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Abstract: As is known, quasi-periodicity attracts great attention in many scientific regions. For
instance, the discovery of the quasicrystal was rewarded the Nobel Prize in 2011, leading to a series
of its applications. However, in the area of manipulating optical fields, the two-dimensional quasi-
periodicity is rarely considered. Here, we study the two-dimensional quasi-periodic diffraction
properties of the scalar and vector optical fields based on the Penrose tiling, which is one of the most
representative kinds of two-dimensional quasi-periodic patterns. We propose type-A and type-B
Penrose tiling masks (PTMs) with phase modulation, and further show the diffraction properties of
the optical fields passing through these masks. The intensity of the diffraction field holds a tenfold
symmetry. It is proved that the iteration number n of the PTM shows the “weeding” function in the
diffraction field, and this property is useful in filtering, shaping, and manipulating diffraction fields.
Meanwhile, we also find that the diffraction patterns have the label of the Golden ratio, which can be
applied in areas such as optical encryption and information transmission.

Keywords: diffraction; vector beam; quasi-periodicity; structured light

1. Introduction

As is known, quasi-periodicity attracts great attention and has been applied in many
scientific regions. For instance, the discovery of the quasicrystal attracted great interest
and changed the perception of the crystal. Before 1981, the existence of the quasicrystal
was considered as unrealistic because of their forbidden fivefold and tenfold symmetries.
In 1982, Daniel Shechtman found a material called a quasicrystal that possesses long-range
order without translational periodicity [1], which was awarded the Nobel Prize in 2011.
After 1982, the quasicrystal has attracted wide attention, and its corresponding quasi-
periodic model gradually developed. According to dimensions, quasi-periodic models can
be divided into one-dimensional quasi-periodic models, two-dimensional quasi-periodic
models, and three-dimensional quasi-periodic models. Quasi-periodic models are used not
only in the field of materials, but also in the field of optics. One-dimensional quasi-periodic
structures have attracted people’s attention in the field of diffraction optics. It has been
applied in designing quasi-periodic masks including Fibonacci gratings [2–6], Fibonacci
zone plate [7,8], and Fibonacci-like zone plate [9]. These masks can be used for differ-
ent applications, such as super-resolution imaging [5,6,10,11], intraocular lenses [8,9,12],
biomedical imaging [11], and filtering [13]. Compared to the one-dimensional quasi-
periodic structures, the two-dimensional quasi-periodic structures possess more variations,
which can be more flexible when designing and manipulating optical fields. However,
the two-dimensional quasi-periodic structures are rarely considered in manipulating optical
fields, which can be meaningful in optical research.

Polarization is one of the most salient features of light, even more important than
the coherence property. During the past few years, manipulation of polarization has be-
come an appealing and promising topic in the area of physical optics. Polarization, as an
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additional degree of freedom, is used in creating the vector optical field (VOF) with a
spatially inhomogeneous state of polarization [14,15]. Compared with the scalar optical
field (SOF) with a uniform polarization distribution, VOFs with space-variant polariza-
tion structures have attracted extensive interest due to many unique features [16–21].
VOFs hold great potential for a variety of scientific and engineering applications, such
as optical communications [17,22], far-field focal spot beyond the diffraction limit [23],
focal engineering [24–27] , optical microscopy [28,29], light–matter interactions [30,31],
and quantum entanglement [32]. Thus, it is of significance to study the two-dimensional
quasi-periodic diffraction properties of both SOF and VOF, which may lead to new proper-
ties and applications.

In this paper, we study the two-dimensional quasi-periodic diffraction properties of
the optical fields based on the Penrose tiling, which is one of the most representative quasi-
periodic patterns. We propose two different kinds of Penrose tiling masks (PTMs). Type-A
PTM is a kind of phase PTM with different phases in different rhombus tiles, and type-B
PTM contains circular tiles to modulate phase distribution. Based on these two kinds of
PTMs, we study the diffraction properties of the SOF with a homogeneous polarization state
and the VOF with a space-variant polarization state, respectively. As a result, the diffraction
patterns show a tenfold symmetry. In the diffraction field, the iteration number n of the
Penrose tiling possesses the “weeding” function, as the noise spots around the strong spot
become weaker when the iteration number increases. Moreover, the diffraction pattern of
the optical field passing through the PTM shows the label of the Golden ratio, which can
be a featured and characteristic mark of the diffraction field. These results are inspirable
and useful in areas such as manipulating and shaping diffraction fields, optical encryption,
and information transmission.

2. The Design of Penrose Tiling Masks and Basic Diffraction Properties

The Penrose tiling, which is one of the most representative kinds of two-dimensional
quasi-periodic structures, was first proposed by Penrose [33,34]. The Penrose tiling is used
not only in quasicrystal models of crystallography, but also in various branches such as
nature, art, materials and so on. Here, we consider the most common rhombic Penrose
tiling which is built up by fat rhombus tiles and thin rhombus tiles. The rhombic Penrose
tiling can be generated by the Penrose substitution rule [35–37], which means that it is
designed by taking a tile, expanding it, and then replacing the larger tiles by copies of the
original tiles. The tiles in the Penrose tiling are always replaced in the same way. Obviously,
this is an iteration process [35,37], and the number of iterations is n. Based on the rhombic
Penrose tiling, we propose type-A and type-B PTMs with phase modulation when n = 3,
as shown in Figure 1a and Figure 1b, respectively. For type-A PTM, the phase is modulated
to zero and π in the fat rhombus tiles and thin rhombus tiles, respectively. Type-A PTM is
exactly with fivefold symmetry, and the acute angles of fat rhombus tiles and thin rhombus
tiles are 72° and 36°, respectively. Considering the strong diffraction effect of the rhombic
mask, we further propose type-B PTM, as shown in Figure 1b. In this kind of PTM, the circle
tiles are applied instead of the rhombus tiles, and the phases are modulated to zero and π
in two different circle tiles in type-B PTM.

Based on the Fraunhofer diffraction, we explore the diffraction properties of the optical
fields through the two kinds of PTMs. The Fraunhofer diffraction formula is [38,39][

E′x(x′, y′)
E′y(x′, y′)

]
=

1
iλz

ei k
2z (x′2+y′2)

∫∫ [ Ex(x, y)
Ey(x, y)

]
e−i 2π

λz (xx′+yy′)P(x, y)dxdy, (1)

where (x′, y′) are the coordinates in the diffraction plane, while (x, y) are the coordinates in
the input plane. z is the longitudinal coordinate. k = 2π/λ is the wavenumber, and λ is the
wavelength of light. P(x, y) is the aperture function of the input field. In the experiment,
we use the focal field to study the far-field diffraction field, and the calculation formula
is [40–42]
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where (x f , y f ) are the coordinates in the focal plane, and f is the focal length of the lens.
circ(·) is the well-known circular function describing the boundary of the input field.
The numerical aperture of the focal lens is NA = ρm/ f , where ρm is the maximum radius
of the input field. We choose NA = 0.02 in the following calculation.

 

（a）n=3 菱形掩膜版；（b）n=3 内切圆掩膜版 

(b) 

Type-A PTM Type-B PTM 

0 phase 

π phase 

0 phase 

π phase 

(a) 

Figure 1. Two kinds of PTMs when the iteration number n = 3. (a) Type-A PTM with rhombic tiles.
(b) Type-B PTM with circular tiles. Phases 0 and π are modulated in different tiles in the PTMs.

Next, we study the diffraction properties of the SOF with uniform polarization dis-
tribution and the VOF with space-variant polarization distribution through the PTMs.
For simplicity, we choose the x-polarized SOF as E = êx, which means Ex(x, y) = 1 and
Ey(x, y) = 0 in Equations (1) and (2). For the input VOF, we choose the most common cylin-
drical VOF as E = cos(mϕ)êx + sin(mϕ)êy, so Ex(x, y) = cos(mϕ) and Ey(x, y) = sin(mϕ)
in Equations (1) and (2). Here, ϕ is the azimuthal coordinate in the input plane, and m
is the topological charge of the cylindrical VOF. When m = 1, the cylindrical VOF de-
grades into the radially polarized field, whose linear polarizations in the wave front
are along the radial direction. As is known, though there are various kinds of VOFs,
the radially polarized VOF is the most common VOF, which has been applied in many
areas [14,15,17,20–22,24–26,29,30,32]. This is the reason why we mainly focus on studying
the radially polarized VOF here.

Figure 2 shows the diffraction patterns of the x-polarized SOF passing through type-A
and type-B PTMs with n = 4. When type-A PTM is applied, the diffraction pattern exhibits
one strong focal spot at the center, as shown in the first row of Figure 2. In order to show
more details of the diffraction patterns, we magnify the intensity of the diffraction patterns
to different degrees. When the intensity is magnified 20 and 50 times, more diffraction spots
appear around the central spot, but the diffraction patterns always exhibit a tenfold mirror
symmetry. When type-B PTM is applied, the diffraction pattern also exhibits one strong focal
spot at the center and a tenfold mirror symmetry, as shown in the second row of Figure 2.
Compared with the case of type-A PTM, the size of the diffraction pattern of type-B PTM is
smaller. This is easy to understand as the shape of the tiles in type-B PTM is circular, and
their diffraction effect is weaker than that of the rhombic tiles in type-A PTM. Meanwhile,
the intensity of the secondary diffraction spots is stronger for the case of type-B PTM, as shown
in the second and third columns of Figure 2. The number of diffraction spots is smaller for the
case of type-B PTM, which can be seen from the fourth column of Figure 2.
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Figure 2. The diffraction patterns of the x-polarized SOFs passing through type-A and type-B PTMs
when n = 4. The first column shows the schematic of the two kinds of PTMs, and the second to
fourth columns show the diffraction patterns when the intensity is magnified 1, 20, and 50 times,
respectively. Any image of the diffraction field has a dimension of 2000λ × 2000λ.

Figure 3 shows the diffraction patterns of the VOFs when m = 1 and 2 passing through
type-A and type-B PTMs, respectively. Obviously, the diffraction spots in the intensity patterns
are also with space-variant polarizations, and the topological charge of each focal ring is the
same with the incident VOF. When we observe the x component of the diffraction field in the
second column of Figure 3, any diffraction ring exhibits two petals, which is two times the
topological charge m of the incident VOF. Meanwhile, the diffraction spot exhibits four petals
when m = 2 in the fourth column of Figure 3, and the number of the petals is also two times
that of m. All the diffraction patterns exhibit a tenfold mirror symmetry, and the diffraction
patterns when m = 2 are extremely similar to the patterns when m = 1, except that the size
of the focal ring when m = 2 is larger. We should also point out that we only showed the
total intensity and the intensity of the x component in Figure 3, and the intensity of the y
component can be derived by the total intensity and the intensity of the x component.

 

第 1 行 3000λ*3000λ，A 型相位掩膜版，入射场径向场 m=1,2，n=5，过曝 30。
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Figure 3. The diffraction patterns of the cylindrical VOFs passing through type-A and type-B PTMs
when n = 5. The first and second columns show the case of input VOF when m = 1, and the third
and fourth columns show the case of input VOF when m = 2. The first and third columns show the
total intensity distributions, and the second and fourth columns show the intensity distributions of
the x components, respectively. The intensity is magnified 30 times in all the images. Any image has
a dimension of 3000λ × 3000λ.
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3. The “Weeding” Function of the Iteration Number n In PTMs

For the PTMs we propose, there is an important modulation degree of freedom to
control and manipulate the diffraction fields. This parameter is the iteration number n of the
PTM, which holds the “weeding” function in modulating the diffraction field. The “weed-
ing” function is an important property when modulating and applying the diffraction field
or the focal field [39,43]. When the field is weeded, the energies of the diffraction field or
the focal field become more concentrated, which can be applied in a variety of areas, includ-
ing focal engineering, optical trapping, optical machining, and information transmission.
Figure 4 shows the diffraction patterns of the x-polarized SOF passing through type-A and
type-B PTMs when n = 3, 4, and 5 in three rows, respectively. From the first and third
columns, we can see that the diffraction patterns always exhibit a tenfold mirror symmetry
for all the cases. When n increases, the sizes of the intensity patterns also increase, which is
understandable as the complexity of the phase mask increases along with the increasing n.
Meanwhile, the sizes of the diffraction patterns are always smaller for the case of type-B
PTM. From the enlarged figures in the second and fourth columns, it can be found that the
diffraction spots become cleaner with the increasing values of n. This proves the “weeding”
function of the iteration number n of type-A and type-B PTMs for the input SOF.

 

第一列 1200λ*1200λ，2000λ*2000λ，3000λ*3000λ，x 线偏振，A 型相位 n=3，4，5。过曝 20 倍，NA=0.02 

第二列 500λ*500λ，820λ*820λ，1350λ*1350λ 

第三列 1200λ*1200λ，2000λ*2000λ，3000λ*3000λ，x 线偏振，B 型相位 n=3，4，5。过曝 20 倍，NA=0.02 

第四列 430λ*430λ，690λ*690λ，1060λ*1060λ 

 

Type-A PTM Type-B PTM 

n
 =

 3
 

n
 =

 4
 

n
 =

 5
 

Figure 4. The diffraction patterns of the x-polarized SOF passing through type-A and type-B PTMs
when n = 3, 4, and 5. The first and second columns show the case of type-A PTM, and the third and
fourth rows show the case of type-B PTM, respectively. The three rows show the cases of the PTMs
when n = 3, 4, and 5, respectively. The intensity is magnified 20 times in all the images. The images
in the first and third columns have the dimensions of 1200λ × 1200λ in the first row, 2000λ × 2000λ in
the second row, and 3000λ × 3000λ in the third row, respectively.

We discussed the “weeding” function of the iteration number n in the diffraction
patterns for the case of input SOF. Now, we further study the case when the input field
is VOF. Figure 5 shows the diffraction patterns of the input radially polarized VOF pass-
ing through type-A and type-B PTMs when n = 3, 4, and 5 in three rows, respectively.
The diffraction patterns exhibit a tenfold mirror symmetry in the first and third columns.
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When the patterns are enlarged in the second and fourth columns, we can find that the
diffraction rings become cleaner with the increasing values of n. This proves that for the
case when the input field is VOF, the “weeding” function of the iteration number n of the
PTM is also effective. To further discuss the “weeding” function of the iteration number n
of the PTM, it is necessary to compare the diffraction fields for the two cases of incident SOF
and VOF. By comparing Figures 4 and 5, we can find that with the increasing values of n,
the intensity distribution of diffraction fields with the same PTM becomes more and more
similar. The difference is that the diffraction field of the SOF is with a series of diffraction
spots, while the diffraction field of the VOF is with a series of diffraction rings. From the x
components of the diffraction fields, it can be seen that the polarization distribution of the
diffraction field is space-variant for the case of incident VOF, and the diffraction fields are
with space-invariant polarizations for the case of incident SOF.

 

第一列 1200λ*1200λ，2000λ*2000λ，3000λ*3000λ，径向场，A 型相位 n=3，4，5。过曝 10 倍，NA=0.02 

第二列 500λ*500λ，820λ*820λ，1350λ*1350λ 

第三列 1200λ*1200λ，2000λ*2000λ，3000λ*3000λ，径向场，B 型相位 n=3，4，5。过曝 10 倍，NA=0.02 

第四列 430λ*430λ，690λ*690λ，1060λ*1060λ 

 

Type-A PTM Type-B PTM 

n
 =

 3
 

n
 =

 4
 

n
 =

 5
 

Figure 5. The diffraction patterns of the radially polarized VOF passing through type-A and type-B
PTMs when n = 3, 4, and 5. The first and second columns show the case of type-A PTM, and the
third and fourth columns show the case of type-B PTM, respectively. The three rows show the cases
of the PTMs when n = 3, 4, and 5, respectively. The intensity is magnified 10 times in all the images.
The images in the first and third columns have the dimensions of 1200λ × 1200λ in the first row,
2000λ × 2000λ in the second row, and 3000λ × 3000λ in the third row, respectively.

4. The Label of the Golden Ratio in the Diffraction Patterns

As is known, the quasi-periodicity is closely related to the Golden ratio. For exam-
ple, the Penrose tiling exhibits multiple instances of the Golden ratio, which is expected
due to its fivefold symmetry [36,44,45]. The Golden ratio, also known as the Golden
section or Golden number, is an irrational number attracting attention in various sub-
jects. To define the Golden ratio Φ [46–48], a straight-line AB is divided at a point C,
and the line AB is divided to a longer line AC and a shorter line CB. Then, we assume
that the ratio of the lengths of the two lines AC/CB is equal to the ratio of the sum of the
two lines AC + CB to the longer side AC, and this ratio can be called the Golden ratio
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Φ = AC/CB = (AC + CB)/AC ≈ 1.618. As is known, the Golden ratio is very common
and appears in various areas, including science, art, as well as in nature [46–48].

In this research, we surprisingly find that the Golden ratio also appears in the diffrac-
tion patterns of the PTMs. Figure 6 shows the diffraction patterns of the x-polarized SOFs
passing through type-A PTMs when n = 3, 4, 5, and 6 in four rows. The first column shows
the diffraction patterns, and we can see that the diffraction patterns exhibit a tenfold mirror
symmetry. The second and third columns offer the enlarged patterns of the blue and red
rectangles shown in the first column, and the wavelength λ is used as the normalization of
distance. In the enlarged patterns, we choose three peak spots in each pattern, and show
the distance between the adjacent diffracting spots. The angles between the connecting
lines of these spots and the negative y-axis are 54◦ and 36◦, respectively. We surprisingly
find that the distance ratio of the diffraction peak spots in the second and third columns is
close to the Golden ratio. This phenomenon can be regarded as the label of the Golden ratio
appearing in the diffraction patterns. The labels of the Golden ratio appear 10 times in the
diffraction patterns for both cases of PTMs due to the tenfold symmetry of the diffraction
patterns. In addition, the case of the diffracted VOF passing through the PTM is similar to
the results in Figure 6, except that the diffraction spots become the diffraction rings with
space-variant polarization distributions. This means that the label of the Golden ratio also
appears in the diffraction pattern of the incident VOF.

Table 1 shows the changing trend of the distance ratio of the blue and red featured
diffracting spots in Figure 6 with different n. First of all, we discuss the case of the blue
featured spots. The distance ratios of the blue featured spots are 1.543, 1.5718, 1.6083,
and 1.6162 when n = 3, 4, 5, and 6, respectively. The deviation of these distance ratios with
the Golden ratio are 4.63%, 2.86%, 0.6%, and 0.11%, respectively. We can see that when the
value of n increases, the distance ratio is gradually closer to the Golden ratio. For the case
of the red featured spots, the results are similar. The distance ratios of the red featured spots
are 1.3872, 1.537, 1.5783, and 1.5965 when n = 3, 4, 5, and 6, respectively. The deviation of
these distance ratios with the Golden ratio are 14.26%, 5.01%, 2.45%, and 1.33%, respectively.
It can be seen that when choosing the same value of the iteration number n, the distance
ratio of blue featured spots is closer to the Golden ratio compared with the case of red
featured spots. As n increases, the distance ratio is closer to the Golden ratio for both
cases. These results prove that the Golden ratio in the two-dimensional quasi-periodic
structure in the input plane can extend to the label of the Golden ratio in the diffraction
field. The diffraction pattern with featured diffraction spots carrying the label of the Golden
ratio can be applied in various areas. The label of the Golden ratio in the diffraction field
can be regarded as a special and characteristic label, which can be used in the areas such as
optical encryption and information transmission.

We should point out that we only introduce one configuration of the Penrose tiling in
designing the diffraction mask, and other configurations of the Penrose tiling of quasicrys-
tals can also be similarly explored when studying the diffraction properties. In addition to
the Penrose tiling, other quasi-periodic models with different symmetries can be selected,
such as Ammann–Beenker tiling, Socolar tiling, Bronze mean tiling, random square trian-
gle tiling, rectangle–triangle tiling, and Stampfli–Gähler tiling. With these new kinds of
quasi-periodic structures, we can study more quasi-periodic diffraction properties of the
optical fields, which may be applied in different areas. We hope that the PTMs we propose
can be as useful as the well-known Fibonacci masks, which can be applied in areas such as
confocal microscopy, optical micromachining, multiple-plane optical trapping, intraocular
lenses, and so on.
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Figure 6. The diffraction patterns of the x-polarized SOFs passing through type-A PTMs when n = 3,
4, 5, and 6 in four rows. (a–d) in the first column show the original diffraction patterns, and the
second and third columns show the enlarged patterns of the blue and red rectangles in the first
column. The intensity of the diffraction pattern is magnified 150 times. Any image in the first column
has a dimension of 2900λ × 2900λ.

Table 1. The distance ratio of featured spots when n = 3, 4, 5, and 6.

n The Distance Ratio of
the Blue Featured Spots

Deviation with
the Golden Ratio

The Distance Ratio of
the Red Featured Spots

Deviation with
the Golden Ratio

3 1.5430 4.63% 1.3872 14.26%
4 1.5718 2.86% 1.5370 5.01%
5 1.6083 0.60% 1.5783 2.45%
6 1.6162 0.11% 1.5965 1.33%
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Besides the quasi-periodic structures, the kind of the incident optical field is also a
very important factor that can influence the diffraction field. In this article, we use the SOF
with linear polarization and cylindrical VOFs with m = 1 and 2 as the incident optical
fields, and the basic diffraction properties are shown and discussed. As we know, there
are also other kinds of optical fields that may be applied in studying the two-dimensional
quasi-periodic diffraction properties. For the SOF with homogeneous polarization state
on the wave front, the SOF with elliptic and circular polarizations can also be used as the
incident optical field. As the spin angular momentum (SAM) is associated with circular
polarization, the SAM can also be found when the incident field is with elliptic or circular
polarizations. For the VOF with space-variant polarizations, there are also many other
kinds of VOFs besides the cylindrical VOFs such as hybridly polarized VOF [49,50], full
Poincaré sphere VOF [51], fractal VOF [43], and so on. When these different kinds of
VOFs are applied in studying the quasi-periodic diffraction properties, the diffraction field
with space-variant polarization distribution can be generated, and the symmetry of the
diffraction field is decided by the polarization distribution of the incident VOF. We should
also point out that besides the SOF and VOF, there is also a kind of vortex optical field with
a helical phase of exp(−ilϕ). The vortex optical field carries the orbital angular momentum
(OAM) [52], which can be applied in many regions [53,54]. When the vortex optical field
is used in studying the quasi-periodic diffraction properties, the OAM is expected in the
diffraction field.

5. Discussion

This research of the two-dimensional quasi-periodic diffraction properties mainly
focuses on introducing the two-dimensional quasi-periodicity into the study of the diffrac-
tion field. Previous research discussed the cases using the one-dimensional quasi-periodic
structures to study the diffraction properties [2–9]. In this article, we choose the two-
dimensional quasi-periodic structures to study the diffraction properties, which is novel
and inspiring. When the two-dimensional quasi-periodic structures are used as diffraction
masks, we find two interesting properties. One is the “weeding” function of the PTMs, as
shown in Figures 4 and 5, the other one is the label of the Golden ratio in the diffraction
field, as shown in Figure 6 and Table 1. These properties prove that the two-dimensional
quasi-periodic structures are useful in studying the diffraction properties. We hope the idea
of studying the two-dimensional quasi-periodic diffraction properties can be applied in
different areas.

6. Conclusions

In this paper, we propose the quasi-periodic mask to study the diffraction effects,
taking the Penrose tiling mask as an example. Type-A and type-B PTMs with a phase
modulation of zero and π are proposed. The rhombus tiles are designed in the Penrose
tiling for type-A PTM, while the circular tiles are applied in the Penrose tiling for type-B
PTM. Based on these two kinds of PTMs, we further study the diffraction properties of SOFs
with homogeneous polarization states and VOFs with space-variant polarization states.
The diffraction patterns with a tenfold symmetry are achieved. Moreover, the iteration
number n of the PTM shows the “weeding” function in the diffraction field, which is
useful in filtering, shaping, and manipulating diffraction fields. Meanwhile, the diffraction
patterns of the fields passing through the PTMs also have the label of the Golden ratio,
as the ratio of the distances of the adjacent featured diffraction spots accords with the
Golden ratio. This proves that the characteristic of the Golden ratio can pass from the input
field to the diffraction field during the diffraction process. The label of the Golden ratio is
an obvious and special feature of the diffraction field passing through the PTM, which can
be applied in areas such as optical encryption and information transmission.
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