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Abstract: Swept-source optical coherence tomography (SS-OCT), benefiting from its high sensitivity,
relatively large penetration depth, and non-contact and non-invasive imaging capability, is ideal
for human skin imaging. However, limited by the size and performance of the reported optical
galvanometer scanners, existing portable/handheld OCT probes are still bulky, which makes contin-
uously handheld imaging difficult. Here, we reported a miniaturized electrothermal-MEMS-based
SS-OCT microscope that only weighs about 25 g and has a cylinder with a diameter of 15 mm and
a length of 40 mm. This MEMS-based handheld imaging probe can achieve a lateral resolution of
25 µm, a 3D imaging time of 5 s, a penetration depth of up to 3.3 mm, and an effective imaging field
of view (FOV) of 3 × 3 mm2. We have carried out both calibration plate and biological tissue imaging
experiments to test the imaging performance of this microscope. OCT imaging of leaves, dragonfly,
and human skin has been successfully obtained, showing the imaging performance and potential
applications of this probe on human skin in the future.
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1. Introduction

As the first protective barrier from the outside world, the skin is the largest organ of
human body, and always closely responds to the balance of the endocrine environment [1,2].
The morphological structure of skin tissue is one of the important concerns that experts
pay attention to regarding the physiological health of skin [3,4]. Existing clinical imaging
techniques including high-frequency ultrasonography (US) and skin surface microscopy
have been widely used for the diagnosis of numerous skin diseases, but still suffer from
some limitations, such as poor contrast and a lack of depth information [5,6]. At the same
time, benefiting from a high resolution, good imaging contrast and penetration depth, some
other optical imaging modalities like laser speckle contrast imaging and photoacoustic
microscopy have also been applied to study the vascular microcirculation of skin surface for
studying the functional and structural information [7,8]. For example, Zhu et al. reported
a transmission-type laser speckle contrast imaging technique for detecting blood flow
distribution in thick tissue, successfully obtaining the information and dynamic changes
in blood flow distribution in human subcutaneous skin with non-contact and a high
resolution [9]. Yang et al. reported several innovative photoacoustic imaging techniques,
such as 532/1064 nm dual-wavelength photoacoustic microscopy, a switchable optical
and acoustic resolution photoacoustic dermoscope, and a miniaturized photoacoustic
probe [10–12]. However, the resolution of laser speckle contrast imaging makes it hard
to observe the capillary vasculature under a micro-level and still needs to be improved,
and photoacoustic imaging always requires coupling gels, being easily affected by the
bubbles inside the gels [13–15]. Featuring high optical sensitivity, a large penetration depth,
non-contact and non-invasive imaging capability, optical coherence tomography (OCT)
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is considered a promising technology for human skin imaging [16]. Fujimoto et al. and
Fercher et al. successfully developed the first time-domain OCT (TD-OCT) and Fourier-
domain OCT (FD-OCT) in 1991 and 2002, respectively [17,18]. With faster imaging speed
and good sensitivity as there is no need to move the reference arm to obtain the depth
information, FD-OCT attracts more attention. Utilizing different laser sources and detection
methods, two FD-OCT techniques, spectra-domain OCT (SD-OCT) and swept-source OCT
(SS-OCT) were developed and applied in dermatology [19,20]. For example, Anthony
J. Deegan et al. used a self-made clinical prototype OCT system to acquire OCT/OCTA
images of patients undergoing medium and thick skin grafts after severe skin burns
at multiple time points and multiple locations [20]. Compared with SD-OCT, SS-OCT
has larger bandwidth, deeper penetration of biological tissues, and a high instantaneous
coherence of sweep light sources, allowing for deeper longitudinal imaging ranges. SS-OCT
is suitable for real-time observation of skin tissue structures with high resolution, fast
imaging speed and relatively large imaging depth [21].

Most of the existing SS-OCT systems usually utilize galvanometer scanners for laser
scanning, with a size similar to that of a tabletop optical microscope [22,23]. Handheld
SS-OCT probes were proposed, but they were still bulky and inconvenient for long-time
handheld imaging [24–26]. Thus, it is necessary to find miniaturized fast scanners for
handheld SS-OCT imaging [27]. Micro-electro-mechanical system (MEMS) micromirrors
are small and fast, and can thus be used to reduce the size and weight of imaging probes in
optical imaging systems [28]. Many kinds of MEMS-based imaging techniques have been
reported and applied in human skin imaging, demonstrating the feasibility of realizing
miniaturized, portable and handheld imaging [26–30].

In this study, we proposed a miniaturized electrothermal-MEMS-based SS-OCT micro-
scope, with a small size and light weight for long-time handheld clinical use. We applied
the probe to capture the structure of some biological samples, such as the veins of leaves
and the wings of a dragonfly. We also employed it to observe the tissue structures of
a volunteer’s finger, fingernails and wounded skin, showing the clinical feasibility and
potential of this technology.

2. Materials and Methods
2.1. System Configuration and the Imaging Probe Design

Figure 1 shows the configuration of the SS-OCT system (LVM-1000, Light Vision,
China). A swept laser source (HSL-20, Santec, Japan) was utilized to emit a 1310 nm laser
beam with a 100 nm bandwidth. The laser is transmitted through a single-mode fiber
(SMF) and divided into two laser beams via a 2 × 2 coupler. One laser beam reaches
the mirror in the reference arm through a polarization controller (PC) and a collimator
(CL), while the other laser beam passes through the sample arm whose end is an MEMS-
OCT probe. Interference signals are produced by the two laser beams reflected back from
the reference arm and sample arm (imaging probe), respectively, and are detected via a
balanced photodetector (PDB570C, Thorlabs, USA). Then, the signals are collected using a
high-speed data acquisition card (ATS-9350, Alazar Inc., Canada) with a sampling rate of
250 MS/s. An MEMS controller is used to drive the MEMS mirror to generate 2D raster
scanning and thus realize 3D OCT imaging. An external trigger signal is used to keep the
synchronization among the laser emitting, MEMS scanning, and data acquisition.

In the bottom right corner of Figure 1, the schematic of the imaging probe is shown in
the black dash box, with all optical and electrical components inside a small handheld tube.
The optical path is designed as simply as possible, and a minimum number of components
is used to reduce the volume size and weight of the probe. In detail, the laser beam output
from the fiber is collimated via a fiber collimator (F230FC-C, Thorlabs Inc., USA), and then
converged using a doublet lens with a diameter of 6 mm and a focal length of 30 mm
(GCL-010601, Daheng Optics, China). An electrothermal MEMS scanner (WM-L5-5, WiO
Tech., China) is used to reflect the converged light beam to the sample surface, and scans
the laser beam in a raster pattern for three dimensional (3D) imaging. The miniaturized
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handheld probe is a cylinder with a diameter of 15 mm and a length of 40 mm, with a
weight of 25 g. It has a spatial resolution of 25 µm, a temporal resolution of 5 s, and an
imaging FOV of 3 × 3 mm2.
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2.2. Sample Preparation and Experimental Process

The commercial and custom light stereotypes with target patterns are used to test the
basic imaging performance of the imaging probe. In addition, two types of leaves with
thick and dense veins were chosen and boiled in a 10% sodium hydroxide solution for
5 min. When the leaves turned black, they were rinsed carefully with clean water. A small
test tube brush with soft hair was used to gently brush off the rotten mesophyll and clean
it until only the veins were left. Finally, the leaf veins were dried to form experimental
specimens for imaging. Dragonfly samples were purchased online, and the wings were
partially used for biological imaging tests. For skin imaging, due to the characteristics of
contactless, safe, and non-destructive imaging mode, after seeking the oral and written
consent of a healthy volunteer, we used the probe to perform simple imaging operations on
various parts of her skin, without involving any complex procedures. The single imaging
time was of about 5 s, and all skin imaging experiments were finished within a few minutes,
which also verifies the advantages of portability and speed of skin imaging by using our
proposed handheld probe.

2.3. Data Acquisition and Processing

Commercial software (LVM-1000, OCT Viewer, Light Vision, China) was used for data
acquisition, processing, and image reconstruction. Within the software’s platform, the
underlying code was written based on Labview2019 software, with the functions of original
signal filtering, Fourier transform processing, image reconstruction based on acquired 3D
data, and image brightness enhancement, among others.

3. Results
3.1. Parameter Testing of the MEMS and MEMS-Based Handheld Probe

As the most important scanning components, a photograph of electrothermal MEMS
inside the probe is also shown in Figure 2a. In Figure 2b,c, the testing curve of MEMS shows
that the optical deflection angle is proportional to the driver voltages, and allowed for a
maximum optical scanning angle of 8 degrees, with a 4 V DC voltage on the arms of MEMS,
which corresponds to a maximal scanning range of 3 mm. We found that even though
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the MEMS mirror deflection has a similar linear correspondence to the voltage, when the
given voltage is smaller than 1.6 V, and between 1.6 V to 4 V, it still has slightly different
slopes. This is related to the circuit characteristics of the MEMS chip and inconsistency of
the resistance values of the four MEMS drive arms. This is a well-known phenomenon for
electrothermal MEMS mirrors [31,32].
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Figure 2. Photograph of MEMS and its performance testing. (a) Photograph of the MEMS under
optical microscopy. (b) The testing optical deflection angle and driver voltage curve of MEMS. (c) The
scanning range of the MEMS under different optical deflection angles.

A photograph of the probe is shown in Figure 3a, which is miniaturized and suitable
for handheld imaging. To evaluate the spatial and lateral resolution of the SS-OCT probe, we
imaged the pattern of a resolution plate. The minimum 5–3 line pair can be distinguished,
indicating a practical imaging resolution of 25 µm, as shown in Figure 3b. We also tested
the penetration depth of the probe by imaging the stack of cover glass with a known layer
thickness of 150 µm. Figure 3c shows that the maximum number of observed cover glass
is about 22, which corresponds to the penetration depth of 3.3 mm. In addition, we also
imaged the photolithography patterns with known scales, and tested the FOV of the probe,
which is about 3 × 3 mm2, as shown in Figure 3d.
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Figure 3. Photograph of the handheld SS-OCT probe and its imaging testing including imaging
resolution, penetration depth and FOV. (a) Photograph of the imaging probe. (b) Using the microscope
to image the known resolution plate. (c) The imaging result of the biological cover glass sheet stack,
with a known thickness of each glass sheet. (d) The imaging result of a custom mask plate with
known photolithography patterns for FOV calculation.

3.2. The Ex Vivo Biological Sample and In Vivo Human Skin Imaging Results

To determine the performance of the miniaturized SS-OCT probe, we applied it to
observe the biological specimens with dense vein structures. Figure 4a,b shows the imaging
results of the veins’ texture in two leaves, showing sparsely and densely reticular structures,
respectively. In addition, we also captured the veins of dragonfly wings, which were
quadrilateral or pentagonal grids, as shown in Figure 4c. The enlarged view of a localized
dragonfly wing marked with a yellow dash box shows that the wings were filled with
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complicated columnar structures, which played important roles during flight, helping to
keep the wings from becoming stuck to each other with water and dust. These results
demonstrated the potential of the SS-OCT microscope in high-resolution observation of
microstructures of biological specimens.
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Figure 4. Using the SS-OCT microscope to observe the microstructure of biological specimens like
leaves and dragonfly. (a,b) The sparse and dense vein structure of two strains of leaves. (c) The wing
structure of a specimen of dragonfly and an enlarged view of a localized dragonfly wing marked
with a yellow dash box.

We also carried out in vivo skin imaging experiments, including the fingernails, finger
joints and the inner wrist, by using the miniaturized SS-OCT microscope. Figure 5(a-1)
shows the photograph of a fingernail under biological microscopy. We carried out OCT
imaging on the marked local site (red box), obtained the 3D visualization and x-z section
view of the fingernail, and found densely and regularly connective tissue structures, as
shown in Figure 5(a-2),(a-3). Furthermore, we employed the probe to observe the skin tissue
structure and deep blood vessels on human finger joints, as shown in Figure 5(b-1)–(b-3).
The skin tissue structure of the volunteers’ inner wrist was visualized using OCT imaging,
including the epidermal folds, internal blisters, and damaged skin tissue on the scalded
site, as shown in Figure 5(c-1)–(c-3). In the soft skin tissue, obviously irregular boundaries
due to the rich biological compositions were observed. The in vivo imaging results also
showed that the miniaturized probe had the capability to visualize skin structures with
satisfactory imaging performance.
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4. Discussion

SS-OCT is a popular imaging technology and is widely used in fundamental and
clinical studies [33–35], especially for biological tissue imaging, considering that skin tissue
has strong optical absorption and scattering characteristics, which will affect the penetration
depth of lasers. In order to maximize the imaging depth, the near-infrared band is generally
used for imaging, such as 1060 nm or 1310 nm. With an increase in the wavelength, the
scattering decreases strongly. Therefore, we finally selected the 1310 nm wavelength to
minimize the scattering even though 1310 nm has stronger absorption from the water than
1060 nm. While imaging, 3D imaging with high performance can be realized using either
a motor stage or galvanometer. However, motor stages have a slow scanning speed and
will cause motion artifacts, and this scanning method is gradually eliminated. On the
other hand, the use of galvanometer scanning for imaging can solve the above problems,
but still has a bulky size, which will lead to operation fatigue with handheld imaging
for a long time [36,37]. With the rapid development of MEMS, electrothermal MEMS
mirrors have been widely used in biological imaging, which benefits from their low-voltage
driving, large scanning angle, small size and low cost [30,38]. In this study, we applied
electrothermal MEMS to SS-OCT imaging, and demonstrated a handheld imaging probe
with a simple optical design and high imaging performance, which greatly reduces the
instrument’s size and weight, and provides a new technology for biological imaging.

This paper describes a handheld SS-OCT probe with an internal simple optical light
path and relative miniaturized mechanical structure that is easy to install. Using a 2D
electrothermal MEMS for laser scanning and imaging can effectively reduce the size and
weight of the probe, with a low cost. We tested its imaging performance including a
lateral resolution of 25 µm, a penetration depth of 3.3 mm, and a scanning range of
3 × 3 mm2, among other factors. In addition, we also used the handheld probe to carry
out high-resolution imaging of in vitro biological samples and in vivo human skin tissue,
demonstrating a good three-dimensional imaging performance. It is worth explaining that
the theoretical penetration depth of a 1310 laser is large, but the actual biological imaging
depth is still relatively shallow, which is closely related to the physical characteristics of
different tissues. For example, the nail imaging depth is only of about 0.8 mm due to the
thick interdigital cortex, and the skin tissue can only reach about 1.5 mm imaging depth
because of the epidermal pigmentation and blood vessel absorption in the dermis, which
may reduce the useful backscattered light (Figure 5(a-3),(b-3),(c-3)). The more tender skin
tissue, such as the face skin and the inner arm skin, will allow for a more satisfactory
imaging depth. Even so, the nail imaging results still clearly show the distribution of the
stratum corneum structure, showing the potential to study gray-nail-related diseases. The
human finger abdominal imaging results also demonstrate that the SS-OCT probe has
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potential applications in arthritis studies. In addition to benefiting from the non-contact
and non-invasive imaging capability, this MEMS-based SS-OCT microscope may have good
potential applications in the dermatology of burn and cosmetic surgery.

It is worth considering that our proposed handheld MEMS-based microscope still has
some limitations and needs further improvements. The relatively small size of the MEMS
mirror plate may cause some optical loss and decreased penetration depth, while limiting
the size of the spot irradiated will also lead to insufficient imaging resolution. Although
an MEMS can achieve scanning with safe and low voltages, the scanning angle and the
performance of resistance to vibration and drop damage still need to be improved. In the
future, it is important to develop or use innovative MEMS scanners with a larger scanning
angle and better anti-fall characteristics. We also need to optimize the internal design of
the handheld microscope to improve the lateral resolution, FOV and imaging stability. The
design of a user-friendly handheld appearance should also be considered to make it more
practical and useful.

5. Conclusions

In summary, we developed a miniaturized electrothermal MEMS-based SS-OCT mi-
croscope probe, which has the characteristics of small size, light weight, high resolution and
fast imaging speed. We carried out both in vitro biological specimen imaging and in vivo
human skin imaging experiments. The imaging results showed that the microscope has
the potential to examine biological tissue structures in human skin. Our proposed MEMS-
based handheld SS-OCT microscope has a simple structure, which is more lightweight
and portable to use. Within the probe, the scanning voltage of the MEMS mirror is also
safer and more reliable than that of the existing benchtop or galvanoscope-based imaging
terminals. In the future, we need to optimize the key scanning components of the MEMS
probe to achieve a better imaging performance, such as higher resolution, larger FOV, a
more user-friendly design and more comfortable use. We will also add more functional
modules inside the system, combined with other imaging modes such as photoacoustic
microscopy or confocal fluorescence microscopy, to obtain richer structural and functional
information. These new techniques can be used for the diagnosis and treatment of clinic
dermatoid diseases of scar hyperplasia, melanoma, pemphigus, acne, and psoriasis, among
others. Meanwhile, we will also continue to use the proposed SS-OCT probe to carry out
more profound biological application research to study some developmental processes and
mechanisms of diseases.
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