
Citation: Gil, J.J.; San José, I.

Synthetic Mueller Imaging

Polarimetry. Photonics 2023, 10, 969.

https://doi.org/10.3390/

photonics10090969

Received: 24 July 2023

Revised: 16 August 2023

Accepted: 21 August 2023

Published: 24 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

photonics
hv

Communication

Synthetic Mueller Imaging Polarimetry
José J. Gil 1,* and Ignacio San José 2

1 Photonic Technologies Group, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
2 Instituto Aragonés de Estadística, Gobierno de Aragón, Bernardino Ramazzini 5, 50015 Zaragoza, Spain;

isanjose@aragon.es
* Correspondence: ppgil@unizar.es

Abstract: The transformation of the state of polarization of a light beam via its linear interaction
with a material medium can be modeled through the Stokes–Mueller formalism. The Mueller matrix
associated with a given interaction depends on many aspects of the measurement configuration. In
particular, different Mueller matrices can be measured for a fixed material sample depending on
the spectral profile of the light probe. For a given light probe and a given sample with inhomoge-
neous spatial behavior, the polarimetric descriptors of the point-to-point Mueller matrices can be
mapped, leading to respective polarimetric images. The procedure can be repeated sequentially
using light probes with different central frequencies. In addition, the point-to-point Mueller matrices,
consecutively measured, can be combined synthetically through convex sums leading to respective
new Mueller matrices, in general with increased polarimetric randomness, thus exhibiting specific
values for the associated polarimetric descriptors, including the indices of polarimetric purity, and
generating new polarimetric images which are different from those obtained from the original Mueller
matrices. In this work, the fundamentals for such synthetic generation of additional polarimetric
images are described, providing a new tool that enhances the exploitation of Mueller polarimetry.
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1. Introduction

Nowadays, Mueller imaging polarimetry constitutes a mature set of technologies and
procedures with an enormous variety of applications that, among many others, cover areas
like analysis of biological tissues [1,2] and remote sensing [3–5].

Once the point-to-point Mueller matrices of a given sample have been measured,
the mathematical treatment of the information obtained is crucial for its exploitation. In
fact, the methods used for the serial or parallel decompositions of the measured Mueller
matrices as well as for the identification of significant physical descriptors related to the
enpolarizing, retarding and depolarizing properties of the sample stand out in polarimetry.

Mueller polarimeters are composed of (see Figure 1) [6–16]

• A collimated light source with a fixed spectral profile.
• A polarization state generator (PSG) that modulates the state of a polarization incident

on the material sample.
• A setup for the appropriate placement and relative orientation of the material sample

on which the light probe beam impinges.
• A polarization state analyzer (PSA) that modulates the state of polarization of the light

probe after its interaction with the sample.
• A detection, record and processing device that allows the measurement of the intensity

of the light probe after passing through the PSG, the sample and the PSA.

Photonics 2023, 10, 969. https://doi.org/10.3390/photonics10090969 https://www.mdpi.com/journal/photonics

https://doi.org/10.3390/photonics10090969
https://doi.org/10.3390/photonics10090969
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/photonics
https://www.mdpi.com
https://orcid.org/0000-0003-1740-2244
https://orcid.org/0000-0002-5370-7232
https://doi.org/10.3390/photonics10090969
https://www.mdpi.com/journal/photonics
https://www.mdpi.com/article/10.3390/photonics10090969?type=check_update&version=3


Photonics 2023, 10, 969 2 of 12

Photonics 2023, 10, x FOR PEER REVIEW 2 of 12 
 

 

Mueller polarimeters are designed for the measurement of the point-to-point Mueller ma-
trices covering a certain area of the sample with heterogeneous spatial behavior. 

 
Figure 1. General structure of an imaging Mueller polarimeter. The polarization state generator 
(PSG) is constituted by the light source (L), which provides a collimated beam, and a polarizing 
device (PD). After emerging from the PSG, the light probe is incident on a spatial section of the 
sample (S), which in general exhibits heterogeneous polarimetric behavior in the area covered by 
the light probe and whose point-to-point Mueller matrices are under measurement. The polariza-
tion state analyzer (PSA) is constituted by an analyzing device (AD), and the detection and pro-
cessing system (D). 

Thus, in Mueller imaging polarimetry, the sample can be considered pixelated, in 
such a manner that a different Mueller matrix is measured for each pixel (Figure 2). Note 
that we are using the term pixels to refer to small areas of the sample, which in general 
have a common shape and size, so that a number of pixels cover the entire cross-section 
of the sample under measurement. Therefore, each pixel is characterized by a specific and 
fixed Mueller matrix, which is in general different from those of other pixels. Since, in 
general, a given Mueller matrix can be parameterized in terms of up to sixteen independ-
ent parameters, up to sixteen independent images can be obtained for each complete po-
larimetric measurement. Nevertheless, when appropriate, additional images can be gen-
erated from specific polarimetric descriptors. 

 
Figure 2. The area of the sample under measurement impinged by the light probe of the polarimeter 
is composed of a number m of small elements (pixels) whose respective Mueller matrices are meas-
ured. For a particular pixel k, its corresponding Mueller matrix is denoted by kM , so that the sub-
script k runs the entire set of m pixels ( 1, , )k m=  . When a series of n independent measurements 
is performed for a fixed sample, the respective Mueller matrices of the pixel k are denoted as klM , 
with 1, ,l n=  . 

Let us now consider a sequence of n independent measurements over a given fixed 
material sample, which are performed with different light probes with respective spectral 
profiles (Figure 3), in such a manner that each independent measurement produces a spe-
cific set of m point-to point Mueller matrices, which are denoted as klM   ( 1, ,k m=   , 

1, , )l n=   where indices k and l refer, respectively to the k pixel and the l measurement. 

Figure 1. General structure of an imaging Mueller polarimeter. The polarization state generator (PSG)
is constituted by the light source (L), which provides a collimated beam, and a polarizing device (PD).
After emerging from the PSG, the light probe is incident on a spatial section of the sample (S), which
in general exhibits heterogeneous polarimetric behavior in the area covered by the light probe and
whose point-to-point Mueller matrices are under measurement. The polarization state analyzer (PSA)
is constituted by an analyzing device (AD), and the detection and processing system (D).

Specific Mueller polarimeters are designed for their operation on samples with a
homogeneous behavior over the cross-section covered by the light probe, in which case
a single Mueller matrix is obtained for each measurement, while the so-called imaging
Mueller polarimeters are designed for the measurement of the point-to-point Mueller
matrices covering a certain area of the sample with heterogeneous spatial behavior.

Thus, in Mueller imaging polarimetry, the sample can be considered pixelated, in such
a manner that a different Mueller matrix is measured for each pixel (Figure 2). Note that
we are using the term pixels to refer to small areas of the sample, which in general have
a common shape and size, so that a number of pixels cover the entire cross-section of the
sample under measurement. Therefore, each pixel is characterized by a specific and fixed
Mueller matrix, which is in general different from those of other pixels. Since, in general, a
given Mueller matrix can be parameterized in terms of up to sixteen independent param-
eters, up to sixteen independent images can be obtained for each complete polarimetric
measurement. Nevertheless, when appropriate, additional images can be generated from
specific polarimetric descriptors.
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Figure 2. The area of the sample under measurement impinged by the light probe of the polarimeter is
composed of a number m of small elements (pixels) whose respective Mueller matrices are measured.
For a particular pixel k, its corresponding Mueller matrix is denoted by Mk, so that the subscript
k runs the entire set of m pixels (k = 1, . . . , m). When a series of n independent measurements is
performed for a fixed sample, the respective Mueller matrices of the pixel k are denoted as Mkl , with
l = 1, . . . , n.

Let us now consider a sequence of n independent measurements over a given fixed
material sample, which are performed with different light probes with respective spectral
profiles (Figure 3), in such a manner that each independent measurement produces a
specific set of m point-to point Mueller matrices, which are denoted as Mkl (k = 1, . . . , m,
l = 1, . . . , n) where indices k and l refer, respectively to the k pixel and the l measurement.
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Depending on the central frequency, shape and width of the spectral profile used in 
a given measurement l, the Mueller matrix of the k pixel adopts a specific form klM , which 
can be either nondepolarizing (or pure, in the sense that it preserves the degree of polari-
zation of incident totally polarized light), or depolarizing. In general, samples exhibiting 
inhomogeneous behavior over the cross-section covered by the light probe are considered 
and consequently, the separate representations of the sixteen elements ,kl ijm  
( , 0,1,2,3)i j = , where k maps the entire set of m pixels of the sample under measurement, 
lead to specific images.  

It is well known that the elements ,kl ijm  of klM  do not provide direct and independ-
ent information about the polarimetric properties of the sample for the spectral profile of 
the light probe used in the corresponding measurement, but are related to the enpolariz-
ing (diattenuating and polarizing), retarding and depolarizing properties in an intricate 
manner. This is the reason why alternative sets of polarimetric descriptors (other than 

,kl ijm ) are frequently used to generate more significant polarimetric images that describe, 
in a more or less decoupled manner, the spatial variation of specific properties. A possible 
parameterization of klM  in terms of sixteen independent parameters directly related to 
specific polarimetric features is based on the so-called arrow decomposition of Mueller 
matrices [17–20].  

The main argument which will be dealt with in this work relies on the fact that, be-
yond the polarimetric images obtained for each measurement l, the information already 
obtained through a set of n independent measurements of klM  can be used to generate 
new sets of synthetic images that enhance the contrast or visualization of certain proper-
ties or structures of the sample. In particular, for instance, let us build the Mueller matrix 

[ ]
1 1 2 2

1 2

,
1, 0, 1, ,

k k k n kn

n i

c c c
c c c c i n

= + + +
+ + + = > =
M M M M

 
 (1) 

which is directly synthesized from the independent n measurements but whose associated 
enpolarizing, retarding and depolarizing properties are different from those of each klM
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the general theoretical framework used for the synthesis, through a very simple averaging 

Figure 3. For a given Mueller imaging polarimeter, different complete measurements can be per-
formed by varying the spectral profile of the light probe (L1, L2 and L3 in the figure), leading to
respective sets of Mueller matrices associated with the points (pixels) of the sample. The Mueller
matrix of a given pixel depends on both the central frequency and the shape of the spectral profile
of the light probe. The successive measurements can be performed either with spectral profiles that
partially overlap or not. The shaded area represents some overlap of L2 and L3.

Depending on the central frequency, shape and width of the spectral profile used
in a given measurement l, the Mueller matrix of the k pixel adopts a specific form Mkl ,
which can be either nondepolarizing (or pure, in the sense that it preserves the degree
of polarization of incident totally polarized light), or depolarizing. In general, samples
exhibiting inhomogeneous behavior over the cross-section covered by the light probe are
considered and consequently, the separate representations of the sixteen elements mkl,ij
(i, j = 0, 1, 2, 3), where k maps the entire set of m pixels of the sample under measurement,
lead to specific images.

It is well known that the elements mkl,ij of Mkl do not provide direct and independent
information about the polarimetric properties of the sample for the spectral profile of the
light probe used in the corresponding measurement, but are related to the enpolarizing
(diattenuating and polarizing), retarding and depolarizing properties in an intricate man-
ner. This is the reason why alternative sets of polarimetric descriptors (other than mkl,ij)
are frequently used to generate more significant polarimetric images that describe, in a
more or less decoupled manner, the spatial variation of specific properties. A possible
parameterization of Mkl in terms of sixteen independent parameters directly related to
specific polarimetric features is based on the so-called arrow decomposition of Mueller
matrices [17–20].

The main argument which will be dealt with in this work relies on the fact that,
beyond the polarimetric images obtained for each measurement l, the information already
obtained through a set of n independent measurements of Mkl can be used to generate new
sets of synthetic images that enhance the contrast or visualization of certain properties or
structures of the sample. In particular, for instance, let us build the Mueller matrix

Mk = c1Mk1 + c2Mk2 + . . . + cnMkn,
[c1 + c2 + . . . + cn = 1, ci > 0, i = 1, . . . n],

(1)

which is directly synthesized from the independent n measurements but whose associated
enpolarizing, retarding and depolarizing properties are different from those of each Mkl .
In fact, Mk carries information about the variation of the polarimetric behavior of the
sample as the spectral profile of the probing light is modified. In other words, the set of
measured Mkl contains implicit information on certain properties of the sample that can
only be represented in the form of polarimetric images obtained from synthetic parallel
combinations performed as indicated in Equation (1).

It should be emphasized that the abovementioned Mueller imaging measurements
are performed through conventional methods and that the aim of this work is to describe
the general theoretical framework used for the synthesis, through a very simple averaging
procedure which does not add computational complexity, of significant polarimetric images
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based on the parallel composition of the Mueller matrices obtained through a set of n (with
n ≥ 2) independent conventional measurements of a given material sample. To achieve this,
this communication is organized as follows. The main necessary concepts and notations are
summarized in Section 2. Section 3 is devoted to the general formulation of the synthetic
Mueller imaging polarimetry approach, whose nature and scope is discussed in Section 4.
The main conclusions are summarized in Section 5.

Note that although the term “light” is used in this communication, it should be
understood in the wide sense of referring generally to arbitrary frequencies within different
areas of the electromagnetic spectrum and not exclusively within the optical range. This
is the case, for example, for synthetic aperture radar polarimetry (SAR polarimetry) for
which the electromagnetic probe belongs to the microwave range.

2. Theoretical Background

The transformation of polarized light by the action of a linear medium (under fixed
interaction conditions) can always be represented mathematically as s’ = Ms, where s and
s’ are the Stokes vectors that represent the polarization states of the incident and emerging
light beams, and M is the Mueller matrix that performs the linear transformation, which
can be expressed in the partitioned form [21–23]

M = m00M̂, M̂ ≡
(

1 DT

P m

)
,

m ≡ 1
m00

m11 m12 m13
m21 m22 m23
m31 m32 m33

,

D ≡ (m01,m02,m03)
T

m00
, P ≡ (m10,m20,m30)

T

m00
,

(2)

where mij (i, j = 0, 1, 2, 3) denote the elements of M; superscript T indicates transpose; m00
represents the mean intensity coefficient (MIC), i.e., the ratio between the intensity of the
emerging light and the intensity of incident unpolarized light; D and P are the diattenuation
and polarizance vectors, with absolute values D (diattenuation) and P (polarizance), and m
is the normalized 3 × 3 submatrix associated with M.

A proper measure of the ability of M to preserve the degree of polarization of totally
polarized incident light is given by the degree of polarimetric purity of M (also called
depolarization index) [24], P∆, which can be expressed as

P∆ =

√
D2 + P2 + 3P2

S
3

=

√
2P2

P
3

+ P2
S

[
PP ≡

√
D2 + P2

2

]
, (3)

where PS is the polarimetric dimension index (also called the degree of spherical purity),
defined as

PS ≡
‖m‖2√

3

‖m‖2 ≡
1

m00

√√√√ 3

∑
k,l=1

m2
kl

, (4)

‖m‖2 being the Frobenius norm of m, and PP is the so-called degree of polarizance, or
enpolarizance, giving an overall measure of the power of M to increase the degree of
polarization of the interacting light in either forward or reverse interactions [17–19].

Maximum degree of polarimetric purity, P∆ = 1, is exhibited uniquely by nondepo-
larizing (or pure) media (i.e., media that do not decrease the degree of polarization of
totally polarized incident light), while P∆ = 0 corresponds to perfect depolarizers, with
an associated Mueller matrix M∆0 = m00diag(1, 0, 0, 0). Maximum PS, PS = 1, implies
P∆ = 1 with PP = 0 (nondepolarizing and nonenpolarizing media), which corresponds
uniquely to retarders; minimal PS, PS = 0, corresponds to media exhibiting m = 0. Maxi-
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mal enpolarizance,PP = 1, implies P∆ = 1 and corresponds to perfect polarizers, while the
minimal, PP = 0, is exhibited by nonenpolarizing interactions (either nondepolarizing or
depolarizing) [18,19].

In general, two kinds of decompositions of a Mueller matrix can be considered, namely
serial decompositions (through product of Mueller matrices) and parallel decompositions
(through weighted sums of Mueller matrices) [25,26].

Parallel decompositions consist of representing a Mueller matrix as a weighted sum of
Mueller matrices. The physical meaning of parallel decompositions is that the incoming
electromagnetic wave splits into a set of pencils that interact, without overlapping, with a
number of material components that are spatially distributed in the illuminated area, and
the emerging pencils are incoherently recombined into the emerging beam.

Thus, the notion of parallel composition of Mueller matrices underlies the very concept
of the Mueller matrix and obeys the rule that the coefficients of the Mueller components
in the sum should be positive and sum to one (convex sum) [25,26]. This property is
directly linked to the so-called covariance criterion, namely, given a Mueller matrix M,
its associated Hermitian coherency matrix C(M) is positive semidefinite [27], which is
equivalent to the fact that any Mueller matrix can be expressed as a sum of nondepolarizing
Mueller matrices [28]. The explicit expression of C(M), in terms of the elements mij of M,
is given by [26,27]

C(M) =
1
4



m00 + m11
+m22 + m33

m01 + m10
−i(m23 −m32)

m02 + m20
+i(m13 −m31)

m03 + m30
−i(m12 −m21)

m01 + m10
+i(m23 −m32)

m00 + m11
−m22 −m33

m12 + m21
+i(m03 −m30)

m13 + m31
−i(m02 −m20)

m02 + m20
−i(m13 −m31)

m12 + m21
−i(m03 −m30)

m00 −m11
+m22 −m33

m23 + m32
+i(m01 −m10)

m03 + m30
+i(m12 −m21)

m13 + m31
+i(m02 −m20)

m23 + m32
−i(m01 −m10)

m00 −m11
−m22 + m33


. (5)

The general formulation for the synthesis of a Mueller matrix associated with a linear
polarimetric interaction from the properties of the parallel components of the medium on
which the considered light beam interacts has been dealt with in [26,29–34].

Since C is a positive semi-definite Hermitian matrix, it can always be diagonalized
through a unitary transformation of the form

C = Udiag(λ0, λ1, λ2, λ3)U†. (6)

where λi are the four ordered (0 ≤ λ3 ≤ λ2 ≤ λ1 ≤ λ0) nonnegative eigenvalues of C. The
columns ui (i = 0, 1, 2, 3) of the 4× 4 unitary matrix U are the orthonormal eigenvectors
of C.

Nondepolarizing Mueller matrices have the genuine property that they exhibit a single
nonzero eigenvalue (i.e., λ0 6= 0, λ1 = λ2 = λ3 = 0) and hereafter, wherever appropriate,
we will use the subscript J to refer to Mueller and coherency matrices associated with
nondepolarizing media, which will be generically denoted as MJ and CJ . The coherency
matrix CJ associated with a nondepolarizing Mueller matrix MJ can always be expressed
as CJ = m00(c⊗ c†), where c (called the coherency vector of MJ) is a unit vector with four
complex components [34].

Complete quantitative information on the structure of polarimetric purity-randomness
exhibited by the interaction represented by M is provided by the set of three indices of
polarimetric purity (IPP) defined as follows from the normalized eigenvalues of C [35]



Photonics 2023, 10, 969 6 of 12

P1 ≡ λ̂0 − λ̂1, P2 ≡ λ̂0 + λ̂1 − 2λ̂2, P3 ≡ λ̂0 + λ̂1 + λ̂2 − 3λ̂3,[
λ̂i ≡ λi/m00 (i = 0, 1, 2, 3), 0 ≤ P1 ≤ P2 ≤ P3 ≤ 1

]
.

. (7)

Given a Mueller matrix M, it can always be submitted to the so-called arbitrary
decomposition [25,36]

M =
r−1
∑

i=0
ki MJi,

MJi = m00iM̂Ji, M̂Ji ≡
(

1 DT
i

Pi mi

)
≡MJ (ci),

m00i(1 + Di) ≤ 1, ki =
m00
m00i

1
c†

i C− ci
,
[

r−1
∑

i=0
ki = 1

]
,

(8)

where r = rankC, with 1 ≤ r ≤ 4, which coincides with the number of independent
nondepolarizing parallel components of M; C− is the pseudoinverse of Ĉ, defined as
C− = UΛ− U†, with Λ− being the diagonal matrix whose r first diagonal elements are
1/λ 0, 1/λ 1, . . . , 1/λr−1 and whose last 4− r elements are zero [36].

Consider now the following modified singular value decomposition of the submatrix
m of M,

m=mROmAmRI ,[
m−1

Ri = mT
Ri, detmRi = +1(i = I, O),

mA ≡ diag(a1, a2, εa3), a1 ≥ a2 ≥ a3 ≥ 0, ε ≡ detm/|detm|,

]
(9)

where the nonnegative parameters (a1, a2, a3) are the singular values of m (taken in decreas-
ing order), and mRi are proper orthogonal 3× 3 matrices, and consequently the associated
4× 4 matrices of the form

MRi =

(
1 0T

0 mRi

)
(i = I, O) (10)

are orthogonal Mueller matrices (representing respective transparent retarders). The arrow
form MA (M) of M is then defined as [17]

MA(M) ≡MT
RO MMT

RI = m00

(
1 DT

A
PA mA

)
mA ≡ mT

RO mmT
RI = diag(a1, a2, εa3)

a1 ≥ a2 ≥ a3 ≥ 0, ε ≡ detm/|detm|
DA = mRI D, PA = mT

RO P

 (11)

and contains up to ten nonzero elements. The corresponding arrow decomposition of M is
defined as

M = MROMA MRI . (12)

Note that the diattenuation and polarizance vectors, D and P, of M are recovered from
those of MA through the respective transformations D = mT

RIDA and P = m RO PA, which
preserve the absolute values of the transformed vectors.

The arrow decomposition allows for the parameterization of M in terms of the follow-
ing significant sixteen parameters [20,37]:

• The three angular parameters (ϕI , χI , ∆I) determining the entrance retarder, where ϕI
and χI are the azimuth and ellipticity of the fast eigenstate and ∆I is the retardance;

• The three angular parameters (ϕO, χO, ∆O) determining the exit retarder;
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• The three parameters (ϕD, χD, D) determining the diattenuation vector D of M, where
ϕD and χD are the azimuth and ellipticity of the eigenstate with smaller attenuation;
or, alternatively, the three parameters (ϕDA, χDA, D) determining the diattenuation
vector DA = mRID of MA;

• The three parameters (ϕP, χP, P) determining the polarizance vector P of M or, al-
ternatively, the three parameters (ϕPA, χPA, P) determining the polarizance vector
PA = mT

ROD of MA;
• The three indices of polarimetric purity P1, P2, P3 of M (which coincide with those of

MA);
• The MIC m00 of M (which coincides with that of MA).

Consequently, independent mappings of the above sixteen descriptors provide respec-
tive polarimetric images that reflect the variations and associated contrast of each parameter.
Obviously, many other parameterizations of M are also possible, but we emphasize the fact
that those listed above provide separate information on the enpolarizing (D and P vectors),
retarding (MRI and MRO matrices), depolarizing (P1, P2, P3) and MIC (m00) properties for
each spectral profile of the light probe used in the imaging polarimeter.

Furthermore, despite the implicit redundancy of the information held by other de-
scriptors, it can be useful to generate additional images associated with parameters like, for
instance, P∆, PS and PP.

The parallel composition of Mueller matrices that only differ in their MICs does not
produce changes in the fifteen remaining parameters described above. Thus, hereafter, the
fifteen parameters ϕI , χI , ∆I ,ϕO, χO, ∆O,ϕD, χD, D,ϕP, χP, P,P1, P2, P3 will be referred to as
the polarimetric descriptors of the Mueller matrix to which they correspond.

In the case of nondepolarizing Mueller matrices, the arrow decomposition adopts the
symmetric form [26,38,39]

MJ = MRO MDL0 MRI (13)

where the central matrix has the general form

MDL0 = m00


1 D 0 0
D 1 0 0
0 0

√
1− D2 0

0 0 0
√

1− D2

, (14)

so that it represents a horizontal-aligned linear diattenuator, while the set of entrance and
exit retarders depends on five parameters through the expressions [26]

MRI = MRL0 (∆/2)MRL1 (ϕ1, ∆1), MRO = MRL2(ϕ2, ∆2) MRL0 (∆/2), (15)

where MRL1 (ϕ1, ∆1), MRL2(ϕ2, ∆2) and MRL0 (∆/2) represent respective linear retarders
with retardances ∆1, ∆2 and ∆/2, and whose fast axes are oriented at angles ϕ1, ϕ2 and
zero. Recall that diattenuation and polarizance necessarily coincide for nondepolarizing
Mueller matrices (P = D).

3. Synthetic Mueller Imaging Polarimetry

For the sake of clarity, let us first consider a fixed material sample submitted to two
independent point-to-point Mueller measurements which only differ in the spectral profile
of the light probe, with respective central frequencies denoted as ν1. and ν2. It is also
assumed that the shift ν2 − ν1 is big enough for the sample to have different polarimetric
behavior, that is to say, some or all of the set of fifteen polarimetric descriptors described in
the last paragraph of Section 2 take different values for both light probes. No particular
assumptions are made about the shapes and bandwidths of the spectral profiles, although
the implications of their possible partial overlap will be discussed in Section 4.
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Let Mkl (k = 1, . . . , m, l = 1, 2) be the point-to-point Mueller matrices obtained
from each independent measurement (l = 1, 2 corresponding, respectively, to the light
probes with central frequencies ν1. and ν2), where we are using the notation introduced in
Section 1.

For a given pixel k, one can always build the synthetic Mueller matrix

Mk =
1
2

Mk1 +
1
2

Mk2. (16)

As long as a certain property of the sample behaves differently in both measurements,
a respective new polarimetric image associated with Mk arises. Note that other pairs of
coefficients c1, c2 (with c1 + c2 = 1) different from c1 = c2 = 1/2 can be used, but there is
no apparent advantage in straying from the simpler option.

To emphasize the power of this simple procedure, let us consider the special (but com-
mon) case in which both Mk1 and Mk2 are nondepolarizing. Then, provided M̂k1 6= M̂k2
(that is, proportional Mueller matrices are excluded because of their equivalent polarimet-
ric behavior, which only differ in their respective MICs), Mk is depolarizing, so that its
polarimetric descriptors differ from those of both Mk1 and Mk2. In particular, the inequality
P1 < 1 is necessarily satisfied (recall that nondepolarizing Mueller matrices always satisfy
P1 = P2 = P3 = P∆ = 1) and, consequently, the mapping of P1 associated with each pixel
k provides a new and peculiar polarimetric image whose nature is substantially different
from the images obtained for Mk1 and Mk2. In fact, it can be said that certain images ob-
tained from the synthetic Mk provide information about the differences in the polarimetric
behavior of the sample for both spectral profiles considered.

Obviously, when either Mk1 or Mk2 is depolarizing, the polarimetric descriptors of Mk
are also genuinely different from those of the sole Mk1 or Mk2.

The power of the synthetic procedure for the generation of images that hold informa-
tion about the changes in the polarimetric behavior for different spectral profiles of the light
probe can be enhanced by using more than two light probes (i.e., n > 2). In general, new
point-to-point Mueller matrices can be synthesized through the simple procedure indicated
in Equation (1). The larger n and the larger ν2− ν1 are (within the range considered: optical,
microwave. . .), the greater polarimetric randomness is generated in Mk, in such a manner
that the point-to-point values of the three IPP of Mk decrease correspondingly and move
away from unity. In general, up to three new respective images for the three IPP are gener-
ated, while the images obtained for the remaining twelve polarimetric descriptors adopt
specific new features, which can reflect different aspects of the variation of the polarimetric
behavior of the sample as different spectral profiles of the light probe are used.

Thus, the above procedure for obtaining synthetic Mueller matrices Mk for the respec-
tive pixels of the sample as well as the associated synthetic polarimetric images determined
by a set of polarimetric descriptors (for instance those derived from the arrow decomposi-
tion of each Mk), can be straightforwardly generalized for n independent measurements
performed with respective light probes (see Figure 4).
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Figure 4. Conventional Mueller imaging polarimetry provides sets of images based on the point-
to-point dependence of the polarimetric descriptors derived from the Mueller matrices measured
for each pixel in the sample. By maintaining the configuration of the polarimeter and the sample,
different conventional measurements can be performed for respective spectral profiles of the light
probe. Once a number of n, with n ≥ 2, independent measurements is performed, new pixel-to-
pixel Mueller matrices can be synthesized, without the necessity of additional measurements, by
averaging the measured ones, providing new polarimetric images, which are different from those
of the original (measured) Mueller matrices and reflect the differences of the polarimetric behavior
of the sample for the light probes used. When appropriate, in accordance with the criterion of the
polarimeter operator, the coefficients in the convex sum of the measured Mueller matrices can be
different and not equal to 1/n.

4. Discussion

Given a point-to-point Mueller matrix measurement on a given material sample with
spatially heterogeneous polarimetric behavior (under fixed interaction conditions; i.e.,
relative orientation of the sample with respect to the direction of the collimated light probe,
transmission, reflection or scattering operation mode, angle of observation, etc.), infinite
polarimetric images can be generated through the spatial dependence of parameters de-
fined as functions of the sixteen elements of the measured Mueller matrices. Nevertheless,
once the spectral profile of the light probe of the imaging polarimeter is fixed, the images
obtained for a set of sixteen well-suited parameters representing independent and sig-
nificant properties, like, for instance, the one derived from the arrow decomposition of
the point-to-point Mueller matrix, constitute a reasonable and sufficient framework for
inspecting the polarimetric image features of the sample.

Obviously, for each different spectral profile of the light probe used, a new set of
images is generated, extending the power to analyze the sample. The changes from one
set of images to another one depend on the specific behavior of the sample for each
spectral profile, in such a way that both the central frequency and the bandwidth and
shape of the profile influence the measurement. In particular, as the bandwidth increases,
the more polarimetric randomness is introduced by the interaction with the sample and,
consequently, the lower the corresponding indices of polarimetric purity. It can be said
that, as the bandwidth is reduced, the more deterministic the polarimetric behavior of the
sample is and vice versa, and that, as the bandwidth is increased, the composition of the
polarimetric behaviors of the sample for the different frequencies involved increases the
depolarization of the emerging light probe before reaching the polarization state analyzer
of the polarimeter.
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In addition to the specific images obtained for different spectral profiles of the light
probe of the polarimeter, which provide specific information for each corresponding kind
of interaction, new sets of images can be generated by the synthetic parallel composition of
the point-to-point Mueller matrices obtained in each independent experiment. These new
Mueller matrices encompass, in a peculiar manner, information on the differences in the
behavior of the sample as the type of the light probe changes.

When two independent measurements are taken using spectral profiles whose frequen-
cies do not overlap, the synthesized Mueller matrices coincide (at least from a theoretical
point of view) with those obtained through a simple measurement in which both light
probes are used simultaneously (provided the relative weights of the Mueller matrices in
the convex sum coincide with the relative weights of the intensities used). Nevertheless,
when the spectral profiles overlap to some extent, the synthetic matrices differ from those
potentially generated experimentally through a simultaneous combination of both light
probes. This in no way detracts from interest of the general synthesis of point-to-point
Mueller matrices through parallel composition of the ones obtained from independent
measurements. In fact, the synthesis leads to a new arrangement of the polarimetric infor-
mation already obtained in each measurement, which allows us to obtain new images that
are well defined from an algebraic point of view.

It should be emphasized that the potential improvements in the contrast of images
strongly depend on the nature of the material sample and are not necessarily realized
for each independent parameter, but can be made evident for some descriptors, which
are different for each case. Some preliminary analyses of certain samples of biological
tissues allow us to say that the new approach enhances the visualization of certain struc-
tures. Specific and comprehensive analyses for particular kinds of material samples (thin
films, LCD devices, scattering by particles, biological tissues, samples inspected by SAR
polarimetry. . .) require further studies that have a strongly contextual nature and could be
the subject of future works that fall outside the scope of this communication, whose main
objective is to present the theoretical approach to synthetic imaging Mueller polarimetry.

In general, all the polarimetric descriptors of the synthetic point-to-point Mueller
matrix Mk are different from those of the n measured Mueller matrices (Mk1, . . . Mkn)
used as its parallel components of Mk [Mk = (1/n)(Mk1 + Mk2 + . . . + Mkn)], while the
integer number r of IPP with values below their maximum (with P1 ≤ P2 ≤ P3 ≤ 1)
increases as the number of measurements involved increases (recall that r = rankC(Mk)).
This property is evident when the measured Mueller matrices are nondepolarizing, thus
satisfying 1 = r = P∆(Mkl) = P1(Mkl) = P2(Mkl) = P3(Mkl) (l = 1, . . . , n), while the
synthetic Mk is necessarily depolarizing, with 2 ≤ r(Mk) ≤ 4. The specific value of r
exhibited by Mk depends strongly on the nature and differences among its components
Mkl (l = 1, . . . , n).

5. Conclusions

The sets of point-to-point Mueller matrices associated with a given material sample
and obtained via a number n of independent Mueller imaging measurements provide
information that, beyond that held by the measured Mueller matrices themselves, can
be rearranged into a set of synthetic point-to-point Mueller matrices whose polarimetric
descriptors (enpolarizing, retarding and depolarizing parameters) depend on the changes
in the polarimetric behavior of the sample when the spectral profile of the light probe of
the polarimeter changes.

The procedure used to generate the point-to-point synthetic Mueller matrices is as
simple as calculating the respective mean Mueller matrices, which exhibit polarimetric
descriptors that, in general, are different from those of the measured Mueller matrices.
This allows us to generate new polarimetric images of the sample that can enhance the
visualization of certain structural properties of the sample.
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