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Abstract: In this paper, the laser pulse time compression technique, based on stimulated Brillouin
scattering (SBS) and passive laser–induced breakdown (LIB) series technology, is investigated. By
doping a SiC nanowire in a CCl4 solution of an LIB breakdown medium, the LIB generation threshold
is reduced, and the stability of the LIB compression output is improved. When OD is 0.2, the output
pulse width is 254.4 ps, and the corresponding energy conversion efficiency and pulse compression
rate are 34.2% and 50.2%, respectively. Our experiment proves the feasibility of this scheme.

Keywords: SBS; LIB; the laser pulse time compression technique

1. Introduction

Ultrashort–pulse lasers are widely used in laser processing, spectral measurement, and
high–energy physics [1–3]. The traditional method of generating an ultrashort–pulse laser
through mode locking makes it difficult to generate a high–energy short–pulse laser due to
the limitation of the damage threshold of the locking mirror [4–6]. Another method is to
generate a nanosecond laser through Q–switching and then compress the laser to a picosec-
ond level using SBS pulse–width compression technology, which has the advantages of a
low cost, high energy conversion efficiency, phase conjugation, and high beam quality [7,8].
However, SBS pulse–width compression technology can only compress the pulse leading
edge to obtain the laser pulse output in the order of a hundred picoseconds. In order to
achieve a narrower pulse width, further post–pulse compression must be combined with
other technical solutions.

The existing SBS and SRS series compression technology schemes [9,10], SBS and
saturated gain switch series compression technology schemes [11], and SBS and LIB series
compression technology schemes have been proven to be feasible [12]. The SBS and SRS
series compression technology is the earliest technological combination to realize ultra–
short pulses, which has been proved in a large number of studies, and that can achieve
high repetition frequency output. However, after injecting the high peak power laser pulse
output produced by the SBS pulse–width compression technology into the SRS medium,
the SRS pulse–width compression technology will generate high–order Stokes light. The
stability and energy conversion efficiency of the whole system are affected, making the
scheme difficult to apply in high–power laser generation. The SBS and saturated gain
switch series compression technology can generate a ps–level ultrashort–pulse laser, and the
energy conversion efficiency is noteworthy. But, the saturated gain switch is only suitable
for gas lasers, and this technology is only used in KrF lasers. The SBS and LIB series
compression technology scheme combines pulse leading–edge compression technology
with trailing–edge compression technology to yield complementary results. In addition,
the high peak power Stokes light output from SBS pulse–width compression technology is
injected into the LIB plasma switch, which is beneficial to the excitation of the plasma.
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In 2017, Liu et al. [13] proposed a scheme of combining SBS and LIB compressions to
simultaneously compress the leading and trailing edges of pulses, achieving a synchronous
compression of the leading and trailing edges of the pulse and breaking through the
limitation of SBS phonon lifetime. However, using pure water as a medium is affected by
various nonlinear effects, while the LIB effect is not stable enough for practical applications.
In this paper, CCl4 is used as the medium to significantly improve the stability of LIB,
and the stability and efficiency of the system are significantly enhanced by doping SiC
nanowires. In addition, the commercial Faraday optical isolator is used to achieve optical
isolation between the seed laser source and the amplifier. Meanwhile, the optical wedge
is used to adjust the horizontal and vertical directions of the beam in the experimental
setup, which improves the stability of the experimental setup and further improves the
engineering application ability of the combined SBS and LIB pulse compression technology.

In this letter, in view of the limitation that SBS can only compress the leading edge
of the injected light pulse, we proposed a scheme combining SBS leading–edge pulse
compression technology with LIB trailing–edge compression technology in series and
successfully realized the simultaneous compression of the leading and trailing edges of the
injected light pulse. By doping the SiC nanowire into the CCl4 solution to reduce the LIB
threshold and improve the system stability, ultra–narrow pulse width and high–intensity
laser outputs are finally achieved.

2. Material Preparation

The introduction of impure particles into a pure liquid medium can also significantly
reduce the LIB threshold of the medium and improve the stability of the LIB [12]. LIB
enhancement based on the thermal effect is a mechanism that enhances the performance
of LIB through the doping of solid particles [14], where the selected doped solid particle
materials are required to have a large difference in the thermal conductivity of the medium.
The SiC material has significant nonlinear optical properties, excellent mechanical proper-
ties, and electrical conductivity. Its thermal conductivity is 100~200 W/m·K [15]. The SiC
nanowire preparation method includes the following: Si and SiO2 powders were mixed by
ball milling according to the designed proportion (molar ratio of 1:1). The mixed Si and
SiO2 powders were placed at the bottom of the graphite crucible and covered with the
porous carbon material. The graphite crucible was put into the center of the tube furnace,
heated to 1400 ◦C at a rate of ~5 ◦C/min, and held at 1400 ◦C for 1 h under an argon
gas environment.

The prepared SiC nanowire was characterized by electron microscopy, as shown in
Figure 1. Figure 1a is a 1500× magnification image, and Figure 1b is a 4000× magnification
image. SiC nanowire was integrated into the CCl4 solution and dispersed homogeneously
by ultrasound, and suspensions with OD values of 0.1, 0.15, and 0.2 were obtained, respec-
tively. CCl4 is a liquid organic solvent at room temperature. Its chemical properties are
stable under natural conditions [16,17]. Then, suspensions with OD values of 0.1, 0.15, and
0.2 were injected into the LIB pool for narrow pulse–width compression experiments by
combining SBS and LIB switches in series.
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Figure 1. SEM image of SiC nanowire: (a) 1500× magnification; (b) 4000× magnification. 
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Figure 1. SEM image of SiC nanowire: (a) 1500× magnification; (b) 4000× magnification.

3. Experiment

The experimental setup for the narrow–pulse width compression of a Nd:YAG single–
longitudinal–mode laser using a structure of SBS and LIB switches in series is shown in
Figure 2. During the experiment, the SBS is used for the first–stage compression; then,
the LIB compression is performed with the steep rising–edge pulse output from the SBS.
The Nd:YAG single–longitudinal–mode laser serves as a seed laser, with an output pulse
width of 8 ns and a central wavelength of 1064 nm. The maximum output energy is
7 mJ at a repetition rate of 1 Hz. The optical Faraday isolator is used to avoid damage
to the seed laser caused by backward light. The max beam diameter and isolation of
the optical Faraday isolator are 9 mm and 40 dB, respectively. Lenses M1 and M2 are
used to adjust the spot size of the optical Faraday isolator. Optical wedge pairs W1~W5
are used for beam adjustment, while right–angle prisms RM1~RM4 are used for beam
reflection. Optical wedge pairs utilize the relative rotation of the two optical wedges. The
output beam can be positioned in any direction in the corner cone with the input beam
as the axis. Its advantages include an easy system assembly, stable structure, and easy
realization of the engineering of optical systems. The deflection angle parameter of the
optical wedge is 1◦. The right–angle prism uses critical angle characteristics to achieve
the efficient total reflection of the incident beam inside the right–angle prism. Compared
with ordinary mirrors, the advantages of a right–angle prism include easy installation
and high mechanical stress strength. A dual–pass amplifier structure is applied in the
first–stage Nd:YAG amplifier. A half–wave plate and a polarizer P1 are used to control the
energy injected into the Nd:YAG amplifier crystal. Lenses M3 and M4 are used to adjust
the beam diameter in the Nd:YAG amplifier crystal. A compact dual–pool compression
structure is employed in the SBS compression section, including an amplification pool and
a generation pool, both of which are 60 cm in length, and the SBS medium is FC–43. The
FC–43 medium is one of the perfluorocarbon media. As an SBS medium, FC–43 has the
characteristics of a high breakdown threshold, short phonon lifetime, large gain coefficient,
and low absorption [18,19]. The phonon lifetime, SBS frequency shift, gain coefficient,
and optical breakdown threshold of FC–43 medium are 200 ps, 1.3 cm/GW, 1073 MHz,
and 178 GW/cm2, respectively. In the single–pass amplification, the seed laser energy is
amplified to 60 mJ. The amplified beam enters the amplification pool after passing through
the quarter–wave waveplate and is focused into the generating pool by the lens M5 with a
focal length of 300 mm. The Stokes light generated near the focal area is compressed and
amplified in the amplification pool by extracting the input energy in a backward direction.
Stokes light is transformed into the s–polarized light through the quarter–wave plate and
then further amplified in the Nd:YAG amplifier crystal, which is reflected by polarizer P1
and the right–angle prism RM3. The output beam passes through a half–wave plate and is
incident to a type I phase–matched LiB3O5 (LBO) crystal for frequency doubling, producing
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green light in the 532 nm wavelength range. For the laser beam, the center wavelength,
pulse width, and repetition rate are 1064 nm, 10 ns, and 10 Hz, respectively. The damage
threshold of LBO crystal is better than 1 GW/cm2. Dichroic mirror DM1 is used to separate
the 532 nm beam, and the 1064 nm beam is recovered using an optical trash can. Lens M6
is used for focusing the 532 nm beam into the LIB generation pool with a length of 40 cm.
The beam through the LIB pool is collimated by lens M7. The forward–stimulated Raman
component and compressed transmitted light are separated by a dichroic mirror DM2 with
high transmission for the 650 nm light and high reflectivity for the 532 nm light.
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Figure 2. Optical path diagram of SBS and LIB switch series combination compression experiment.

4. Results and Discussion

The output Stokes beam compressed by SBS is focused into the LIB pool as a pump
source for LIB compression after frequency doubling with LBO. After the occurrence of
laser–induced plasma breakdown, the pulse width of the output waveform changes with
the input energy, as shown in Figure 3. A total of 100 pulses recorded by a detection system
using a photoelectric detector (Ultrafast UPD–50–UP) and a digital oscilloscope (Tektronix,
DPO71254C, bandwidth: 12.5 GHz; sampling rate: 100 Gs/s) are captured for statistical
analysis. The output laser energy is measured by an energy meter (ORHIR, PE50DIF–ER).
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Figure 3. Pulse duration as a function of the input energy after the LIB pulse compression stage:
(a) OD = 0.1; (b) OD = 0.15; (c) OD = 0.2.

Taking Figure 3c as an example, when the input energy reaches 21.7 mJ, the output
pulse width gradually decreases, and the shortest pulse width is 255.7 ps. When the input
energy is increased to 35.7 mJ, the output pulse width remains basically unchanged, and
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the output pulse width is 254.4 ps. When the input energy continues to be increased to
58.7 mJ, the output pulse width gradually increases, and the longest output pulse width is
453.2 ps.

The reason for this change is that the pulse width of the LIB output is affected by
the pulse width of the Stokes beam after SBS compression and due to the LIB switching
properties. The pulse width of the Stokes beam compressed by SBS is affected by the output
power density of the Nd:YAG pumping source. When the output power density of the
Nd:YAG laser is less than a specific value, the pulse width of the Stokes beam rapidly
shortens and eventually saturates to a minimum value. The output power density of
the Nd:YAG laser is further increased, and the pulse width of the Stokes beam is slowly
broadened. In terms of stability, the pulse–width stability is optimal when the output pulse
width is the shortest, and the stability gradually deteriorates by further increasing the
pump power density [20–23]. By comparing Figure 3a–c, it can be seen that the minimum
pulse width of the LIB output and its stability, and the corresponding input energy, are
affected by the OD value of LIB, as shown in Table 1.

Table 1. Influence of different OD values on the minimum pulse output by LIB.

Number OD Input Energy (mJ) Minimum Pulse Width (ps) Stability (ps)

1 0.1 39.9 290.2 31.1

2 0.15 33.9 250 34.4

3 0.2 35.7 254.4 48.6

In the CCl4 solution doped with the SiC nanowire, the curves of LIB compression
output energy and energy conversion efficiency with input energy are shown in Figure 4.
Taking Figure 4c as an example, when the input energy is 5 mJ, a stable LIB shutdown
phenomenon begins to appear. This is because SiC nanowires can reduce the breakdown
threshold of LIB, causing LIB to occur at low energy, significantly suppressing the occur-
rence of SBS and SRS, making LIB dominant in the competition for nonlinear effects. As
the input energy increases, the output energy of LIB gradually increases. Before entering
the saturation gain region, the energy conversion efficiency increases rapidly as the input
energy rises. When entering the saturation gain region, the energy conversion efficiency
gradually tends to saturate and stabilize at about 50% [24–26]. At the same time, the
variance in the output energy is also continuously increasing.
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Figure 4. Relationship between output energy and energy conversion efficiency with input energy:
(a) OD = 0.1; (b) OD = 0.15; (c) OD = 0.2.

By comparing Figure 4a–c, it can be seen that the output energy and energy conversion
efficiency follow the same trend as the input energy. After experiencing a small signal
gain under low input energy, the final energy conversion efficiency is saturated at about
50%. This is because the media selected in the LIB pool are the same, resulting in the same
phonon lifetime. The change in OD value from 0.1 to 0.2 has a relatively small impact on the
gain coefficient. The maximum energy output of LIB and its saturation energy conversion
efficiency, the corresponding input energy, are affected by the OD value of the LIB, as
shown in Table 2.
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Table 2. Influence of different OD values on the output energy by LIB.

Number OD Input Energy (mJ) Maximum Output
Energy (mJ)

Saturation Energy
Conversion Efficiency (%)

1 0.1 62.2 31.2 50.1

2 0.15 62.2 30.7 49.4

3 0.2 58.7 29.2 49.7

After SBS compression, the output laser energy is 35.7 mJ, and the corresponding
energy conversion efficiency and pulse width are 55% and 506.8 ps, respectively. For the
LIB pool with an OD value of 0.2, when the input energy is 35.7 mJ, the statistical histogram
of LIB output energy stability is shown in Figure 5. The corresponding average value and
R2 value are 12.2 mJ and 92.3%, respectively.
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ing a short pulse with symmetric front and trailing edges. Due to the effective suppression 
of other nonlinear effects, the compression effect here is changed from a combination of 
multiple nonlinear effects in the pure media to a single LIB compression. The final output 
pulse width is 254.4 ps, and the compression rate of 50.2% is achieved via SBS compres-
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Figure 5. Output energy stability statistical histogram at OD value of 0.2 and input energy of 35.7 mJ.

The comparison of pulse waveforms before and after LIB compression is shown in
Figure 6. The black curve represents the pump pulse before LIB compression, and the red
curve represents the short pulse after compression. It can be seen that the leading edges
of the two pulses are essentially coincident, which indicates that the LIB plasma switch
preserves the leading–edge portion of the compression pulse more completely. The trailing
edge after the peak is almost absorbed, causing compression. After compression, the slope
of the trailing edge of the pulse is basically the same as that of the front edge, forming
a short pulse with symmetric front and trailing edges. Due to the effective suppression
of other nonlinear effects, the compression effect here is changed from a combination of
multiple nonlinear effects in the pure media to a single LIB compression. The final output
pulse width is 254.4 ps, and the compression rate of 50.2% is achieved via SBS compression.
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5. Conclusions

In conclusion, we proposed a novel narrow pulse–width compression scheme that
combined SBS pulse–width compression technology with LIB switching. The LIB threshold
is decreased by doping a SiC nanowire into a CCl4 solution. The nonlinear effects of SBS
and SRS are suppressed to improve the stability of the system. For the LIB switch with
an OD value of 0.2, the optimal output is obtained when the input energy is 35.7 mJ. For
a LIB switch with an OD value of 0.2, the minimum pulse–width output of 254.4 ps is
obtained when the input energy is 35.7 mJ. The corresponding energy conversion efficiency
and pulse compression rate are 34.2% and 50.2%, respectively. The produced optical pulse
provides a spatial resolution that is well suited for LIDAR Thomson scattering diagnostics.
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