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Abstract: Equiprobable incoherent mixtures of two totally polarized states of light whose associated
three-dimensional Jones vectors are mutually orthogonal are called discriminating states and con-
stitute a peculiar type of state that plays a key role in the characteristic decomposition of a generic
state into a totally polarized state, a totally unpolarized state, and a discriminating state. In general,
discriminating states are three-dimensional, in the sense that the strengths of the three components of
the electric field are nonzero for any Cartesian reference frame considered. In the limiting case that
the electric field evolves in a fixed plane, the discriminating state is said to be regular and corresponds
to a two-dimensional unpolarized state. The special features of discriminating states cover, e.g., their
possible synthesis from infinite pairs of mutually orthogonal states as well as their transverse spin.
The nature and properties of discriminating states are comprehensively analyzed based on their
associated intrinsic Stokes parameters, which leads to meaningful interpretations in terms of the
associated polarization ellipsoids and spin vectors.

Keywords: discriminating polarization states; partially polarized light

1. Introduction

The general, three-dimensional (3D) nature of polarization states of random stationary
light should be considered for important physical situations like near fields [1–3], tightly
focused beams [4–8], or evanescent waves [9]. Thus, the conventional two-dimensional
(2D) representation, which is applicable for plane waves or paraxial beams, constitutes a
particular case of the general 3D states. Polarization states for which the evolution of the
electric field is not constrained to a fixed plane do not admit a two-dimensional formu-
lation and are called genuine 3D states whose properties have recently been extensively
studied [10–15].

Polarization of a random electromagnetic field refers to the evolution of the end point
of the electric field at a given point in space, and its complete characterization would
require the knowledge of all n-order moments of the field variables, represented by their
associated respective analytic signals. Nevertheless, polarization is commonly represented
by the second-order moments, which are arranged as the components of the corresponding
polarization matrix. Such a second-order representation is complete for random stationary
Gaussian fields and constitutes a sufficient approach for most practical situations.

Thus, the second-order representation of a polarization state is determined by its
associated polarization matrix, denoted by R, which in virtue of the so-called characteristic
decomposition, can be expressed as a convex sum of three specific characteristic compo-
nents. These correspond to a fully polarized state (or pure state), a fully unpolarized state,
and a discriminating state, which in its turn refers to an incoherent superposition of two
pure states whose Jones vectors are mutually orthogonal.

Beyond the key role played by discriminating states in the interpretation of the charac-
teristic decomposition of general polarization states, they exhibit a very peculiar structure.
In addition, they can be experimentally generated in different ways and correspond to
interesting physical scenarios: for instance, certain types of evanescent waves [9]. Also,
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since the mathematical formalism dealt with in this work coincides with that applied to
quantum qutrit states [16], the results obtained can directly be applied to the corresponding
discriminating qutrit states.

The present work is focused on the description, analysis, and physical interpretation
of discriminating states and is organized as follows. The necessary concepts and notations
are presented in Section 2; Section 3 is devoted to the specific study of discriminating
polarization states; and Section 4 summarizes the characteristic properties of these kinds of
polarization states.

2. Mathematical Representations and Physical Descriptors of Three-Dimensional
Polarization States

The polarization matrix, which contains all the second-order measurable information
about the state of polarization (including intensity) of an electromagnetic wave, is defined
as the following 3×3 Hermitian matrix:

R = 〈ε(t)⊗ ε†(t)〉 =


〈
ε1(t) ε∗1(t)

〉
〈ε1(t) ε∗2(t)〉

〈
ε1(t) ε∗3(t)

〉
〈
ε2(t) ε∗1(t)

〉
〈ε2(t) ε∗2(t)〉

〈
ε2(t) ε∗3(t)

〉
〈
ε3(t) ε∗1(t)

〉
〈ε3(t) ε∗2(t)〉

〈
ε3(t) ε∗3(t)

〉


, (1)

whose elements are the second-order moments of the zero-mean analytic signals εi(t)
(i = 1, 2, 3) (complex random processes) associated with the three (real) Cartesian compo-
nents of the electric field vector at point r in space. Superscript † denotes the conjugate
transpose, ⊗ stands for the Kronecker Product, and the brackets 〈. . .〉 indicate time av-
eraging (in the case of stationary and ergodic fields, the brackets can also be interpreted
as ensemble averaging over the ensemble of sample realizations). Note that the conven-
tion R = 〈ε(t)⊗ ε†(t)〉, which is common in polarization optics, is used instead of the
convention R = 〈ε∗(t)⊗ εT(t)〉 frequently used in optical coherence theory. Thus, R is
characterized by nine quantities, which are measurable through the corresponding 3D
Stokes parameters [1,17–26].

Let us consider the unitary similarity transformation that diagonalizes R,

R = Udiag(λ1, λ2, λ3)U†, [λ1 ≥ λ2 ≥ λ3], (2)

where U is a unitary matrix, and (λ1, λ2, λ3) are the real eigenvalues of R, which are
necessarily non-negative because of the fact that R has the mathematical structure of a
covariance matrix (of three zero-mean functions εi (t)). Without loss of generality, the
eigenvalues have been taken in decreasing order (λ1 ≥ λ2 ≥ λ3). Note that trR =
λ1 + λ2 + λ3 represents the intensity I of the state. For certain purposes, it is useful to
define the polarization density matrix R̂ = R/I as the intensity-normalized version of

the polarization matrix, whose eigenvalues are denoted as
ˆ
λi = λi/I (i = 1, 2, 3) with

λ̂1 + λ̂2 + λ̂3 = 1. The above diagonalization of R leads directly to the so-called spectral
decomposition

R = λ̂1 I R̂p1 + λ̂2 I R̂p2 + λ̂3 I R̂p3 ,
[

R̂p1 = Udiag(1, 0, 0)U†, R̂p2 = Udiag(0, 1, 0)U†, R̂p3 = Udiag(0, 0, 1)U†],
(3)

which shows that R can be interpreted as the incoherent superposition of three pure states
whose associated analytic signal vectors are mutually orthogonal.

The spectral decomposition can be rearranged to build the corresponding characteristic
decomposition [27]

R = P1 I R̂p + (P2 − P1)I R̂m + (1− P2)I R̂u−3D,

R̂p = Udiag(1, 0, 0)U†, R̂m = 1
2 Udiag(1, 1, 0)U†, R̂u−3D = 1

3 I ,
(4)



Photonics 2023, 10, 1050 3 of 11

where R̂p represents a pure state (denoted by R̂p1 in Equation (3)), R̂u−3D is a fully unpo-
larized state, and the middle component R̂m is called the discriminating state associated
with R, while the coefficients of the convex sum are regulated by the indices of polarimetric
purity (IPPs) defined from the eigenvalues of R̂ in the following manner [28].

P1 = λ̂1 − λ̂2, P2 = λ̂1 + λ̂2 − 2λ̂3 (5)

Note that the convention λ1 ≥ λ2 ≥ λ3 should be preserved for a proper definition of
the above IPPs, and consequently, 0 ≤ P1 ≤ P2 ≤ 1. The structure of the characteristic
decomposition shows that discriminating states, whose polarization and polarization
density matrices will be hereafter denoted as Rm and R̂m, respectively, are characterized by
P1 = 0 and P2 = 1. Moreover, pure states are characterized by P1 = P2 = 1, while fully
unpolarized states correspond to P1 = P2 = 0.

It has also been shown that the IPPs determine the structure of polarimetric random-
ness of R, while they are insensitive to the type of polarization states associated with the
spectral components. The overall polarimetric randomness of a state R is given by the
associated degree of polarimetric purity (or degree of polarization) [1,28].

P3D =

√
3P2

1 + P2
2

4
=

√
1
2

(
3trR̂2 − 1

)
=

√√√√ 1
2

(
3

3

∑
i=1

λ̂2
i − 1

)
, (6)

whose limiting values are P3D = 0 for fully unpolarized states and P3D = 1 for fully
polarized states.

Other interesting complementary descriptors can be defined through the intrinsic
representation of R, which is obtained as follows by means of the diagonalization of the real
part ReR of R. Given R, let us consider the orthogonal (hence, real) matrix Q that allows us
to perform the orthogonal similarity transformation [29].

ReR = Q diag(a1, a2, a3)Q T , [a1 ≥ a2 ≥ a3], (7)

where the superscript T indicates the transpose matrix, and the non-negative diagonal
elements (a1, a2, a3) (taken in decreasing order) are called the principal intensities of R.
When the same orthogonal similarity transformation is applied to the entire R (not only
to its real part), it is transformed to the intrinsic polarization matrix RO = QTRQ, which
represents the same state as R, but refers with respect to the new intrinsic reference frame
XOYOZO instead of the generic original one X Y Z. Since the real and imaginary parts of R
transform independently in this orthogonal transformation, the diagonal elements of RO
coincide with those of R, and therefore, RO can be expressed as [29,30]

RO ≡



a1 −inO3/2 inO2/2
inO3/2 a2 −inO1/2
−inO2/2 inO1/2 a3


 = I




â1 −in̂O3/2 in̂O2/2
in̂O3/2 â2 −in̂O1/2
−in̂O2/2 in̂O1/2 â3


,

[a1 ≥ a2 ≥ a3, I = a1 + a2 + a3, âi = ai/I, n̂Oi = nOi/I (i = 1, 2, 3)],

(8)

where the off-diagonal elements are determined by the spin vector n ≡ (n1, n2, n3)
T [29,30].

Thus, the complete information contained in the polarization matrix of any polarization
state can be parametrized in terms of the following nine parameters: the three principal
intensities (a1, a2, a3), the three components (nO1, nO2, nO3) of the spin vector along the
respective intrinsic axes XOYOZO, and the three angles determining the rotation associated
with Q [30,31]. Consequently, leaving aside the spatial orientation of the polarization state,
the intrinsic polarization properties are determined by the polarization object constituted
by the polarization ellipsoid defined by (a1, a2, a3) and the spin vector.

Moreover, the principal intensities determine three physically significant quantities,
namely, the intensity I = a1 + a2 + a3, the degree of linear polarization Pl = â1− â2, and the
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degree of directionality Pd = 1− 3â3 (where âi = ai/I are called the principal variances).
Other additional descriptors are the degree of circular polarization Pc = |n|/I , given by
the intensity normalized absolute value of the spin vector, and the degree of elliptical purity

Pe =
√

P2
l + P2

c [32]. The set Pl , Pc, Pd constitutes the so-called components of purity (CPs)
of the polarization state [33].

Contrary to what happens with the IPPs, the CPs hold qualitative information on the
type of polarization exhibited by the state R considered. The contributions of the CPs as
sources of the overall purity of R are evidenced by the relation [33]

P3D =

√
3
(

P2
l + P2

c
)
+ P2

d
4

, (9)

which establishes a link between the IPPs and the CPs via Equation (6). In other words, the
degree of polarimetric purity can be determined either through descriptors of polarimetric
purity/randomness (IPPs) or through descriptors of the polarization nature (CPs).

The nine 3D Stokes parameters associated with a state R are obtained from the coeffi-
cients of the expansion of R in the basis composed of the eight Gell-Mann matrices together
with the 3×3 identity matrix [1,19–21]. When the state R is transformed to RO through a
rotation from the original Cartesian reference axes X Y Z to the intrinsic axes XOYOZO, it
adopts the intrinsic form [25,30]

RO =
1
2

I




2/3 + Pl + Pd/3 −i n̂O3 i n̂O2
i n̂O3 2/3− Pl + Pd/3 −i n̂O1
−i n̂O2 i n̂O1 2/3(1− Pd)


, (10)

so that, in this intrinsic representation, three Stokes parameters become strictly zero while
while the six nonzero intrinsic Stokes parameters are precisely the simple and meaningful
quantities I, Pl , Pd/

√
3, n̂O1, n̂O2, n̂O3 [25].

The effective dimensions that take place in the representation of discriminating states
are characterized by the polarimetric dimension, defined as [34]

DI ≡ 3−
√

3P2
l + P2

d , (11)

with 1 ≤ DI ≤ 3. The lower limiting value DI = 1 is exclusive of linearly polarized states
(Pl = Pd = 1, 1D light), values in the interval 1 < DI ≤ 2 correspond to states whose
electric field fluctuates in a fixed plane and are not linearly polarized (Pl < 1, Pd = 1, 2D
light ) and values in the interval 2 < DI ≤ 3 are achieved uniquely by genuine 3D states
(Pd < 1).

Throughout the next sections, all the above structures and properties of general
polarization states will be particularized to the case of discriminating states, including their
specific interpretations.

3. Structure and Peculiarities of Discriminating States of Polarization

The general form of the polarization density matrix of a discriminating state is [27]

R̂m =
1
2

Udiag(1, 1, 0)U† =
1
2

(
u1 ⊗ u†

1 + u2 ⊗ u†
2

)
, (12)

where U is a unitary matrix, and the unit vectors u1, u2 coincide with the two first columns
of U. Since U is unitary, its column vectors u1, u2, u3 are mutually orthogonal. From
Equation (4), we see that a polarization state is a discriminating state if and only if its
IPPs have the specific values P1(Rm) = 0 and P2(Rm) = 1. Consequently, the degree of
polarimetric purity of a discriminating state is always P3D(Rm) = 1/2.

As for the intrinsic representation RmO of Rm, let us first recall that, through straight-
forward algebraic calculations, it has been shown that the associated intrinsic reference
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frame XOYOZO coincides with Z3(−Y3)X3, X3Y3Z3 being the intrinsic reference frame of
the eigenvector u3 associated with the zero eigenvalue of Rm [35]. Thus, when u3 is rep-
resented with respect to XOYOZO, it takes the form u3O = eiγ3(0, i sin χ, cos χ)T (γ3 being
an arbitrary phase), which corresponds to a pure state whose polarization plane coincides
with YOZO and whose ellipticity angle is χ. Consequently, RmO has the general form [35]

RmO =
1
2

I




1 0 0
0 cos2 χ −i cos χ sin χ

0 i cos χ sin χ sin2 χ


, [−π/4 ≤ χ ≤ π/4 ], (13)

and the eigenvalues of ReR̂m (in decreasing order) are

â1 =
1
2

, â2 =
cos2 χ

2
, â3 =

sin2 χ

2
(14)

Regarding the remaining intrinsic eigenvectors u1O, u2O of Rm, the double degeneracy of
their common eigenvalue 1/2 implies that they can take infinite possible forms (notwith-
standing that they form the required orthonormal set u1O, u2O, u3O). The simplest choice
corresponds to the canonical pair of eigenvectors constituted by u1O = eiγ1(1, 0, 0)T and
u2O = eiγ2(0,−i cos χ, sin χ)T (γ1 and γ2 being arbitrary phases) which represent, respec-
tively, a linear polarization state whose electric field is oriented along the XO axis and
a pure elliptically polarized state whole polarization plane coincides with that of u3O
(see Figure 1).

Figure 1. The canonical set of intrinsic eigenstates of a discriminating state. u1O and u2O correspond
to the double degenerate nonzero eigenvalue of the intrinsic polarization matrix R̂mO, while u3O

corresponds to the single zero eigenvalue of R̂mO.

Some possible configurations of arbitrary pairs of orthonormal 3D Jones vectors
(u1, u2) with associated spin vectors (n̂1, n̂2) are represented in Figure 2. Equiprobable
incoherent mixtures of the polarization matrices of each pair lead always to discriminating
states whose spin vector is given by (n̂1 + n̂2)/2. It should be noted that, in general,
the intrinsic reference frames of the components are different from that of the composed
discriminating state.

The spin vector of Rm, when referred to with respect to the intrinsic reference frame,
takes the form nO = I (cos χ sin χ, 0, 0)T, thus lying necessarily along axis XO, showing
the intrinsic transverse character of the spin vector of discriminating states. The absolute
value of the intensity-normalized spin vector determines the degree of circular polarization
Pc = |cos χ sin χ|.

The nature of discriminating states is evidenced when RmO is decomposed as

RmO = 1
2 I R̂l−x +

1
2 I R̂e−x,

R̂l−x ≡ u1O ⊗ u†
1O =




1 0 0
0 0 0
0 0 0


,

R̂e−x ≡ u2O ⊗ u†
2O =




0 0 0
0 cos2 χ −i cos χ sin χ

0 i cos χ sin χ sin2 χ


,

(15)
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that is, a discriminating state can always be interpreted as an equiprobable incoherent
composition of an elliptically polarized pure state and linearly polarized state whose electric
field fluctuates along the direction orthogonal to the polarization plane of the elliptically
polarized component. Consequently, the information held by a discriminating state is
completely characterized by its intensity and four angular parameters: namely, the three
angles determining the spatial orientation of the state with respect to its intrinsic reference
frame and the ellipticity angle χ.

Figure 2. Representation of a family of pairs of mutually orthogonal eigenstates (u1, u2) determining
the eigenvector spectrum (with associated equal nonzero eigenvalues) of a discriminating state,
with respective spin vectors n̂1 and n̂2. u1 is taken with a fixed ellipticity and determines its own
intrinsic reference frame X1 Y1 Z1, while different pure states u2, orthogonal to u1, are represented
for decreasing absolute values of n̂2. All eigenstates are realized in a common point in space but
have been separated for the sake of clarity. For a regular discriminating state, n̂2 = −n̂1, while
the polarization planes of u1 and u2 coincide, leading to a 2D-unpolarized state. For nonregular
discriminating states, the polarization planes as well as the ellipticities of both eigenstates are different,
and |n̂2| decreases as the angle subtended by the polarization planes of u1 and u2 increases. Given
u1, the maximal degree of nonregularity is achieved when u2 becomes a linearly polarized state
(|n̂2| = 0).

The extremal values of the achievable range 0 ≤ |χ| ≤ π/4 determine specific limiting
physical configurations. The equality |χ| = 0 is entirely equivalent to any of the following
statements: Rm lacks spin, Rm is a real matrix, Rm corresponds to a 2D-unpolarized state,
i.e., R̂m0 = (1/2) diag (1, 1, 0), the unitary matrix U is a real-valued matrix, i.e., U is an
orthogonal matrix, and Rm is an equiprobable incoherent mixture of two mutually orthogo-
nal polarization states whose polarization planes coincide (including a pair of mutually
orthogonal linearly polarized states, for instance). The equality |χ| = π/4 corresponds
to an equiprobable mixture of a linearly polarized state and a circularly polarized state
with mutually orthogonal polarization planes. A proper measure of the distance of Rm to a
2D-unpolarized state is given by the so-called degree of nonregularity [35]

PN(Rm) = PN(RmO) = 2 sin2 χ, [−π/4 ≤ χ ≤ π/4], (16)

so that 0 ≤ PN ≤ 1, with PN = 1 when |χ| = π/4 (perfect nonregular state) and PN = 0
when |χ| = 0 (2D-unpolarized state).

The possible configurations of the canonical eigenstates of a discriminating state are
represented in Figure 3. Typical configurations of the polarization object of a discriminating
state are shown in Figure 4.

From the analyses performed above, the properties of discriminating states of polar-
ization can be summarized as follows.

While the IPPs of a discriminating state take fixed values (P1 = 0, P2 = 1), the
achievable values of the CPs depend on the value of χ (i.e., on the value of PN , see Figure 5)
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Pl =
1
2 sin2 χ = 1

4 PN ⇒





0 ≤ Pl ≤ 1/4
Pl = 0⇔ χ = 0 ( regular)
Pl = 1/4⇔ χ = ±π/4 (perfect nonregular)

Pd = 1− 3
2 sin2 χ = 1− 3

4 PN ⇒





1/4 ≤ Pd ≤ 1
Pd = 1⇔ χ = 0 ( regular)
Pd = 1/4⇔ χ = ±π/4 (perfect nonregular)

Pc = |sin χ cos χ| = 1
2

√
PN(2− PN) ⇒





0 ≤ Pc ≤ 1/2
Pc = 0⇔ χ = 0 ( regular)
Pc = 1/2⇔ χ = ±π/4 (perfect nonregular)

(17)

Consequently, the degree of elliptical purity is given by

Pe =
|sin χ|

2

√
1 + 3 cos2 χ = 1

4

√
PN(8− 3PN)

⇒





0 ≤ Pe ≤
√

5/4
Pe = 0⇔ χ = 0 ( regular)
Pe =

√
5/4⇔ χ = ±π/4 (perfect nonregular)

(18)

Regarding the polarimetric dimension of discriminating states, it can be expressed as

DI = 3−
√

1− 3 sin2 χ cos2 χ = 3−
√

1− (3/4)PN(2− PN)

⇒





2 ≤ DI ≤ 5/2
DI = 2⇔ χ = 0 ( regular)
DI = 5/2⇔ χ = ±π/4 (perfect nonregular)

(19)

The feasible region for the CPs of a discriminating state is represented in Figure 6, and it
is determined by the curve RI lying in the surface of an elliptical cylinder whose basis has
semiaxes 1/4 along the positive branch of axis Pl , and 1/2 along the positive branch of axis Pc.

Figure 3. A nonregular discriminating state Rm can always be interpreted as an equiprobable mixture
of an elliptically polarized state and a linearly polarized state. XOYOZO represent the intrinsic
reference frame associated with Rm. (a) When the ellipticity of the component u2O is zero, then
Rm corresponds to a 2D-unpolarized state whose electric field fluctuates in the plane XOYO, this
corresponds uniquely to regular discriminating states, PN = 0. (b) When the ellipticity of the
component u2O is nonzero, its polarization ellipse lies in the plane YOZO orthogonal to the axis
XO along which the electric field of the linearly polarized component fluctuates, 0 < PN ≤ 1.
(c) Maximal nonregularity, PN = 1, is achieved when u2O is a circularly polarized state, regardless of
its handedness.
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Figure 4. Polarization object of a discriminating state Rm(P1 = 0, P2 = 1) is composed of its
polarization ellipsoid and its spin vector. (a) The polarization ellipsoid of a discriminating state
with zero spin, Pc= 0 degenerates in a circle and corresponds uniquely to a 2D-unpolarized state,
which constitutes a limiting situation characterizing regularity. (b) Nonregular discriminating states
exhibit polarization ellipsoids whose three semiaxes are nonzero. As the third principal variance â3,
increases, the absolute value Pc of the intensity normalized spin vector increases. (c) Maximal values
for Pc and â3 correspond to perfect nonregular states, with Pc = 1/2 and â3 = â2 = 1/4 Adapted
with permission from Ref. [31] © 2021 by the authors.

Figure 5. Achievable values of the components of purity (Pl , Pc, Pd) of a discriminating state as
functions of the degree of nonregularity PN . PN = 0 corresponds to 2D-unpolarized states, for which
Pl = Pc = 0 and Pd = 1. As PN increases up to PN = 1 (perfect nonregular states), Pd decreases down
to 1/4, while Pl and Pc increase up to 1/4 and 1/2, respectively.

The properties and characteristic values of the main polarization descriptors for dis-
criminating states, including the limiting cases of regular and perfect nonregular states,
are summarized in Table 1. Since the eigenvalues of any polarization matrix R̂m are
(1/2, 1/2, 0), both the indices of polarimetric purity and the degree of polarimetric pu-
rity have the fixed values P1 = 0, P2 = 1, P3D= 1/2. Furthermore, except for regular
discriminating states, which lack spin, the spin vector lies along the intrinsic axis XO.

Figure 4. Polarization object of a discriminating state Rm(P1 = 0, P2 = 1) is composed of its
polarization ellipsoid and its spin vector. (a) The polarization ellipsoid of a discriminating state
with zero spin, Pc= 0 degenerates in a circle and corresponds uniquely to a 2D-unpolarized state,
which constitutes a limiting situation characterizing regularity. (b) Nonregular discriminating states
exhibit polarization ellipsoids whose three semiaxes are nonzero. As the third principal variance â3,
increases, the absolute value Pc of the intensity normalized spin vector increases. (c) Maximal values
for Pc and â3 correspond to perfect nonregular states, with Pc = 1/2 and â3 = â2 = 1/4. Adapted
with permission from Ref. [31] © 2021 by the authors.

Figure 5. Achievable values of the components of purity (Pl , Pc, Pd) of a discriminating state as
functions of the degree of nonregularity PN . PN = 0 corresponds to 2D-unpolarized states, for which
Pl = Pc = 0 and Pd = 1. As PN increases up to PN = 1 (perfect nonregular states), Pd decreases down
to 1/4, while Pl and Pc increase up to 1/4 and 1/2, respectively.

The properties and characteristic values of the main polarization descriptors for dis-
criminating states, including the limiting cases of regular and perfect nonregular states,
are summarized in Table 1. Since the eigenvalues of any polarization matrix R̂m are
(1/2, 1/2, 0), both the indices of polarimetric purity and the degree of polarimetric pu-
rity have the fixed values P1 = 0, P2 = 1, P3D= 1/2. Furthermore, except for regular
discriminating states, which lack spin, the spin vector lies along the intrinsic axis XO.
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Figure 6. (a) Feasible region for the components of purity of a discriminating state Rm, given by a
curve on the surface of an elliptical cylinder of semiaxes (1/4,1/2). Point R (0, 0, 1) represents uniquely
regular discriminating states (i.e., 2D-unpolarized states). Point I (1/4,1/2, 1/4) represents solely
perfect nonregular states. The lower the value of Pd, the higher the degree of nonregularity. (b) Purity
figure of a discriminating state, where the elliptical branch between points R and I determines the
achievable pairs of values (Pe, Pd).

Table 1. Characteristic properties of discriminating states.

Regular Nonregular Perfect Nonregular

Degree of nonregularity PN = 0 0 < PN < 1 PN = 1

Components of purity Pl = 0, Pc = 0, Pd = 1 0 < Pl < 1/4, 0 < Pc <
1/2, 1/4 < Pd < 1

Pl = 1/4, Pc = 1/2,
Pd = 1/4

Ellipticity angle of the
canonical component u2O

χ = 0
(linear polarization)

|χ| < π/4
(elliptical polarization)

|χ| = π/4
(circular polarization)

Principal variances â1 = 1/2, â2 = 1/2, â3 = 0 â1 = 1/2, 1/4 < â2 <
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4. Summary

As a summary, we analyzed the properties of the discriminating polarization states
which are essential in the characteristic decomposition of the 3 × 3 polarization matrix.
Such states are equally-weighted superpositions of two polarization states represented
by the eigenvectors of the two largest eigenvalues. In general, a discriminating state is a
genuine 3D state, but in a special case, it becomes a 2D-unpolarized state. We evaluated the
indices and components of purity, polarimetric and elliptical purity, polarimetric dimension,
as well as nonregularity properties of the discriminating states. The results are important
for understanding the structure of genuine 3D polarization states which are encountered in
high-NA focal fields and optical near fields including the evanescent waves and plasmon
surface waves.
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Figure 6. (a) Feasible region for the components of purity of a discriminating state Rm, given by a
curve on the surface of an elliptical cylinder of semiaxes (1/4,1/2). Point R (0, 0, 1) represents uniquely
regular discriminating states (i.e., 2D-unpolarized states). Point I (1/4,1/2, 1/4) represents solely
perfect nonregular states. The lower the value of Pd, the higher the degree of nonregularity. (b) Purity
figure of a discriminating state, where the elliptical branch between points R and I determines the
achievable pairs of values (Pe, Pd).

Table 1. Characteristic properties of discriminating states.

Regular Nonregular Perfect Nonregular

Degree of nonregularity PN = 0 0 < PN < 1 PN = 1

Components of purity Pl = 0, Pc = 0, Pd = 1 0 < Pl < 1/4, 0 < Pc < 1/2,
1/4 < Pd < 1

Pl = 1/4, Pc = 1/2,
Pd = 1/4

Ellipticity angle of the
canonical component u2O

χ = 0
(linear polarization)

|χ| < π/4
(elliptical polarization)

|χ| = π/4
(circular polarization)

Principal variances â1 = 1/2, â2 = 1/2, â3 = 0 â1 = 1/2, 1/4 < â2 < 1/2,
0 < â3 < 1/4 â1 = 1/2, â2 = â3 = 1/4

Polarization object Figure 4a Figure 4b Figure 4c
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0 0 0




I
2 Q




1 0 0
0 c2

χ −i sχcχ

0 i sχcχ s2
χ


QT

[
QT = Q−1, |χ| < π/4

]

I
4 Q




2 0 0
0 1 −i
0 i 1


QT

[
QT = Q−1

]

4. Summary

As a summary, we analyzed the properties of the discriminating polarization states
which are essential in the characteristic decomposition of the 3×3 polarization matrix. Such
states are equally-weighted superpositions of two polarization states represented by the
eigenvectors of the two largest eigenvalues. In general, a discriminating state is a genuine
3D state, but in a special case, it becomes a 2D-unpolarized state. We evaluated the indices
and components of purity, polarimetric and elliptical purity, polarimetric dimension, as
well as nonregularity properties of the discriminating states. The results are important for
understanding the structure of genuine 3D polarization states which are encountered in
high-NA focal fields and optical near fields including the evanescent waves and plasmon
surface waves.
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