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Abstract: On an example of a system of three/four/five/six different coupled coaxial silicon disks, we
realize a series of avoided crossings of resonances (ACRs) with respect to the different morphologies
for the different scales of each disk. Each next step of ACR accompanied by the optimization processes
of all previous ACRs contributes almost one order of magnitude to the Q-factor. As a result, we
achieve unprecedented values for the Q-factors: 6.6 · 104 for three, 4.8 · 106 for four, 8.5 · 107 for five
and several billions for six free standing silicon disks. Comparisons to such prominent methods as
whispering gallery modes or quasi bound states in the continuum to boost the Q-factor demonstrate
the tremendous advantage of the present approach not only in terms of Q-factor values but also in
terms of mode volumes. Multipole analysis of the final hybridized resonant mode explains such
extremely large Q-factor values. The analysis shows a strong redistribution of radiation owing to the
almost-exact destructive interference of the dominating complex multipole radiation amplitudes.

Keywords: resonant modes; avoided crossing; high Q-factor

1. Introduction

Since the famous paper by Gustav Mie [1], the engineering of dielectric resonators in
optics and photonics has been a long-standing area for the application of various ideas and
approaches intended to enhance the quality factor Q due to its paramount importance in both
applied and fundamental research. However, there is a fundamental upper limit to the Q-factor
because of the leakage of radiation power from an isolated dielectric resonator into the radiation
continuum [2,3]. There are many ways to enormously boost the Q-factor. For example, one can
use Fabry–Pérot resonances or hide a resonator in a photonic crystal (PhC) [4–7]. Whispering
gallery modes (WGMs) in cavities with convex smooth boundaries, such as cylindrical, spherical
or elliptical cavities, also show giant magnitudes of Q-factor [8–12].

A cardinally different method originates from bound states in the continuum (BICs)
which provide a unique opportunity to confine and manipulate electromagnetic waves
within the radiation continuum (see reviews [13–17]).The BIC phenomenon is based on the
fact that electromagnetic energy can only leak in selected directions, given by diffraction
orders, if the dielectric resonators are arranged in a periodic array [18–20]. Although the
number of resonators N in an array cannot actually be infinite, the Q-factor grows rapidly
with N: quadratically for symmetry protected (SP) quasi-BICs [21–23] or cubically for
accidental quasi-BICs [22,24,25]. However, this method of engineering quasi-BICs with
high Q-factor results in dielectric structures (DS) away from compactness. For example, to
achieve a Q-factor of the order 105, we need at least several tens of silicon disks [23,26,27]
or silicon cuboids [28]. The best results for the Q-factor were reported by Taghizadeh and
Chung [21], with Q∼105 for 10 long identical silicon rods. In general, all of the above
methods of achieving an extremely high Q-factor require an extended DS in which the
mode volume also grows [7,29].
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In the this paper, we present a radical method of boosting the Q-factor in a system of
only a few coupled resonators, each of different scales. Variation of the scales triggers a
cascade of avoided crossings of resonances (ACRs), which allows for the drastic increase in
the Q-factor. As a result, we have achieved giant magnitudes of the Q-factor, significantly
exceeding the Q-factor of quasi-BICs and maintaining nearly the same mode volume
(see Table 1). ACR [30,31] is a general and fundamental phenomenon that describes the
behavior of the eigenfrequencies of an open resonator, which are complex due to their
coupling with the radiation continuum. Whether the resonant frequencies exhibit either
crossing or anticrossing depends on the mechanism of interaction [31–33]. In any case,
two resonances near ACR interfere in constructive and destructive ways. The latter means
of interference increases the Q-factor. As has been demonstrated for different choices
of dielectric resonators [34–42], the Q-factor can be strongly enhanced in the vicinity of
ACR. Example of such a supercavity mode due to the hybridization of resonances is
highlighted by the yellow open circle in Figure 1a in the case of a disk-shaped resonator.
In a single silicon disk with permittivity ε = 12, the Q-factor reaches Q ≈ 1.5 · 102 for
h1/r = 1.4157, as Figure 1b shows. Along with this, the ACR approach to boosting the
Q-factor has been developed for systems of photonic molecules owing to coupling between
resonators [12,35,43–50]. In particular, strong enhancement of the Q-factor has been achieved
for two identical coaxial disks [47,51].

Figure 1. (a) ACR of the two resonant even modes of a single silicon disk with ε = 12 are shown by
the red solid line and the blue dashed/dotted line for variation of the aspect ratio [36]. The insets
show hybridization of modes (the tangential component of the electric field Eφ of the TE modes).
Disks are outlined by green. The black dashed line shows the evolution of the odd resonant mode,
which is decoupled from former modes. (b) Respective considerable enhancement of the Q-factor
due to ACR.

Table 1. Mode profiles and parameters of optimized systems of several coaxial disks.

Mode Profile Re (Eφ) Scales Re (kr) Q Vm
( n

λ

)3

1 h1/r = 1.4157 1.72 1.5 · 102 1.4

2 h1/r = 1.257, r1/r = 1
h2/r = 1.362, L12/r = 0.873

1.76 9.8 · 103 1.6

3 h1/r = 1.292, r1/r = 1.243
h2/r = 1.375, L12/r = 1.78

1.75 5.8 · 104 1.6
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Table 1. Cont.

Mode profile Re (Eφ) Scales Re (kr) Q Vm
( n

λ

)3

4 h1/r = 0.9972, r1/r = 1.0363
h2/r = 1.3709, L12/r = 0.8497

1.76 6.6 · 104 1.4

5

h1/r = 1.0237, r1/r = 1.0398
h2/r = 1.3025, r2/r = 1.2319
h3/r = 1.3629, L12/r = 1.5468

L23/r = 1.3879

1.77 8.5 · 107 1.7

6 h1/r = 1.038, L12/r = 0.734 2.19 5.7 · 103 1.9

7
h1/r = 1.0173, r1/r = 1

h2/r = 1.039, L12/r = 2.2731
L23/r = 0.6585

2.19 9.8 · 105 2

8
h1/r = 0.7988, r1/r = 0.8368
h2/r = 1.0503, L12/r = 1.1424

L23/r = 0.4922
2.2 4.8 · 106 2.1

9

h1/r = 1.2236, r1/r = 1.4054
h2/r = 0.8979, r2/r = 0.8138
h3/r = 1.0573, L12/r = 0.7712
L23/r = 1.0701, L34/r = 0.42213

2.2 4.7 · 109 2.1

10 h1/r = 0.2588, m = 10 4.76 6 · 106 4.9

11
h1 = h2 = h3 = 1.038r

r1 = r2 = r
L12 = L23 = L34 = 0.734r

2.19 2.4 · 103 4.4

2. The Problem Statement

Recently, we have developed a way to enhance the Q-factor by extending the number
of resonators in photonic molecules spaced at different distances on the example of three
and four coaxial silicon disks [52]. As a result, we achieved Q ≈ 106 for four disks of
identical radii. In the present paper, we put forward a novel strategy of cascading ACRs
in a system of N disks in order to achieve unprecedented magnitudes of Q-factor. We
consider disks to be freestanding and coaxial, made of silicon with permittivity ε = 12 for
wavelength λ ≈ 1.55 µm, at which material losses are negligible [53]. The eigenmodes of the
system are classified according to irreducible one-dimensional representations of rotations
around the symmetry axis specified by the azimuthal index m. We will focus on the case
m = 0 since the solutions of Maxwell equations are additionally split by polarization,
which also simplifies the problem. A system of N coaxial disks offers 3N − 1 scales to
vary, in general, the following: N radii rj, N heights hj, j = 1, 2, . . . , N, and N − 1 distances
L12, L23, . . . , LN−1N . Considering that one of the scales should be chosen for dimensionless
ratios, we obtain a total of 3N− 2 parameters. Optimization over this number of parameters,
even for a small number of resonatorsm is an extremely time-consuming computational
problem. It is reasonable to choose systems that are symmetric with respect to the inversion
of the axis of rotational symmetry, which radiates less compared to non-symmetric designs.
Guided by this assumption, Np = fix((3N − 1)/2) scale parameters are left to vary, where
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the term ’fix’ means a rounding to the nearest integers towards zero. Particular cases of the
systems with N = 3, 4, 5, 6 are shown in Figure 2.

Figure 2. (a) Disk inside dimer. (b) Dimer inside dimer. (c) System (a) inside dimer. (d) System
(b) inside dimer. All freestanding disks with ε = 12 are coaxial but have different radii and heights to
form a symmetric structure. The radius of the middle gray disk(s) is used as scale r in the systems.
We assume azimuthal number m = 0 unless otherwise noted.

Our central approach is based on dividing the system into two subsystems: an internal
subsystem of N − 2 disks and an external dimer represented by the first and the last
disks. We assume that the first internal subsystem has already been optimized to find
the hybridized resonant mode ψN−2 with maximal Q-factor. This mode could be even
or odd with respect to the axis inversion. The outer dimer provides the resonant modes
ψ2 of the same symmetry. For variation of scales of the dimer, we have multiple ACRs
of its resonances with the optimized resonance of the internal subsystem. As a result,
we obtain a hybridized resonant mode ψN with enhanced Q-factor of the total system.
However, it must not be supposed that the solution to the problem is finished. The
interaction of two subsystems slightly perturbs the optimized mode ψN−2, which obliges
some fine-tuning of the internal subsystem. Therefore, we must continue the process of
successive optimizations.

Technically, the strategy appears as follows. To enhance the Q-factor, we perform an
optimization procedure in parametric space for initial sets of parameters. Each initial set
leads to a local maximum of the Q-factor. It is reasonable to fix first scale parameters for
the internal subsystem of N − 2 disks tuned to have maximal Q-factors, while the three
remaining scales L12, r1, h1 of the outer dimer evolve in a three-dimensional parametric
space. In view of time consuming calculations, we apply the Nelder–Mead simplex opti-
mization method for the Q-factor in total Np-dimensional parametric space in conjunction
with COMSOL Multiphysics for the finding of complex eigenfrequencies. As a result, we
achieve giant magnitudes of the Q-factor 6.6 · 104 for three, 8.5 · 107 for five silicon disks at
frequency kr ≈ 1.75, 4.8 · 106 for four, and 4.7 · 109 for six silicon disks at frequency kr ≈ 2.2,
maintaining nearly the same mode volume (see Table 1).

3. A Cascade of Avoided Crossings of Resonances in the System of Several
Coaxial Disks
Three Disks

To illustrate the strategy for achieving maximal Q-factor outlined in Section 2, we
consider at first the system of three disks sketched in Figure 2a with four independent
parameters —r1, L12, h1, h2—referring to the radius r of the central disk. First, we place the
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already optimized disk h2/r = 1.4157 (see mode 1 in Table 1) between two disks with the
same aspect ratio and vary the distance L12 only. At a large distance L12/r the resonances
are almost degenerate and marked by ‘x’ in Figure 3a. Drawing closer, the disks interact
according to the law eikL12 /L2

12 [51] because of the radiation of leaky resonant modes via
one disk and subsequent scattering by the others. Couplings between these supercavity
modes split them into three modes with spiral behavior as shown in Figure 3a, with three
Q-factor peaks at corresponding distances as plotted in Figure 3b. Insets show the field
configurations of disks related to these Q-factor peaks. As a result, we obtain a total gain in
the Q-factor four times greater than in the case of the single disk marked by a red cross in
Figure 3b.

Figure 3. (a) The first step of optimization over distance L12 between three identical disks with fixed
parameters h1 = h2 = 1.4153r, r1 = r. (b) Corresponding dependence of the Q-factor. The Q-factor
reaches maxima at L12 = 0.945r, Q = 350 for green line (mode profile Re(Eφ) is shown on the middle
inset of (a)), L12 = 1.525r, Q = 600 for blue line and (mode profile is shown on the left inset of (a)),
L12 = 3.29r, Q = 670 for black line (mode profile is shown on the right inset of (a)). (c) The second
step of optimization over h1/r with fixed L12 = 1.52r, h2 = 1.4157r, r1 = r. The Q-factor (d) reaches
maximum at h1 = 1.4031r, Q = 670.

In the next step of the optimization method, we fix L12/r = 1.52, at which we obtain
the maximum value of Q = 600, and vary the height of outer disks h1. This variation gives
the ACR of Fabry–Pérot-like mode, which depends strongly on h1, and the Mie-like mode,
which depends weakly on h1. This phenomenon, illustrated in Figure 3c, leads to a further
enhancement of the Q-factor up to Q = 670, as shown in Figure 3d.
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At the third step, we allow the radius r1 of the outer disks to vary, while all other
parameters are fixed to match the maximum Q-factor in the second step. In contrast to the
previous case, the Mie-like resonant mode of the outer disks is strongly dependent on r1,
while the Fabry–Pérot-like mode is weakly dependent on r1. A selected event of ACRs of
these modes is shown in Figure 4a, which again raises the Q-factor up to 800.

Variation of the height of the inner disk h2, while all other parameters are fixed for
Q = 800, closes the first-round optimization procedure in full four-dimensional parametric
space. The fourth step, as shown in Figure 4c, boosts the Q-factor twice compared to the
previous step, as seen in Figure 4d. Repeating these rounds, at the end of the optimization
procedure, we obtain Q = 6.6 · 104 (see the mode 4 in Table 1).

1.1 1.2 1.3 1.4
1.7

1.72

1.74

1.76

1.78

1.1 1.2 1.3 1.4
0

200

400

600

800

1.3 1.4 1.5 1.6
1.65

1.7

1.75

1.8

1.3 1.4 1.5
0

500

1000

1500

(a) (b)

(c) (d)

Figure 4. Consequent ACRs over variation of different scales in the system of three disks. ACR
(a) and Q-factor (b) for variation of the radius r1 of outside disks. ACR (c) and Q-factor (d) for
variation of the thickness h1 of outside disks.

Another way to shed light on the enormous enhancement of the Q-factor is to see the
evolution of resonances along the trajectory obtained by the traditional gradient descent
method. This method gives us point X∞ in a parametric space with local maximum of the
Q-factor, which is the limit point of iterations

Xn+1 = Xn + η∇Q(Xn), n→ ∞, (1)

with the appropriately chosen step η.
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The total result of the method can be represented as a trajectory in four-dimensional
parametric space, whose length is determined as a curvilinear integral

S =
∫ X∞

X0

∇Fds, (2)

where
F =

1
r

√
h2

1 + h2
2 + L2

12 + r2
1, (3)

and X0 is an initial point of evolution. The evolution of the three relevant complex eigen-
frequencies of the three-disk system is presented in Figure 5 as a function of length S. In
Figure 5, we can see typical ACR-like behavior: the real parts of the green and blue lines
cross (Figure 5b), while the imaginary parts repel each other (Figure 5c). The interaction
of at least three eigenfrequencies results in enormous enhancement of the Q-factor on the
red line.

Figure 5. (a) Evolution (1) of complex eigenfrequencies in the four-dimensional parametric space of
all scales in a system of three coaxial disks (a). Respectively the real (b) and imaginary (c) parts of
these eigenfrequencies vs the integral S/r (2). X0 is given by r1 = r, h1 = r, L12 = 0.945r, h = 1.4157r.
The final point X∞ corresponds to the mode 4 in Table 1.

There are a few points in the full four-dimensional parametric space to which the
optimization method converges. In this section, we present only the most outstanding
results which exceed the values of the first iteration shown in Figure 4 by several orders
of magnitude.

Among the local maxima of the Q-factor, there are eigenfrequencies with unprece-
dented Q = 5.8 · 104 and Q = 6.6 · 104, as shown in Figure 6. In both cases, we have very
similar supercavity modes in the middle disk, while the structure of the EM field in the
outer dimer is different. It is worth noting that the optimized mode for five disks (mode 5 in
Table 1) is something of a combination of the above modes; the EM field in disk 1 looks like
the EM field in disk 1 of mode 4, while the EM field in disk 2 looks like the EM field in disk
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1 of mode 3 in Table 1. Thus, we can conclude that the outer dimer plays an important role
in the resonant shielding of the supercavity mode radiation. Because of the even symmetry
of the supercavity mode, there are no ACRs of this mode with resonant odd dimer modes.

Next, let us consider the four coaxial disks sketched in Figure 2b. By virtue of inversion
symmetry, we represent the system in the form of two dimers: internal and external. In
total, we have five scale parameters for ACRs: two heights h1 and h2; the two lengths of the
dimers expressed via the two distances L12 and L23; and, finally, the radius r1 of the outer
dimer. All parameters are considered in respect to the radius of the internal dimer r.

We omit the iteration steps for all five parameters of the system of two dimers. In
addition, the reader can find some scenarios for ACRs for variations of four scales—two
heights and two distances for identical radii r1 = r—in our previous publication [52]. This
allows us to boost the Q-factor up to one million (see mode 7 in Table 1). In the present
paper, we perform the final step by optimizing all five parameters.

Figure 6. Dependence of the Q-factor on h2/r for optimized modes 3 (blue) and 4 (red) in Table 1.

Similar to the case of three disks, shown in Figure 3, we have a Mie-like mode of
the outer dimer, labelled as 1 in Figure 7a, which strongly depends on the radius r1 of
the external dimer. The other two Fabry–Pérot-like modes, labeled as 2 and 3, are mostly
localized in the internal dimer and have weak dependence on r1. As a result, we observe a
cascade of ACRs around r1/r = 0.8, highlighted by yellow open circles, which, however,
do not lead to magnificent enhancement of the Q-factor. In contrast to these conventional
ACRs, we observe a slightly noticeable ACR around r1/r = 0.85 with the Fabry–Pérot-like
modes of the outer dimer. This results in an enormous boosting of the Q-factor up to
almost five million, and it can be explained by the cumulative effect of the interaction of
the nearby resonances.

In Table, 1 we collected the final configurations of systems of five and six freestanding
coaxial silicon disks after the optimization procedure in parametric spaces of dimensions
7 and 8, respectively. It can be seen that the outer dimer almost completely shields radiation
from the inner subsystem due to the ACR of the Fabry–Pérot-like resonant mode of the
external dimer with the resonant mode of internal subsystem, which has already been
optimized for the maximum Q-factor. These cases show more impressive Q-factor results,
i.e., about 5.8 · 107 and one billion (see Table 1). Similar results can be achieved by employing
WGM modes in resonators or periodical quasi-BICs, albeit at the cost of increasing the
radius or number of identical resonators. This, in turn, increases the mode volume.
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Figure 7. (a) The final step of ACR for variation of radius r1 of the external dimer relative to the
radius of the internal dimer r with strong enhancement of the Q-factor (b).

4. Multipole Radiation for Avoided Crossing of Resonances

There is a useful tool by which to understand the nature of the extremely high quality
factor via multipole decompositions [54]. This tool sheds light on the origin of the high
Q-factor in the isolated disk [38,55] and the origin of bound states in the continuum [52,56].
In the far field region, the EM field can be expanded as

E(x) =
∞

∑
l=1

l

∑
m=−l

[almMlm(x) + blmNlm(x)], (4)

where
−→
Mm

l and
−→
N m

l = 1
k∇×

−→
Mm

l are the vector spherical harmonics [57,58]. Then, the
relative radiated power of each electric and magnetic multipole of order l is determined by
the squares of the decomposition amplitudes: [54]

Pl0 = PTE
l0 + PTM

l0 = P−1
0 [|al0|2 + |bl0|2], (5)

where P0 = ∑∞
l=1[|al0|2 + |bl0|2] is the total power radiating through a sphere with a large

radius. For the present case of coaxial disks with inversion symmetry and azimuthal
number m = 0, the decomposition (4) is substantially reduced to have an even l for the
symmetric solutions shown in Figure 6, and an odd l for the antisymmetric solutions shown
in Figure 7 [59].

The extreme Q-factor is associated with a strong redistribution of multipole radia-
tion towards high-order multipoles because of the almost-exact total destructive inter-
ference of low-order multipole amplitudes. Using the formalism described in Ref. [60]
(Equation (1.69)), we separate contributions from subsystems assembling the DS in the
far field region. For the case of three disks, we distinguish multipole radiation from the
inner disk and outer dimer, whose complex amplitudes al0 in the series Equation (4) are
presented in Figure 8.

On subplots (a) and (b), the markers ‘o’ and ‘x’ correspond to amplitudes |al0| of the
multipole radiation from the subsystems of the inner disk and outer dimer, respectively,
while the red closed circles show the multipole coefficients of the total DS, normalized by
P0 = ∑l |al0|2 = 1. Subplots (c) and (d) show the phase difference between the complex
amplitudes of the multipole radiation of the subsystems: the inner disk and outer dimer.
The left panels of Figure 8 show the case of maximum Q-factor 9.8 · 103 achieved by ACR
when optimizing three parameters, h1, h2 and L12, with r1 = r. One can see strong multipole
radiation for l = 3 from both the inner disk and outer disks. However, these complex
amplitudes a30 from both parts, sketched by arrows in the complex plane, have almost
the same moduli |a30| and a phase difference close to 180◦, which results in the nearly full
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destructive interference of multipole radiation at l = 3. The total multipole radiation of the
DS for l = 3 vanishes, as shown by the red closed circle in Figure 8a. Note that there is still
small multipole radiation at l = 7 from the outer dimer, while the radiation from the inner
disk is mostly suppressed.

1 3 5 7 9 11 13
0

2

4

6

8

1 3 5 7 9 11 13
0

5

10

15

20

1 3 5 7 9 11 13
-1

-0.5

0

0.5

1

1 3 5 7 9 11 13
-1

-0.5

0

0.5

1

(a)

(c)

(b)

(d)

outside dimerinner disk

Figure 8. The multipole radiation amplitudes al0, l = 1, 3, 5, . . . in Equation (4) from the system of
three disks of identical radii (mode 2 in Table 1, Q = 9.8 · 103) (a,c) and of different radii (b,d) (mode 3
in Table 1, Q = 5.8 · 104). The amplitudes of the inner/outer dimer disk marked by crosses/open
circles and the amplitudes of the total system of three disks are marked by red closed circles. Black
and blue arrows show complex radiation amplitudes with phase difference ∆φ.

Let us now consider the right panels of Figure 8, which show multipole radiation with
Q = 5.8 · 104 achieved by optimizing all possible parameters: h1, r1, h2 and L12. We can
see from Figure 8b that the additional optimization over r1 shifts the channel of maximum
radiation from l = 7 to l = 9 and increases the Q-factor by six times. One can speculate
that the introduction of an additional parameter could suppress more contributions into
multipole radiation. For example, two dimers, as shown in Figure 2b, provide more
geometrical parameters than the previous case presented in Figure 2a. The amplitudes of
the multipole decomposition are shown in Figure 9. We can see the remarkable effect of the
destructive interference of complex multipole amplitudes al0. The left panels demonstrate
the effect till l = 4, while the right panels do so till l = 14.

In subplots (c) and (d), the relative phases between amplitudes of both dimers are
shown. One can observe in Figure 9 the almost-full destructive interference of the mul-
tipolar amplitudes at the dominant channels l = 2, 4, 6 from both dimers when moduli
of the coefficients are equal, while phases differ by π. The destructive interference of
several amplitudes |a0l | simultaneously was achieved owing only to the multiscale opti-
mization procedure.
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Figure 9. The multipole radiation amplitudes al0, l = 2, 4, 6, . . . in Equation (5) for the system of four
disks with identical radii (mode 7 in Table 1, Q = 9.8 · 105) (a,c). (b,d) amplitudes al0 for the system
of four disks with different radii (mode 8 in Table 1, Q = 4.8 · 106). The amplitudes of the inner/outer
dimer of the disks are marked by crosses/open circles, and amplitudes of the total system are marked
by red closed circles.

5. Mode Volumes of Resonances with Extremal Q-Factor

Optical cavities are able to trap light at discrete resonant frequencies in a tiny volume
in which the interaction of light with matter can be dramatically enhanced via the temporal
and spatial confinement of light. It is important not only to enhance the Q-factor; the
miniaturization of resonators with a high Q/Vm ratio is in demand in order to improve the
light–matter interaction and reduce the layout for compact integrated optical circuits.

The Q-factor and effective mode volume Vm —two figures of merit in optical cavities—are
of great importance in the enhancement of the light–matter interaction. The mode volume of
a dielectric resonator is given by the ratio of the total electric energy to the maximum electric
energy density [61]

Vm =

∫
ε(x)|E(x)|2dV

max[ε(x)|E(x)|2] . (6)

A summary of the Q-factors and mode volumes is collected by Vahala [4] and range from
Q = 2 · 103, Vm = 5(λ)3 (FPR), Q = 1.2 · 104andVm = 6(λ)3 (WGM) till Q = 1.3 · 104,
Vm = 1.2(λ)3 (PhC cavity). Ultra-low mode volumes in one-dimensional slotted photonic
crystal single silicon nanobeam cavities of the order (0.1− 0.01)(λ/n)3 (n is the refractive
index of DS) were reported [5–7], albeit at the cost of the compactness of the resonator.

These data in Table 1 are compared with the whispering gallery mode, with azimuthal
number m = 10, and the eigenfrequency Re(kr) = 4.76 in a single disk of aspect ratio
h1/r = 0.2588.

6. Conclusions and Outlook

The avoided crossing of resonances lead to the substantial redistribution of their
imaginary parts and the hybridization of resonance modes [31]. This method of increasing
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the Q-factor proved to be successful even in a single resonator in the form of a disk [36] or
of a long rod with a rectangular cross-section [42]. ACRs in two identical resonator raises
the Q-factor significantly more [34,43,51,62]. It would seem that a further increase in the
number of identical resonators N is the best way to boost the Q-factor since the periodic
array of resonators supports quasi-BICs [23] with asymptotic Q∼N2. However, this method
of enhancement of the Q-factor bumps into saturation owing to material losses [23] and
structural fluctuations [63]. Moreover, quasi-BIC modes concede the compactness of DS and
the mode volume. In the present paper, we show that a DS composed of resonators with
different scales provides a significantly higher Q-factor, preserving nearly the same mode
volume as displayed Table 1. In addition, what is remarkable is that these unprecedented
Q-factors refer to compact DSs, which are fundamentally different from the extended
periodic DSs that support quasi-BICs. The compactness of a high-Q DS bestows a great
technological advantage with respect to sensing and lasing devices.

To understand the nature of ACRs which lead to extremely high quality factors, one
can use multipole decomposition [54]. This tool sheds light on the origin of the high
Q-factor in the isolated disk [38,55] and the origin of bound states in the continuum [56].
In the present case of several resonators, we also observe that the extreme Q-factor is
associated with a strong redistribution of radiation and arises from the compensation of
dominat multipole coefficients. Moreover, we show that it is related to the almost-perfect
destructive interference of the low-order multipole radiations from the internal subsystem
inserted into the external dimer.

Thus, the way to boost the quality factor of an array of resonators looks simple.
First, we attain the maximum Q-factor via ACRs in the internal subsystem of N − 2 disks,
which results in a hybridized resonant mode. This mode ψs,a(N − 2) can be symmetric
or antisymmetric relative to axis inversion. Then, we symmetrically enclose the internal
subsystem into a shell consisting of two identical disks forming an external dimer. Varying
the scales of the dimer (radius r1, height h1 and distance L12), we trigger ACRs of resonant
modes ψs,a(N − 2) with the resonant modes ψs,a(2) of the external dimer. To achieve
extremal Q-factors, one has to allow a slight change of scales in the internal subsystem too,
as was shown in Section 3. Because of this, the optimization procedure should be performed
over all scales of the total system. As a result, we can achieve almost-perfect shielding of the
internal resonant mode by the external dimer and boost the Q-factor by several orders of
magnitude. Some hybridized resonant modes are collected in Table 1. Our research shows
that the multiscale optimization procedure grants substantially higher Q-factor results
compared to the case of equidistant identical disks, which support quasi-BICs near Γ-point.
The proposed algorithm could be easily adapted to multi-particle systems of different
shapes and permittivities. The present system of coaxial disks was chosen because of the
separation of TE and TM polarizations in zero azimuthal index sector. It should be noted
that the Q-factor of optimized systems is very sensitive to scale parameters, aspecially
to parameters which affect the resonant mode ψN−2 of the internal subsystem because
of the weak localization of the total mode ψN at the outside dimer. This brings definite
technological problems because of the necessity og accurately setting up the different scales
of different resonators.

Fortunately, S. Kim et al. [64] reported control over the disk dimensions with an
accuracy of about 5 nm in optical range, i.e., ∼0.3% relative to the optical wave length
λ = 1.55 µm.
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