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Abstract: The nonlinear dynamics of nanolasers (NLs), an important component of optical sources,
has received much attention. However, there is a lack of in-depth research into the high-quality
chaotic output of NLs and their applications in chaotic secure communications. In this paper, we
make the NLs generate broadband chaotic signals whose time-delay signatures (TDS) are completely
hidden by a phase conjugate feedback structure. And in the two-channel communication scheme, we
make the NLs achieve a combination of a low-latency high degree of synchronization and two-channel
transmission technique, which enhances the security of message encryption and decryption. We also
investigate the effects of system parameters, Purcell factor F, spontaneous emission coupling factor β,
and bias current I on the TDS, as well as the effects of parameter mismatch and injection parameters
on chaos synchronization and message recovery. The results show that the phase conjugate feedback-
based NLs can achieve the suppression of the TDS within a certain parameter range, and it can
achieve high-quality synchronization and enhance the security of chaotic communication under
appropriate injection conditions.

Keywords: nanolaser; chaos; time-delay signature; communication

1. Introduction

Optical chaos has attracted a lot of attention in the last two decades, especially in
terms of potential applications in chaotic secure communications [1,2], high-speed physical
random numbers [3–5], compressed sensing [6], and chaotic lidar/radar [7,8]. However,
the feedback action of the external cavity between the laser and the external reflector
generates a chaotic time-delay signature (TDS) [9,10], and when such chaotic signals
are used as information carriers, they may be extracted by eavesdroppers in order to
obtain the key parameters of the communication system and reconfigure them, which, in
turn, jeopardizes the security of the chaotic communication system [11]. We also need to
focus on the critical issue of laser chaotic bandwidth, which may affect the transmission
capacity in chaotic communication, the distance resolution of chaotic lidar, and the rate of
random number generation. However, the large size problem arising from most systems
consisting of conventional semiconductor lasers and associated auxiliary components
may not be suitable for photonic integrated circuits required for practical applications.
Therefore, we need to explore a small and novel approach involving using NLs as chaotic
entropy sources to generate high-quality broadband chaotic signals and achieve high-
quality synchronization between them [12,13].

Currently, time series with specific time-delay can be extracted using standard sta-
tistical measurement analysis techniques, which mainly include autocorrelation function
(ACF) [14], permutation entropy (PE) [15], and delay mutual information (DMI) [16]. In
recent years, how to suppress TDS has become a popular topic of research, for which
many published papers have proposed various schemes [17–27]. For example, introducing
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multiple feedback loops into the system, exploring complex feedback schemes, and adding
multiple injection paths have all been considered. NLs have a very small size and volume,
and they are able to operate efficiently at low energy inputs with high quantum efficiency. In
addition, NLs have fast modulation response speeds, making them suitable for applications
such as high-speed communications and data processing. In order to explore the effects of
NLs in the integration of photonic circuits, related scholars have conducted experimental
studies of their different structures. such as micro-post [28], nano-pillar [29] and bowtie [30],
Fabry–Perot [31], nanowire [32], and nano-patch lasers [33], where continuous wave lasing
is observed via optical pumping [34] and electrical pumping [35]. The two parameters of
the system, Purcell factor F and spontaneous radiation coupling factor β, have a very great
influence on the dynamic characteristics of the NLs. K.A. Shore et al.’s studies analyzed the
dynamic behavior of the NL under current modulation [36], optical feedback [37], optical
injection [38], and inter-injection [39], respectively, and described in detail the effects of the
relevant parameters, such as the Purcell factor F, and the effects of relevant parameters, such
as spontaneous radiation coupling factor β, on the laser output are elaborated in detail. In
addition, Han et al. further investigated the dynamics of mutually coupled semiconductor
NLs and observed a rich dynamic output [40–43]. Elsonbaty et al. investigated the TDS of a
single NL using a hybrid all-optical and electro-optical feedback scheme and compared the
chaotic characteristics generated under normal optical feedback, phase conjugate optical
feedback, and grating-mirror optical feedback [44]. Xiang [45] et al. demonstrated that
chaotic signals with completely hidden TDS can be output from NLs in a dual chaotic
injection system over a wide range of parameters. Based on the above studies, we can show
that the laser properties are different to those of conventional mirror feedback. It is due to
the property of a phase conjugate mirror, which reverses the phase of the reflected light
with respect to the incident light, resulting in zero external cavity round trip phase change.
From this, it can be predicted that NLs can be well implemented for TDS hiding by means
of phase conjugate feedback, and we further investigate the synchronization characteristics
and communication security under the corresponding structure.

The aim of this paper is that the master nanolaser (MNL) is fed back by the phase
conjugate mirror and then further injected into the two slave nanolasers (SNL1 and SNL2)
in parallel. In the simulation, we will quantify the TDS of the signals by introducing the
autocorrelation function (ACF) and systematically analyze the dynamics of the MNL and
the TDS of the output signals of the system under different feedback parameters. At the
same time, we will study the effect of internal parameter mismatch and the differences
between injection parameters on chaotic synchronization and communication for SNL1 and
SNL2 [46]. The paper is organized as follows: Section 2 describes the delay suppression
and synchronous communication model of an NL through phase conjugate feedback and
parallel injection of SNL1 and SNL2, as well as the corresponding rate equations and
parameter definitions. Section 3 presents the simulation results related to the above study.
Finally, Section 4 provides the basic conclusions based on the simulation results.

2. Theoretical Model

The structure of the NL chaotic system is shown in Figure 1, including the master
nanolaser (MNL) and two slave nanolasers (SNL1 and SNL2). The MNL is fed back by a
phase conjugate mirror, and under appropriate feedback conditions, the MNL exhibits chaotic
oscillation phenomena and generates rich nonlinear dynamics, as shown in Figure 1. The
feedback intensity of the MNL and the injection intensity of the MNL into SNL1 and SNL2
are regulated by variable attenuators (VA1, VA2, and VA3), and the optical isolators (OI1 and
OI2) ensure that the MNL can be unidirectionally injected into SNL1 and SNL2, respectively.
The control parameters in this system include the feedback parameter, injection parameter,
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bias currents I, Purcell factor F, and spontaneous emission coupling factor β. The L-K rate
equation of the NL system studied in this paper is modeled as shown in [38].

dIM(t)
dt = Γ

[
FβNM(t)

τn
+ gn(NM(t)−N0)

1+εIM(t) IM(t)
]
− 1
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IM(t)
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√
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τn
(Fβ + 1 − β)−

gn

(
NS1|S2(t)− N0

)
1 + εIS1|S2(t)

IS1|S2(t) (6)

θ1(t) = ϕM(t)− ϕM(t − τd) (7)

θj(t) = 2π fM|Mτri + ϕS1|S2(t)− ϕM|M(t − τri)− 2π∆ fit(i = 1, 2; j = 2, 3) (8)

FI(t) =

√
2I(t)βN(t)

τn∆t
xI (9)

Fn(t) = −

√
2I(t)βN(t)

τn∆t
xs +

√
2N(t)
τn∆tVa

xn (10)

Fϕ(t) =
1

I(t)

√
2I(t)βN(t)

2τn∆t
xϕ (11)

In the above rate equations, the subscripts ‘M’, ’S1’, and ’S2’ denote MNL, SNL1, and
SNL2, respectively. I(t) is the photon density, ϕ(t) is the phase, and N(t) is the carrier
density. F is the Purcell factor, β is the spontaneous radiation coupling factor, Γ is the
confinement factor, and τn and τp are the carrier lifetime and the photon lifetime. gn is the
differential gain, N0 is the transparency carrier density, ε is the gain saturation factor, and
α is the linewidth enhancement factor. Idc = qIth is the laser operating current, Ith is the
threshold current with respect to F and β, Va is the volume of the active region, e is the
electron charge, and Nth is the threshold carrier density.

In the optical feedback parts of Equations (1) and (2), the feedback strength of the
feedback path kd and the feedback delay τd are included. kd can be expressed as follows [38]

kd = f (1 − R)

√
Rext

R
c

2nL
(12)

where f is the feedback coupling factor, which can be adjusted in the model to determine
the feedback strength kd; c is the speed of light in free space; n is the refractive index; and
L is the feedback cavity length. R is the reflectivity of the NL and Rext is the specular
reflectivity. Optical injection into both from the NL is controlled by the injection rate kri,
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while kri and τri are the injection rate and injection delay, respectively. Rinj is the injection
coefficient, and kri can be expressed as follows [38]:

kri = (1 − R)

√
Rinj

R
c

2nL
(13)
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Figure 1. Architecture for phase conjugate feedback-based time-delay signal suppression and com-
munication in nanolasers. MNL: master nanolaser; SNL1: slave nanolaser 1; SNL2: slave nanolaser 2;
PCM: phase conjugate feedback mirror; VA: variable attenuator; OI: optical isolator; LPF: low-pass
filter; EDFA: erbium-doped optical fiber amplifier; m: modulator; PD: photodiode; m(t): message;
m’(t): decrypted message.

In Equations (9)–(11), the symbols xI , xn, and xϕ are Gaussian distributed random vari-
ables with zero mean and unit variance. The rate equations with phase conjugate feedback
and Langevin noise terms are solved numerically using the Runge–Kutta algorithm. The
Langevin noise is modeled by applying the random noise as computed, where the noise
interval ∆t is 0.5 ps. Table 1 lists some of the important parameters used in the simulation
of the NL system and the corresponding parameter annotations.

In order to quantify the TDS of the signal, we used the autocorrelation function (ACF),
and in the following study, the TDS is considered to be hidden when the peak value of the
ACF is less than 0.2. The ACF is defined as follows [43,44]:

C(∆t) =
⟨[I(t + ∆t)− ⟨I(t + ∆t)⟩][I(t)− ⟨I(t)⟩]⟩√〈
[I(t + ∆t)− ⟨I(t + ∆t)⟩]2

〉〈
[I(t)− ⟨I(t)⟩]2

〉 (14)

where <> denotes the average value of the time series I(t), ∆t denotes the time shift,
ACF denotes a comparison between the similarity of a signal and itself at different points
in time, when the lower the autocorrelation value, the higher the unpredictability of
the chaotic stochastic sequences, as well as the more difficult it is to be extracted into
useful information.
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Table 1. Parameters used in the numerical simulations [38].

Parameter Description Value

Γ Confinement factor 0.645
τn
τp

Carrier lifetime
Photon lifetime

1 ns
0.36 ps

td Feedback delay 0.2 ns
gn Differential gain 1.65 × 10−6 cm3/s
N0 Transparency carrier density 1.1 × 10−18 cm−3

ε Gain saturation factor 2.3 × 10−17 cm3

α Linewidth enhancement factor 5
Va Volume of active region 3.96 × 10−13 cm3

λ Wavelength of NL 1591 nm
R Laser facet reflectivity 0.85

Rext
External facet power

reflectivity 0.95

Rinj Injection ratio 0–0.1
n Refractive index 3.4
L Cavity length 1.39 µm
Q Quality factor 428
f Feedback coupling fraction 0–0.9

3. Simulation Results

In this section, we simulate the laser rate equations of the system using the fourth-
order Runge–Kutta algorithm. Firstly, the nonlinear dynamics of the MNL is investigated,
and suitable parameters are chosen so that the two parallel injected SNLs operate in a
chaotic state. Then, the focus is on the synchronization performance of the two SNLs under
equal and unequal frequency detuning as the injection intensity varies. Through these
studies, we identify the range of parameters that enable the SNLs to be highly synchronized
and further apply them to relevant chaotic secure communications.

The output of the NL can be controlled by varying the feedback parameter to control
the nonlinear dynamical system. Figure 2a,b show the intensity time series and ACF
plots of the MNL at a feedback parameter of 0.02, while (c) and (d) represent the intensity
time series and ACF plots of the MNL at a feedback parameter of 0.2. Here, the relevant
parameters are set as F = 14, β = 0.05, I = 2Ith, and Ith = 1.127 mA. It can be seen from the
Figure 2 that the MNL works in chaotic state when the feedback parameters are 0.02 and 0.2.
At the same time, their corresponding ACF values at the time-delay of 0.2 ns are both less
than 0.2, indicating that the TDS of the output chaotic signal is completely hidden. Then,
the ACF line graphs of the MNL are investigated according to the variation in the feedback
parameters under F = 14, β = 0.05, F = 14, β = 0.1, and F = 30, β = 0.1, respectively. From
Figure 3, it can be observed that as the feedback parameters increase, the ACF value of the
MNL gradually increases in all three different cases, but the corresponding ACF values in
this interval range are less than 0.2. This indicates that the delay of the MNL can be well
suppressed and is conducive to the subsequent study of the synchronous communication
of the two SNLs. When F = 30 and β = 0.1, the ACF of MNL greatly increases with the
increase in the feedback parameters because the larger the values of F and β, the greater
the damping of the relaxation oscillation of NL [47]. Therefore, we can use medium F and
small β to better hide the TDS of NLs in a wider parameter space.

In practice, parameter mismatch is inevitable. We proceed to study the synchronization
performance in the presence of mismatched parameters between the two SNLs.

There are two different cases: Case 1 is that MNL is equal to the frequency detuning
between SNL1 and SNL2, and Case 2 is that MNL is unequal to the frequency detuning
between SNL1 and SNL2.
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3.1. Case 1: MNL Is Equal to the Frequency Detuning between SNL1 and SNL2

We investigate the correlation coefficient CTR of the two SNLs with respect to the
variation in the injected intensity kinj1 and kinj2 when the MNL is equal to the frequency
detuning of the two SNLs. In the simulation, we choose different parameter values as
∆ f1 = ∆ f 2 = 10 GHz, ∆ f1 = ∆ f 2 = 15 GHz, and ∆ f1 = ∆ f 2 = −15 GHz. It can be seen in
Figure 4a that when the frequency detuning ∆ f1 = ∆ f 2 = 10 GHz, the region of highly
synchronous SNL1 and SNL2 is almost in the range of a 45◦ angle and will be larger and
larger with the increase in the injection intensity. When the frequency detuning is increased
to 15 GHz in Figure 4b, it is clearly observed that a higher injection strength is required to
enable the two SNLs to be highly synchronized. In Figure 4c, when the frequency detuning
is −15 GHz, it can be clearly observed that the range of achieving high synchronization
between the two SNLs is much wider, and a wider region can be achieved with good
synchronization at a very small range of injection strength.
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3.2. Case 2: MNL Is Unequal to the Frequency Detuning between SNL1 and SNL2

Then, we investigated the case when the MNL is not equal to the frequency detuning
of the two SNLs. In Figure 5a, when the frequency detuning ∆ f1 = 10 GHz, ∆ f 2 = 15 GHz,
the synchronization effect of the two SNLs is obviously weakened, and a larger injection
intensity is required to achieve a highly synchronized effect. In Figure 5b,c, when the fre-
quency detuning is ∆ f1 = −15 GHz, ∆ f 2 = 10 GHz and ∆ f1 = −15 GHz, and ∆ f 2 = 15 GHz,
respectively, the synchronization effect achieved is similar to that of Figure 5a. At high in-
jection intensity, the two SNLS will be locked via MNL injection so that the synchronization
effect between them is less affected by the change in the injection rate. Finally, in Figure 5d,
when the frequency detuning ∆ f1 = −15 GHz and ∆ f 2 = −5 GHz, it can be seen that when
the frequency detuning is negative, the synchronization performance of the two SNLs is
better than that shown in the above figure. This is because when the frequency detuning of
the two SNLs is negative, their resonant frequencies will be closer to each other, which is
more helpful for promoting synchronization between them.

Photonics 2024, 11, x FOR PEER REVIEW 8 of 13 
 

 

 
Figure 5. Correlation coefficients CTR of SNL1 and SNL2 under frequency detuning Δ𝑓  and Δ𝑓 : 
(a) Δ𝑓  = 10 GHz, Δ𝑓  = 15 GHz; (b) Δ𝑓  = −5 GHz, Δ𝑓  = 10 GHz; (c) Δ𝑓  = −15 GHz, Δ𝑓  = 15 
GHz; (d) Δ𝑓  = −15 GHz, Δ𝑓  = −5 GHz. 

Subsequently, we investigate the ACF of SNL1 at frequency detuning of −15 GHz, 10 
GHz, and 15 GHz, respectively. From Figure 6, it can be found that the TDS of SNL1 are 
all well suppressed at an injection strength of 300 ns−1. This is mainly due to the fact that 
the high injection rate causes SNL1 to be locked by the MNL injection, and, thus, the TDS 
of MNL are shown to be well hidden. The TDS of SNL2 is similar to those of SNL1 due to 
the injection strength 𝑘  = 𝑘  in the subsequent study. 

 
Figure 6. ACF of SNL1 at frequency detuning of Δ𝑓 : (a) Δ𝑓  = −15 GHz; (b) Δ𝑓  = 10 GHz; (c) Δ𝑓  
= 15 GHz. 

0 1 2 3 4 5 6
Time(ns)

0

0.5

1

A
CF

0 1 2 3 4 5 6
Time(ns)

0

0.5

1

A
CF

0 1 2 3 4 5 6
Time(ns)

0

0.5

1

A
CF

(a)

(b)

(c)

Figure 5. Correlation coefficients CTR of SNL1 and SNL2 under frequency detuning ∆ f1 and ∆ f 2:
(a) ∆ f1 = 10 GHz, ∆ f 2 = 15 GHz; (b) ∆ f1 = −5 GHz, ∆ f 2 = 10 GHz; (c) ∆ f1 = −15 GHz, ∆ f 2 = 15 GHz;
(d) ∆ f1 = −15 GHz, ∆ f 2 = −5 GHz.
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Subsequently, we investigate the ACF of SNL1 at frequency detuning of −15 GHz,
10 GHz, and 15 GHz, respectively. From Figure 6, it can be found that the TDS of SNL1 are
all well suppressed at an injection strength of 300 ns−1. This is mainly due to the fact that
the high injection rate causes SNL1 to be locked by the MNL injection, and, thus, the TDS
of MNL are shown to be well hidden. The TDS of SNL2 is similar to those of SNL1 due to
the injection strength kinj1 = kinj2 in the subsequent study.
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To further investigate the effect of internal parameter mismatch on the synchronization
of the two SNLs, we fixed the parameters of SNL1 and varied the parameters of SNL2

according to the associated mismatch ratio u, where u = ΠSNL1−ΠSNL2

ΠSNL1
. We also fixed the

external parameters, such as injection strength and frequency detuning, to be the same
for both SNLs. The variation in the associated peak CTR with the mismatch ratio u when
kinj1 = kinj2 = 300 ns−1 is shown in Figure 7a. It can be observed from the figure that the
synchronization performance corresponding to the five mismatched parameters is also
different at moderate injection intensity. As the parameter mismatch ratio increases, the
corresponding correlation peak CTR decreases, but the overall value of CTR is greater than
0.95, indicating that the system can still achieve high-quality chaotic synchronization. When
the injection rate is very large, i.e., kinj1 = kinj2 = 600 ns−1, it can be seen from Figure 7b that
the variation in the parameter mismatch u has less effect on the chaotic synchronization.
Therefore, the difference in the synchronization and decoding characteristics of the system
when the parameters are mismatched is not significant, which also indicates that that the
system is robust to parameter mismatch.

Before the message encoding and decoding process, we fixed the frequency detuning
of both SNLs to −15 GHz and investigated the corresponding transmission bandwidths.
Figure 8 shows the spectrograms of the chaotic carriers generated by the SNL1 by varying
F and β at injection currents of I = 2Ith and I = 4Ith, respectively. We define the effective
bandwidth as the range between DC and the frequency containing 80% of the spectral
power. When the injection current is set at I = 2Ith, the effective bandwidths are 36.6 GHz,
22.8 GHz, and 13.3 GHz for (F, β) values of (14, 0.05), (14, 0.1), and (30, 0.1). In comparison,
the effective bandwidths for the same (F, β) settings are 35.8 GHz, 21.8 GHz, and 11.8 GHz
when the injection current is set at I = 4Ith. These results show that the system is capable of
achieving broadband chaos and, hence, high-speed message transmission when all factors
are considered. However, we also need to ensure that the TDS can be completely hidden to
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ensure the security of the communication and prevent information leakage. By choosing
the appropriate F, β, and injection current, i.e., F = 14, β = 0.05, and I = 2Ith, the system can
be made to stably output chaotic signals with time-delay hiding, bandwidth enhancement,
and a high degree of unpredictability.
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Figure 8. Power spectra for SNL1 under different values of F, β, and injection current: (a–c) I = 2Ith
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Finally, we conducted a related study of the encoding and decoding process of the
messages. Based on the above studies, the frequency detuning and injection rate parameters
were fixed at −15 GHz and 300 ns−1, enabling the two SNLs to have low latency, high
bandwidth, and high synchronization performance. The CMO encryption method is used
in Figure 9, where a small-amplitude message is used to modulate the laser signal output.
The mathematical expression is Iext(t) = I(t)[1 + hCMOm(t)], where hCMO denotes the
modulation depth and m(t) denotes the message to be transmitted. In a two-channel
communication system, the drive signal from the MNL is transmitted through channel 1 for
high-quality chaotic synchronization between SNL1 and SNL2, while the modulation signal
Iext(t) is transmitted through channel 2. Therefore, at the SNL1 end, we can obtain the
differential signal by subtracting the output of SNL1 from the transmitted signal and then
filter the differential signal using a fifth-order Butterworth filter with a cutoff frequency
equal to 0.6 × BS to obtain the recovered message (where BS is the bit rate of the message,
and BS = 8 Gbit/s is taken as an example in this study).
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Figure 9. Coding and decoding process of SNL1 and SNL2 at a modulation depth of hCMO = 0.6.
(a1–a3) The original message at 8 Gbit/s, (b1–b3) the recovered message, and (c1–c3) the eye diagram.
(a1–c1) kr2 = kr3 = 300 ns−1 and no mismatch, (a2–c2) kr2 = kr3 = 300 ns−1 and mismatch of u = 0.1,
and (a3–c3) kr2 = kr3 = 600 ns−1 and mismatch of u = 0.1.

Figure 9 shows the results of the message encryption and decryption process. Firstly,
we illustrate the quality of the recovered messages without considering parameter
mismatches, using the quality factor Q = (I1 − I0)/(σ1 + σ0) and the eye diagram,
where I1 and I0 are the average optical power values of bits “1” and “0”. σ1 and σ0 are the
corresponding standard deviations. We stipulate that the quality factor Q > 6 is sufficient
for communication, i.e., BER < 10−9. The original message m(t), the recovered message
m′(t), and the corresponding eye diagrams are depicted for a hCMO = 0.6 modulation
depth. From Figure 9(a1–c1), it can be seen that the message can be fully recovered at a
moderate injection rate without parameter mismatch, corresponding to Q = 10.41, and
the eye diagram is clear and widely open. Then, parameter mismatches are introduced
for SNL2: τn

SNL2 = (1 + u)τn
SNL1 , gn

SNL2 = (1 − u)gn
SNL1 , τp

SNL2 = (1 − u)τp
SNL1 ,

αn
SNL2 = (1 − u)αn

SNL1 , and N0
SNL2 = (1 + u)N0

SNL1 . This is shown in Figure 9(a2–c2),
where the mismatch ratio u = 0.1 is set and the injection rate is constant. We can
clearly see that the value of the quality factor Q of SNL2 decreases to 9.99, but it still
satisfies the requirement that Q is greater than 6, and, thus, the eye diagram is still
able to demonstrate openness, i.e., it is better able to recover the same message. This
corroborates with the effect of parameter mismatch on synchronization performance
described above and proves that the system is robust to parameter mismatch. Finally,
keeping the mismatch ratio u = 0.1 and increasing the injection rate to a reasonable
600 ns−1 is used to compensate for the degradation due to mismatch. The corresponding
results are shown in Figure 9(a3–c3), where the value of quality factor Q is 10.24, which
further improves the message recovery. However, the security of the system may be
affected when the injection rate is too large, so we should choose appropriate injection
parameters to enable the system to achieve a high synchronization performance and
enhance the security of chaotic communication.

4. Conclusions

In summary, the NL is capable of generating high-quality chaotic signals with low
time-delay, wide bandwidth, and high synchronization signature through phase con-
jugate feedback and then parallel injection into SNL1 and SNL2. The effects of system
parameters, Purcell factor F, spontaneous radiation coupling factor β, and bias current
I on the TDS hiding and bandwidth of chaotic output from the NL are investigated
in detail. Then, we applied the output chaotic signals to two-channel communication
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and further investigated the effects of injection parameters, as well as internal param-
eter mismatch, on chaotic synchronous communication. According to this study, the
selection of appropriate injection parameters can make the NL stably output chaotic
signals with time-delay hiding, bandwidth enhancement, and high unpredictability,
as well as enhance the security of chaotic communication. The research presented in
this paper offers important theoretical guidance for the practical application of NL
chaotic systems.
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