyOPS beams with (A) IC = 1
2 ; and (B) IC = −1

2 , as shown in Figure 2, are tightly
focused in the presence of primary coma with primary coma strength Ac = 0.75.

Figure 5. Dark HyOPS beams with (A) IC = 1
2 ; and (B) IC = −1

2 are tightly focused. Focal plane
component intensities are shown in row II (|Ex|2), row III (|Ey|2), and row IV (|Ez|2), respectively.
Normalized total intensity (|E|2) distributions are shown in row V. Left and right helicity are denoted
as hL and hR, respectively. Phase distributions of the constituent field components are shown on the
right side of the intensity distributions.
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Figure 6. Dark HyOPS beams with (A) IC = 1
2 ; and (B) IC = −1

2 , as shown in Figure 5, are tightly
focused in the presence of primary coma with primary coma strength Ac = 0.50.

Figure 7. Dark HyOPS beams with (A) IC = 1
2 ; and (B) IC = −1

2 , as shown in Figure 5, are tightly
focused in the presence of primary coma with primary coma strength Ac = 0.75.

To generalize our study, we consider another class of HyOPS beams, known as dark
HyOPS beams. First, we consider tight focusing of dark lemon and star-type HyOPS beams
in the absence of primary coma, and the corresponding results are shown in Figure 5.
Row I of Figure 5 depicts polarization, intensity, and S12 Stokes field phase distributions.
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In Figure 5, the focal plane intensity distributions corresponding to transverse (x and y
component) and longitudinal (z-component) of the dark lemon and star-type HyOPS beams
are shown in row II, row III, and row IV, respectively. The total intensity distribution is
presented in row V. In Figure 5, columns I and II correspond to focal plane component
intensity distributions of left and right-handed dark lemon-type HyOPS beams, respectively.
The phase distribution corresponding to each component is depicted in columns III and IV,
respectively. The focal plane intensity and phase distributions of dark star-type HyOPS
beams are shown in columns V to VIII. Similar to bright HyOPS beams, all three focal
plane field components of the dark HyOPS beams are found to be embedded with phase
vortices of charge ±1. The effect of primary coma on the focal plane intensity and phase
distributions of dark HyOPS beams for two different values of strength of primary coma
are presented in Figures 6 and 7. When the strength of the primary coma is Ac = 0.50,
the focal plane intensity and phase distributions corresponding to dark lemon and star-
type HyOPS beams are shown in Figure 6. Figure 7 shows the focal plane intensity and
phase distributions for dark lemon and star-type HyOPS beams for Ac = 0.75. Similar to
bright HyOPS beams, the presence of primary coma aberration shows a positional shift
of the high-intensity lobes and a reduction of the intensity on one side of the center. As
the strength of the primary coma increases, the focal plane intensity distributions shift
more and more toward the right from the initial position. In addition to shifting the focal
plane intensity and phase patterns also undergo helicity-dependent rotation in the case
of tight focusing of HyOPS beams, which is not happening in the case of tight focusing
of scalar vortices [53,86]. Note that in all the figures the focal plane component intensity
distributions are normalized by the maximum value of the total intensity distribution.

4. Conclusions

In conclusion, we study the focal plane intensity and phase distributions of bright and
dark circular basis HyOPS beams of IC = ± 1

2 for a high numerical aperture (NA = 0.95)
system in the presence of a primary coma. It is shown that as the strength of the primary
coma increases, the focal plane intensity as well as phase distributions shifted more and
more toward the right from the initial position. The presence of primary coma aberration in
the focusing system results in a positional shift of the high-intensity peaks, and a reduction
of the intensity on one side of the center. For both positive and negative indexed bright
and dark HyOPS beams, the focal plane intensity distribution undergoes rotation, as the
helicity of the HyOPS beams is inverted, in addition to shifting.

Author Contributions: Conceptualization, S.K.P.; methodology, S.K.P.; formal analysis, S.K.P. and
P.S.; investigation, S.K.P. and P.S.; data curation, S.K.P.; writing—original draft preparation, S.K.P.;
writing—review and editing, S.K.P., R.K.S. and P.S.; visualization, S.K.P.; supervision, S.K.P. and
P.S.; project administration, S.K.P. All authors have read and agreed to the published version of the
manuscript.

Funding: R.K. Singh acknowledges the Council of Scientific and Industrial Research, India, for a
research grant (80(0092)/20/EMR-II).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:



Photonics 2024, 11, 98 12 of 15

NA numerical aperture
PSF point spread function
SOP state of polarization
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RCP right circular polarization
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