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Abstract: Single-phase samples of the Ba1−xCexF2+x solid solution (x = 0.3–0.4) were synthesized
by directional crystallization in the form of single crystals and by co-precipitation from aqueous
nitrate solutions using potassium fluoride as a fluorinating agent in the form of nanopowders. The
cathodoluminescence of the pressed powder samples was studied in comparison with the BaF2: Ce
single crystals in 250–460 nm (2.7–5 eV) spectral range upon excitation by an electron accelerator. The
cathodoluminescence spectra of the samples revealed a wide band in the range of 3.0–4.0 eV, which
consists of two typical components of Ce3+ with decay time 23 ns in the case of single crystals and
three decay times 27 ns, 140–170 ns, and ~600 ns in the case of pressed powders. The decay time of
the short-wavelength component (27 ns) in the case of pressed powders is close to the lifetime of
the excited state of the Ce3+ ion. The developed X-ray phosphors can be applied for embedding in
diamonds for diamond–nanoparticle composite preparation.

Keywords: barium fluoride; cerium fluoride; solid solution; cathodoluminescence

1. Introduction

Alkaline earth fluorides are transparent in a wide spectral range and apply as a
structural material for the IR, visible, UV, and VUV spectral ranges [1]. BaF2 crystals are
promising optical materials as a heavy fast scintillator (the density value is 4.8 g/cm3) and
high level of radiation-resistant parameters. BaF2 crystals are heavy, fast scintillators (the
density value—4.8 g/cm3) with high radiation resistance. One of the main requirements
for scintillators is fast response, which means very short afterglow time [2]. At the present
time, fluoride optical materials are currently used as scintillation detectors designed for
gamma and X-ray radiation in medical diagnostic devices [3–6]. One of the new intensively
developing applications is a detector and visualizer for bright X-ray lasers such as XFEL
and synchrotrons due to the development of studies of biomolecules, crystal structure of
bulk materials, and micro/nano-objects [7–16]. The new generation of such materials is
based on composite diamond films with embedded nanoparticles [17]. The approach is
based on the sequential process of diamond growth by chemical vapor deposition (CVD).
In the first stage, the first layer of a diamond film is grown on an oriented silicon substrate
in a vacuum using hydrogen–methane plasma at a 700–900 ◦C temperature range. At the
next stage, a suspension of particles is applied to the diamond surface with a following
thermal removement of solvent. In the final stage, the second stage of diamond growth
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is carried out by embedding the phosphor particles inside the diamond composite by
growing the diamond. Oxides, chalcogenides (MoS2), and fluorides (HoF3, CeF3, EuF3,
β-NaGdF4:Eu) are the most suitable compounds for incorporation into diamond. Cerium-
doped Y3Al5O12 and Gd3Al5O12:Sc nanoparticles have been successfully embedded in the
diamond host [17]. Other fast-acting cerium-containing X-ray phosphors are Lu2SiO5: Ce
and BaF2:Ce.

Barium fluoride luminescence intensely upon excited near the fundamental absorption
edge. The large Stokes shift (~7 eV) implies significant lattice relaxation in the excited
state. The transition of an electron into the conduction band results in lattice distortion
near the hole with simultaneous formation of X2

– molecular ion, which occupies two
neighboring anion positions (Vk center). The recombination of an electron with the Vk
center is accompanied by translational and rotational motion of the X2

– molecular ion. The
localization of an electron on a nascent anion vacancy leads to the formation of F-centers in
the nearest environment of F-center located H-center oriented along the <111> direction.
The four configurations are possible depending on the distance between the components of
the F-H pair in the fluorite lattice [18]. Radiative annihilation of defects is accompanied
by the appearance of triplet luminescence at hnmax = 4.4 eV (so-called STE luminescence
from “self-trapped excitons”), with subsequent return of the lattice to the unperturbed
configuration. This luminescence is slow, with a decay time of ~600 ns. The core-valence
transitions with luminescence at 220 nm and a decay time of less than 1 ns were interpreted
in BaF2 crystals besides intensive exciton STE luminescence [19]. This type of luminescence
was also called cross-luminescence or Auger-free luminescence [2,20]. The presence of
an intense, long-term luminescence component at 310 nm limits the use of BaF2 as a fast
scintillator. Suppression of the STE glow is realized by various techniques [20], including
doping with various additives, primarily rare-earth fluorides [21–28].

In the case of doping barium fluoride by cerium, the exciton luminescence of the BaF2
converts into the luminescence of the cerium ion through d-f electron transitions of the Ce3+

ion [29–31]. The maximum light yield occurs at a concentration of about 0.1 mol.% of CeF3.
Further increasing of cerium concentration leads to a decrease in the luminescence intensity
due to the concentration quenching process [32]. This phenomenon has been reported
for both single crystals and for BaF2: Ce3+ optical ceramics [33,34]. The concentration
quenching effect is associated with defect formation in a fluorite-type lattice during the
Ba1−xCexF2+x solid solution formation [32]. The composition consistent with the maximum
luminescence intensity corresponds to the maximum concentration of free Ce3+-F− dipoles
in the BaF2 lattice [35], which are formed during local compensation of the excess charge
Ba2+→Ce3+ + Fi

−.
At the same time, up to 52 mol.% CeF3 (x ≤ 0.52) dissolves in barium fluoride with

a radical change in the physical properties of Ba1−xCexF2+x solid solution, especially
increasing the density [36–38].

A high-temperature phase diagram of the BaF2-CeF3 system is presented in Figure 1. In
this system, solid solutions Ba1−xCexF2+x with a fluorite structure (phase F) and Ce1−yBayF3−y
with a LaF3-tysonite structure (phase T) are formed. The maximum width of a cubic
Ba1−xCexF2+x solid solution reaches 52 mol.% CeF3 and does not change in a wide tem-
perature range. Single crystals of this solid solution can be grown from the melt in the
entire range of concentrations of the existence of this phase F. As a result of annealing
at 400 ◦C, Kieser and Greis [39] observed the ordering of the corresponding composition
of this solid solution with the formation of an ordered trigonal phase Ba4Ce3F17. As for
low-temperature synthesis from aqueous solutions, regardless of the precipitant used, a
solid solution can only be prepared within a certain concentration range, x ~ 0.3–0.5 [40,41].
No ordering of the samples of this solid solution prepared in this way was observed. A
solid solution with a lower CeF3 content is not synthesized. A similar phenomenon occurs
for BaF2-RF3 systems with other rare earth elements [42,43], which sharply distinguishes
them from the SrF2-RF3 and CaF2-RF3 systems. The reason for this behavior remains
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unclear and is apparently related to the thermodynamic instability of BaF2-based solid
solutions at low temperatures.
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solid solution, L—melt.

Many studies have been devoted to the investigations of the defect structure in concen-
trated solid solutions formed upon the incorporation of rare-earth fluorides of the cerium
group into barium fluoride [44–47]. There is no unambiguous interpretation of them from
the point of view of the cluster structure of defects. The most probable type of cluster in
this solid solution is Ce6F37 [48,49], which is probably present in the structure of the low-
temperature ordered Ba4Ce3F17 phase [39,50]. According to the X-ray powder diffraction,
ordered fluorite-like phase Ba4Ce3F17 is isostructural to Ba4R3F17 (R = Y, Yb) compounds.
The structural interpretation indicates the presence of rare-earth elements in clusters of
the R6F37 type with eight-vertex polyhedra of the Thompson antiprism type [49,50]. Such
defect clusters are easily embedded in the fluorite lattice [48] (Figure 2). However, the
coordination number of eight is not characteristic for large cations at the beginning of the
lanthanide series, such as cerium. Recently [47], the existence of generalized Ba8[R6F68–69]
clusters in Ba1−xRxF2+x solid solutions was proposed (Figure 2d). The anionic configuration
retains the same form as for the clusters embedded in the fluorite lattice, but the barium
and rare earth cations are reversed. In such inverted clusters, the coordination number for
rare-earth elements increases from eight to eleven.
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Luminescence of BaF2: Ce3+ with a low concentration of cerium has been studied
in detail [20,22–26] and is not the object of this study. As for the luminescence of a solid
solution with a high concentration of cerium, there is only one paper [38] in which Chen
and Wu recorded the presence of photoluminescence of BaCeF5 ceramics without quantita-
tive characterization.

Regulation of the defect structure of the solid solution opens the way to control the
luminescence of cerium. The destruction of defect clusters would be expected to increase the
luminescence light yield of the Ba1−xCexF2+x solid solution. Cluster destruction is possible
with doping of solid solution by monovalent fluorides, in particular, potassium fluoride.
Synthesis of the Ba1−xCexF2+x solid solution by co-precipitation from aqueous solutions
technique using potassium fluoride as a fluorinating agent resulted in the preparation of
optical ceramics precursors with intense luminescence [40].

The purpose of this investigation was a comparative analysis of the spectral and
luminescent characteristics of barium fluoride single crystals with a high cerium concen-
tration (up to 40 mol.%) and powders of the Ba1−xCexKyF2+x−y solid solution with a high
concentration of cerium doped with potassium. In our preliminary study [40], we recorded
the luminescence of powders upon excited by X-ray radiation. The same powders are
investigated with a different source of excitation.

2. Materials and Methods

Synthesis of single-phase BaF2: Ce solid solutions was carried out at room temperature
by co-precipitation from aqueous solutions by technique earlier described in paper [40]. The
initial reagents were Ce(NO3)3·6H2O (99.99% pure, LANHIT, Moscow, Russia), Ba(NO3)2
(specialty grade, Vekton, St. Petersburg, Russia), KF·2H2O (reagent grade, the Fluoride Salts
Plant, Russia), and double distilled water. The potassium fluoride was stored in a desiccator.
The reagents were used as received without additional purification. Barium nitrate and
cerium nitrate solutions (0.08 mol/L each) were mixed, and the mixed solution was added
drop by drop to a 0.16 M potassium fluoride solution with vigorous stirring on a magnetic
stirrer. The potassium fluoride was used in a 7% excess over the stoichiometry. Once
dropwise addition was over, the resulting suspension was stirred for 2 h for aging. After a
precipitate settled, the mother solution was decanted, and the precipitate was washed with
double distilled water. Nitrate leaching was controlled by qualitative color reaction by the
1% solution of diphenylamine in concentrated sulphuric acid. The as-washed precipitate
was air-dried at 45 ◦C.

The composition of this solid solution with fluorite crystal structure was Ba1−x−yCexKyF2+x−y
(x = 0.3–0.4, y = 0–0.008) due to using KF as fluorinating agent. The synthesized powder
samples have been pressed on a manual press into tablets with 10 mm in diameter and
1–2 mm thickness.

Single crystals of solid solutions Ba1−xCexF2+x (x = 0.25–0.40) were grown by the
Bridgman technique in graphite multi-channel crucible under vacuum in fluorinating (CF4)
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and inert (Ar) atmosphere. The initial barium fluoride and cerium fluoride with a purity of
99.99% (LANHIT, Moscow, Russia) were preliminary melted in a fluorinating atmosphere
to remove oxygen-containing impurities and moisture adsorbed on the particle surface.
The powders prepared by above-mentioned technique were placed in a growth crucible
and evacuated to 10−3 mm Hg. After heating up to 700 ◦C, an inert atmosphere (argon)
and fluorinating atmosphere (CF4) were injected to a pressure of −0.45 bar to prevent
volatilization of barium fluoride since its vapor pressure is greater than that of cerium
fluoride. After holding for 30 min, the melt was heated up to melting point. The maximal
process temperature 1500 ◦C was selected based on the BaF2-CeF3 phase diagram [37]. The
resulting melt pulled from the hot zone of the heater down into the cold zone at a rate
of 8 mm/hour. The temperature gradient in the crystallization zone was 50 degrees/cm.
We did not use additional crystal annealing procedures. The heating and cooling rates
were 350 ◦C/hour and 250 ◦C/hour, respectively. The single crystals did not have growing
defects and optical inhomogeneity, such as cellular substructure caused by the stability loss
of the crystallization front [51]. Photos of the single crystals are shown in Figure 3.
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Figure 3. Ba1−xCexF2+x single crystals: 1—Ba0.75Ce0.25F2.25, 2—Ba0.70Ce0.30F2.30, 3—Ba0.675Ce0.325F2.325,
4—Ba0.65Ce0.35F2.35, 5—Ba0.60Ce0.40F2.40 (nominal compositions).

X-ray powder diffraction was carried out on a Bruker D8 Advance diffractometer
with CuKα radiation. The lattice parameter a and coherent scattering regions (D) were
calculated using the TOPAS v.4.2 software (Rwp < 10). The X-ray density (d) was calculated
according to the standard formula d = MZ/Na3, where M is the molecular mass, Z = 4 is
the number of formula units in the elemental cell, N is the Avogadro number, a is the lattice
parameter. The microstructure of the initial powders was analyzed by Carl Zeiss NVision
40 scanning electron microscope. The elemental analysis was performed on a Carl Zeiss
NVision 40 scanning electron microscope equipped with an Oxford Instruments X-MAX
80 mm2 unit for energy-dispersive X-ray spectroscopy (EDX). On each sample of the crystal
plate, we selected two sites for analysis with registration of four spectra in each site (eight
spectra per sample). Confidence intervals for the average values of barium and cerium
content (Table 1) were calculated with a confidence probability level of 99%.
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Table 1. Composition, lattice parameters, and X-ray density of studied Ba1−xCexF2+x samples.

Number of
Sample

Nominal
Composition

Real Composition
by EDX

Lattice
Parameter a, Å D, nm X-ray Density

(d), g/cm3

Single crystals

1 Ba0.75Ce0.25F2.25

Ba0.762Ce0.238F2.238
(x = 0.238 ± 0.004)
Thickness—14 mm

6.1024 (1) - 5.28

2 Ba0.70Ce0.30F2.30

Ba0.716Ce0.284F2.284
(x = 0.284 ± 0.002)
Thickness—13 mm

6.0865 (1) - 5.36

3 Ba0.675Ce0.325F2.325

Ba0.689Ce0.311F2.311
(x = 0.311 ± 0.006)
Thickness—11 mm

6.0785 (1) - 5.40

4 Ba0.65Ce0.35F2.35

Ba0.662Ce0.338F2.338
(x = 0.338 ± 0.005)
Thickness—10 mm

6.0704 (1) - 5.48

5 Ba0.60Ce0.40F2.40

Ba0.616Ce0.384F2.384
(x = 0.384 ± 0.002)
Thickness—11 mm

6.0572 (1) - 5.50

Powders

6 Ba0.70Ce0.30F2.30 Ba0.645Ce0.355F2.355 6.0711 (4) 11.6 (2) 5.43

7 Ba0.65Ce0.35F2.35 Ba0.594Ce0.398K0.008F2.390 6.0596 (4) 11.9 (1) 5.46

8 Ba0.60Ce0.40F2.40 Ba0.564Ce0.430K0.007F2.425 6.0506 (4) 11.9 (1) 5.52

Optical properties in the UV, visible, and near IR spectral regions (300–1100 nm)
were studied using SF-256UVI spectrophotometer (Lomo-Photonics, Saint-Petersburg,
Russia). The thickness of the single crystals measured samples was 10–14 mm. The
cathodoluminescence spectra at the initial moments of time after the end of the excitation
pulse by an electron beam were recorded by FEU-97 in spectral range 250–460 nm (2.7–5 eV).
The spectra were recorded by measuring oscillograms at different wavelengths in the
spectrum-scanning mode. The integral spectra of cathodoluminescence per pulse were
carried out under excitation by electron pulses with an energy of E = 250 keV and a pulse
duration of 10 ns FWHM. Avantes 2048 fiber spectrometer with an integration time of
10 ms in the range of 350–1100 nm was used for spectra registration. A pulse generator was
applied to synchronize the start of the accelerator and the spectrometer.

3. Results

The results of energy-dispersive X-ray spectroscopy to determine the chemical compo-
sition are summarized in Table 1.

The discrepancies in the nominal and real compositions are small. The deviation
of the real chemical composition from the nominal one for single-crystalline samples is
explained by the distribution coefficient of the doping component (cerium). In the case
of the synthesis of powders from aqueous solutions, a small amount of potassium is
included in the solid solution due to the use of KF as a fluorinating agent [40]. The real
content of cerium in powder samples is higher than the nominal composition, but it is an
ordinary phenomenon for Ba1−xRxF2+x (R—rare-earth elements) solid solutions, which are
synthesized by co-precipitation from aqua solutions technique [41,42].

3.1. Ba1−xCexF2+x Single Crystals

Pieces from the grown single crystals of Ba1−xCexF2+x were cut off and ground into
powder in an agate mortar for X-ray phase analysis (Figure 4).
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Figure 4. X-ray powder diffraction patterns of solid solutions BaF2-CeF3 (x = 25–40 mol.%, nominal
composition) after single crystal grinding.

Comparison of X-ray powder diffraction data with PDF-2 card #00-004-0452 (a = 6.200 Å)
for BaF2 revealed their single-phase state. The change in the lattice parameters from
concentration corresponds to the well-known [37] dependence a = 6.200—0.36x [Å] for
Ba1−xCexF2+x fluorite solid solution in the BaF2-CeF3 system (see Table 1). It arises from
the difference in the ionic radii of isomorphic barium and cerium cations, as well as
by the loosening effect of an interstitial fluorine ion entering the lattice for electrostatic
compensation of the excess charge of the ion cerium.

The absorption spectra of Ba1−xCexF2+x (x = 0.25–0.40) single crystals are presented in
Figure 5.
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The UV absorption edge is located at 320 nm. A complex absorption band due to
transitions between the 4f–5d energy levels of the Ce3+ ion with a maximum at 390 nm was
observed when cerium concentration was varied [52,53]. In the absorption band of Ce3+ion
(390 nm), an increase in absorption is observed with an increase in the concentration of ions.

The cathodoluminescence spectra contain three bands with maxima at 4.15 (A1),
3.71 (A2), and 3.42 eV (A3) (Figure 6, Table 2).
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Figure 6. Cathodoluminescence spectra of Ba1−xCexF2+x (x = 0.25–0.40, nominal composition) single crystals.

Table 2. Cathodoluminescence characteristics (position and relative area weight of the Gaussian band
set) of Ba1−xCexF2+x single crystals.

Number of Sample Characteristics A1 A2 A3

1
Position (eV) 4.15 3.69 3.41

Relative Area Weight 0.006 0.225 0.300
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Table 2. Cont.

Number of Sample Characteristics A1 A2 A3

2
Position (eV) 4.15 3.71 3.42

Relative Area Weight 0.007 0.200 0.225

3
Position (eV) 4.15 3.72 3.42

Relative Area Weight 0.003 0.250 0.250

4
Position (eV) 4.15 3.73 3.45

Relative Area Weight 0.008 0.225 0.250

5
Position (eV) 4.15 3.76 3.49

Relative Area Weight 0.002 0.225 0.225

The intensity of the A1 band with a maximum of 4.15 eV is very weak and associated
with BaF2 emission that is distorted because of cerium absorption during the reabsorption
process. The positions of the maxima and half-widths of the A2 and A3 cathodolumines-
cence bands slightly depend on the CeF3 concentration in the single crystals and correlate
to the shifting of the 5d level of Ce.

The luminescence decay kinetics of the Ba1−xCexF2+x single crystals (x = 0.25–0.40)
upon 3.4, 3.6, and 3.8 eV excitation are described by a single exponential function with the
same decay time of 23 ± 2 ns (Figure 7).
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3.2. Ba1−xCexF2+x Pressed Powders

X-ray powder diffraction patterns of powder samples are presented in Figure 8. No
additional peaks were detected, which means the synthesized samples are single-phase.
The broadening of the reflections in X-ray diffraction patterns indicates a nanoscale state.
The sizes of the coherent scattering regions (around 11–12 nm) are presented in Table 1.

Cathodoluminescence spectra of pressed ceramic samples with nominal compositions
Ba0.6Ce0.4F2.4 and Ba0.7Ce0.3F2.3 are shown in Figure 9.

These spectra are complex without a band around 4.15 eV. Spectra were composed of
two Ce3+ luminescence components caused by the two lowest 4f electronic energy levels,
2F5/2 and 2F7/2, peaking at 3.65 eV (340 nm) + 3.97 eV (310 nm) and 3.40 eV (365 nm)
+ 3.65 eV (340 nm) for Ba0.6Ce0.4F2.4 and Ba0.7Ce0.3F2.3, respectively. Redistribution of
intensities of the luminescence components and significant blue shift of the luminescence
bands were observed when the cerium concentration increased. (Table 1). The synthesized
powders were dried at a temperature of 45 ◦C, which may lead to the presence of water
and hydroxyl ions on the surface of the particles [54]. There are weak bands at 315 nm in
the cathodoluminescence spectra of synthesized powders and single crystals. In the case of
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oxygen hypothetical presence, their intensity would be significantly less than the cerium
cathodoluminescence bands.
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and Ba0.6Ce0.4F2.4 nominal compositions, respectively.

The luminescence decay kinetics for powder samples has a multi-exponential character.
The decay kinetics of the samples has three lifetimes (27 ns, 140–170 ns, and ~600 ns) at 300 K.
The shortest component (~27 ns) is close to the Ce3+ lifetime recorded for single crystals.
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Slower components in decay kinetics can be associated with the time of excitation delivery
to cerium by recombination of the electrons with holes and excitons. The decreasing
phenomenon of the slow component is associated with an increase of the cerium content
and the probability of reaching the neighboring cerium upon energy transfer process.

The integrated spectra of cathodoluminescence are similar for all samples (Figure 10).
The luminescence band maximum at 375 nm (3.31 eV) is closer to the long-wavelength lumi-
nescence component for the Ba0.7Ce0.3F2.3 sample. In comparison to time-resolved cathodo-
luminescence, integrated luminescence exhibits longer-lived (slow) centers; therefore, the
long-wavelength component in the luminescence spectrum associated to slower centers.
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4. Discussion

The two components of the Ce3+ luminescence in Ba1−xCexF2+x single crystals and
pressed powder are caused by transitions from the lowest 5d level to two 4f levels (2F5/2
and 2F7/2) [2]. The splitting of the two 4f levels is typically around 2000 cm−1 which
corresponds to about 0.3 eV. The values of splitting determined in our work are close to
this value. Such luminescence behavior contains single component in decay kinetics about
23 ns.

However, the results of decay kinetics for ceramics is differ compare with single
crystals. Three components of sum exponential functions were used for approximation
luminescence decay kinetics. The luminescence decay of pressed ceramics contains long-
lived components with decay time about 600 ns, which are characterized for autolocalized
exciton. The presence of lifetime components of ~600 ns in the decay curves indicates
that the luminescence spectra of the powders contain an exciton band along with the Ce3+

bands. While in single crystals the emission of a self-trapped exciton is almost completely
suppressed already at 0.1 mol.% Ce3+. The retention of exciton luminescence in powders
even at a high cerium concentration can be associated with the division of the nanoparticle
volume into more complicated core-shell architecture with cerium gradient from surface to
inside. The similar behavior was demonstrated in [55] for barium fluoride doped with Ce3+

ceramics. It was suggested that the slow decay constant (τ3) is not typical for Ce3+ ions.
It means that the luminescence centers in BaF2: Ce are Ce3+ ions, but the excitation of the
centers is effected partly by some electron (or hole) traps. In our case using high energy
electron beam for pressed ceramics, a high proportion of free carries are captured by traps,
and thereafter the carries escape from the traps and excite Ce3+ ions can be take place.
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The fast components with decay times about 140–170 ns can be attributed to interme-
diate layer in nanocrystals with a low concentration of cerium, in which the probability of
radiative annihilation of an exciton is comparable to the probability of excitation transfer
from an exciton to cerium ions. The luminescence spectra of single crystals weakly depend
on cerium ions concentration between 25 and 40%, while in pressed ceramics an increase in
cerium concentration causes a redistribution of the luminescence intensities components
and significant blue shift of the luminescence bands. This means that powders synthesized
from aqueous solutions have a different defect structure compared to melt-grown single
crystals. The blue shift of the luminescence bands indicates a relative enhance in 5d energy
level when the cerium concentration increasing in the ceramics.

Finally, it was determined that BaF2: Ce samples exhibit nanosecond luminescence times
that potentially suitable for embedding into diamond for an X-ray phosphor application.

5. Conclusions

A comparative analysis of the structural, spectral, and luminescence decay kinetic
characteristics of the Ba1−xCexF2+x (x = 0.3–0.4) single-phase samples solid solution are
carried out for single crystals and nanopowders. The cathodoluminescence spectra revealed
a wide band in the range of 3.0–4.0 eV, which contains two components with a luminescence
decay time about 23 ns in the case of single crystals, and sum of three exponential functions
with a luminescence decay time of 27 ns, 140–170 ns, and ~600 ns in the case of powders,
containing potassium. The fast decay time component is close to the lifetime of the excited
state of the Ce3+ ions and promising for diamond–nanoparticle composite preparation.
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