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Abstract: The geometric visualization in this study concerns the three−dimensional (3D) polarimetric
information of an arbitrary electromagnetic field. Based on previous research, a 3 × 3 coherency
matrix Φ can be decomposed into an incoherent superposition of a totally 3D−polarized component
Φ3D_p, a specific partially 3D−polarized component Φ3D_pp with a 3D degree of polarization (DoP)
of 1/2, and a totally 3D−unpolarized component Φ3D_up. Combining the physical meaning of
this decomposition, we mathematically construct three polarization purities, namely, P3D_p, P3D_pp,
and P3D_up, for an arbitrary electromagnetic field to quantify the weight of the three 3D−polarized
components. In order to show the proportion of the three polarized components of an electromagnetic
field intuitively, we propose a geometric representation of a spatially quadric surface. Finally, two
examples are cited to demonstrate the applicability of intuitively displaying the 3D polarimetric
information of an arbitrary electromagnetic field.

Keywords: polarimetry; electromagnetic field; 3D polarization; degree of polarization

1. Introduction

Recently, ellipsometry and polarimetry have become of topical interest in respect of
statistical electromagnetic fields [1–6]. In 3D polarization cases, the usual 2D mathematical
and geometric representations of polarization are not available [7–10]. This necessitates
the introduction of appropriate representations to characterize the polarization properties
of statistical electromagnetic fields. One important physical quantity is the 3D degree
of polarization (DoP) for statistical electromagnetic fields. The concept of the DoP was
first introduced by Samson [11], and it was developed by Barakat [12], T. Setälä [13], and
José J. Gil et al. [14]. Now, the definition of the DoP has been accepted to mean that two
parameters are needed for specifying a random statistical electromagnetic field, i.e., the
indices of polarimetric purity (P1, P2) named by José J. Gil [15–17]. Based on the definition
of the DoP, Colin J. R. Sheppard and José J. Gil proposed geometric representations of the
DoP in terms of a triangular composition plot [10] and a polarimetric purity space [15,16].
However, there is still more to learn about representations that can intuitively express the
DoP. The main aim of this article is, based on the above−mentioned parameters (P1, P2), to
introduce a completely different geometric representation. Using the intrinsic relationship
between the DoP and the three defined parameters, a spatially quadric surface is depicted
to quantify the 3D polarimetric information of a statistical electromagnetic field.
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2. Methods

Given a point r in a 3D space {xyz} at time t, the electric field vector E(r, t) of a random
electromagnetic field can be written as the 3 × 1 complex vector, i.e., the 3D instantaneous
Jones vector [15],

E(r, t) =

Ex(r, t)
Ey(r, t)
Ez(r, t)

 =

 Ax(r, t)
Ay(r, t)ei(δy(r,t)−δx(r,t))

Az(r, t)ei(δz(r,t)−δx(r,t))

 (1)

where Ej(r,t) (j = x,y,z) are the three orthogonal electric field components of the electric
field vector in a space coordinate system {xyz}, Aj(r,t) (j = x,y,z) are the amplitudes of
three electric field components, and δj(r,t) (j = x,y,z) are the phases of three electric field
components.

The polarization properties of a random electromagnetic field are expressed by a 3 × 3
coherency matrix [17], which is defined as

Φ =


〈Ex(r, t) · E∗x(r, t)〉

〈
Ex(r, t) · E∗y(r, t)

〉
〈Ex(r, t) · E∗z (r, t)〉〈

Ey(r, t) · E∗x(r, t)
〉 〈

Ey(r, t) · E∗y(r, t)
〉 〈

Ey(r, t) · E∗z (r, t)
〉

〈Ez(r, t) · E∗x(r, t)〉
〈

Ez(r, t) · E∗y(r, t)
〉
〈Ez(r, t) · E∗z (r, t)〉

 =

φxx φxy φxz
φyx φyy φyz
φzx φzy φzz

 (2)

From the perspective of polarimetry (to measure the intensity values of different
polarized components), similar to 2D polarization, the 3D polarimetry [18,19] is often
expressed in the form of the 9 × 1 Stokes vector S9×1,

S9×1 = (s0, s1, s2, s3, s4, s5, s6, s7, s8)
T (3)

where the first parameter s0 is the total intensity of the 3D electromagnetic field, and the
others, sj (j = 1, 2, . . ., 8), are the intensity values of specific polarized components of the 3D
electromagnetic field, in which the specific polarized directions are determined by eight
3 × 3 Gell–Mann matrices [20] plus a 3 × 3 identity matrix.

Regarding how to derive the 3 × 3 coherence matrix Φ or 9 × 1 Stokes vector S 9×1
from a 3 × 1 electric field vector E(r,t), the theoretical derivations have been published
in Ref. [7]. Using a particular 3 × 3 matrix basis composed of eight linearly independent
3 × 3 Gell–Mann matrices [20] plus the 3 × 3 identity matrix, an inherent transformation
relationship between the elements of 3 × 3 coherence matrix Φ and 9 × 1 Stokes vector
S 9×1 can be expressed by

Φ =


1
2 s3 +

√
6

6 s0 +
√

3
6 s8

1
2 (s1 − i · s2)

1
2 (s4 − i · s5)

1
2 (s1 + i · s2)

√
6

6 s0 +
√

3
6 s8 − 1

2 s3
1
2 (s6 − i · s7)

1
2 (s4 + i · s5)

1
2 (s6 + i · s7)

√
6

6 s0 −
√

3
3 s8

 (4)


s0 =

√
6

3 (φxx +φyy +φzz) s1 = φxy +φyx s2 = (φxy −φyx)i
s3 = φxx −φyy s4 = φxz +φzx s5 = (φxz −φzx)i

s6 = φyz +φzy s7 = (φyz −φzy)i s8 =
√

3
3 (φxx +φyy − 2φzz)

(5)

where the symbol i indicates an imaginary number.φmn(m, n = x, y, z) are the elements of
the 3 × 3 coherence matrix. sj (j = 0, 1, . . ., 8) are the corresponding nine Stokes parameters.

Obviously, the nine Stokes parameters are all measurable, real values. The physical
meanings of the nine Stokes parameters are as shown in Table 1 below. It is noted that
the constant coefficients of each Stokes parameter are determined by the properties of a
particular 3 × 3 matrix basis [7], and they have no specific physical meaning.
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Table 1. Physical meanings of the 3D Stokes parameters.

Stokes Parameters Physical Meanings

s0 Total intensity

s1 Sum of intensities of ±45◦ polarized components in x–y plane

s2
Difference in intensities of left/right−handed circular polarized
components in x–y plane

s3 Difference in intensities between the x and y polarized components

s4 Sum of intensities of ±45◦ polarized components in x–z plane

s5
Difference in intensities of left/right−handed circular polarized
components in x–z plane

s6 Sum of intensities of ±45◦ polarized components in y–z plane

s7
Difference in intensities of left/right−handed circular polarized
components in y–z plane

s8
Sum of differences in intensities between the x and y polarized components
and the z polarized component, respectively.

In order to better analyze the polarimetric information of the measured 3D electro-
magnetic field, we decompose the 3 × 3 coherency matrix shown in Equation (4) into
an incoherent superposition of a totally 3D−polarized component Φ3D_p, a specific 3D
partially polarized component Φ3D_pp, and a totally 3D−unpolarized component Φ3D_up.
The DoP values of the three 3D−polarized components are 1, 0.5, and 0, respectively. The
decomposition result of the 3 × 3 coherency matrix can be expressed as

Φ = I3D−p ·Φ3D−p + I3D−pp ·Φ3D−pp + I3D−up ·Φ3D−up (6)



Φ = (ν1ν2ν3) · Diag(λ1, λ2, λ3) · (ν1ν2ν3)
†, λ1 ≥ λ2 ≥ λ3 ≥ 0

I3D−P = λ1 − λ2, Φ3D−p = (ν1ν2ν3) ·

 tr(Φ) 0 0
0 0 0
0 0 0

 · (ν1ν2ν3)
†

I3D−pp = λ2 − λ3, Φ3D−pp = (ν1ν2ν3) ·

 tr(Φ) 0 0
0 tr(Φ) 0
0 0 0

 · (ν1ν2ν3)
†

I3D−up = λ3, Φ3D−up = (ν1ν2ν3) ·

 tr(Φ) 0 0
0 tr(Φ) 0
0 0 tr(Φ)

 · (ν1ν2ν3)
†

(7)

where λj and νj (j = 1, 2, 3) are the eigenvalues and eigenvectors of the 3× 3 coherency ma-
trix. The subscripts 3D−p, 3D−pp, and 3D−up represent the 3D totally polarized component,
3D partially polarized component, and 3D totally unpolarized component, respectively.
I3D−p, I3D−pp, and I3D−up are the corresponding weight values. Φ3D−p, Φ3D−pp, and
Φ3D−up are the 3 × 3 coherency matrices of the three 3D−polarized components. The
symbol † represents the complex conjugate transpose.

The above decomposition method included in Equations (5) and (6) has also been
mentioned in several papers [15–17], and it is referred to as characteristic or trivial decom-
position. In some papers [1,15], the second term Φ3D−pp with a DoP of 0.5 is defined as
a 2D−unpolarized component, but this is not always true. A detailed discussion of this
explanation will be included in the last two examples. To quantify the weight of the three
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decomposed polarized components in the measured 3D electromagnetic field, we redefine
three polarization purities 

P3D−p =
I3D−p
ITotal

= λ1−λ2
λ1+λ2+λ3

P3D−pp =
I3D−pp
ITotal

= 2(λ2−λ3)
λ1+λ2+λ3

P3D−up =
I3D−up
ITotal

= 3λ3
λ1+λ2+λ3

(8)

where ITotal = tr(Φ) = λ1 + λ2 + λ3 is the total intensity of the measured 3D electromag-
netic field.

Obviously, the value ranges of the three polarization purities are between 0 and 1, and
they are always satisfied with the identical equation,

P3D−p + P3D−pp + P3D−up = 1 (9)

In the literature [15,16], José J. Gil defines P1 = P3D_p as the degree of purity, and
P2 = 1−P3D_up is defined as the degree of directionality. We combine with the DoP for the
3D electromagnetic field defined in the literature [3,4], the relationship among the redefined
three polarization purities shown in Equation (8), and the DoP is derived as follows:

DoP2 = P2
3D−p +

1
2

P3D−p · P3D−pp +
1
4

P2
3D−pp (10)

Combined with the inequality of the arithmetic and geometric means and Equation
(9), the three polarization purities fulfill the following two inequations:{

1
3 (P3D−p + P3D−pp + P3D−up)

2 ≤ P2
3D−p + P2

3D−pp + P2
3D−up ≤ (P3D−p + P3D−pp + P3D−up)

2

1
3 ≤ P2

3D−p + P2
3D−pp + P2

3D−up ≤ 1
(11)

3. Results

Using the above three polarization purities P3D−p, P3D−pp, and P3D−up defined in
Equation (8) and the relationship shown in Equation (10), a spatially quadric surface is
depicted, as shown in Figure 1. The x−axis corresponds to P3D−p, the y−axis corresponds
to P3D−pp, and the z−axis corresponds to the DoP. The side views of the three orthogonal
directions of the spatially quadric surface are also shown in subgraphs (a–c) in Figure 1.
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4. Discussion

In this section, we mainly discuss the 3D polarimetric information corresponding to
some special points on the spatially quadric surface. When the right−hand inequation in
Equation (11) takes the equal sign, the values of P3D−p, P3D−pp, and P3D−up are satisfied
with the condition that P3D−p = P3D−pp = P3D−up = 0.3333. This special case means it is
completely possible for electromagnetic fields to occur during 3D polarimetry. Combined
with Equation (10), it is verified that this special case corresponds to a 3D partially polarized
field with a DoP of 0.4410. Hence, it is concluded that only one point on the quadric surface
is feasible, shown as point D (0.3333, 0.3333, 0.4410) in Figure 1. The value of the DoP is
determined by the color of the location of point D, not the color of point D itself.

Similarly, the equal sign of the left−hand inequation in Equation (11) holds if, and
only if, one of P3D−p, P3D−pp, and P3D−up is equal to 1. According to Equation (10), the
three cases characterize the totally polarized field, partially polarized field, and totally
un−polarized field in 3D space, respectively. The corresponding values of the DoP are 1,
0.5, and 0. Therefore, the polarimetric results of these three cases are represented by three
different points, i.e., points A (1, 0, 0), B (0, 1, 0), and C (0, 0, 1), as shown in Figure 1. The
colors of the positions of the three points, i.e., red, light green, and blue, indicate that the
values of the DoP are 1, 0.5, and 0. Hence, there are three special points on the quadric
surface. It is worth emphasizing that all points that will fall in the quadric surface are
always physically reachable.

Next, we take two general electromagnetic fields as examples to demonstrate the
applicability and validity of the proposed geometric visualization shown in Figure 1.
A hig numerical aperture (NA) microscope objective (NA = 1.25 immersed in oil) with
anti−reflective (AR) coatings is introduced; the parameters of the optical system are shown
in Table 2. The transmittance curve and phase−shift curve corresponding to the multilayer
dielectric AR coating are shown in Figure 2.

Table 2. Optical parameters of a high NA microscope objective.

Amplification factor 100×
Numerical aperture (NA) 1.25

Object height/mm 0.11
Working wavelength/nm 486~656

Total length/mm 315.66
Effective working distance/mm 0.42

Back working distance/mm 199.447
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Figure 2. Transmissivity and phase shift of the multilayer dielectric AR coating, the sub-
graphs (a,b) represent the relationship curves between transmissivity and phase shift of TE mode
and TM mode and incidence angle of the multilayer dielectric AR coating, respectively.

When the incident light is 3D partially polarized light, the corresponding 3D coherency
matrix is

Φin =

1 0 0
0 1 0
0 0 0

 (12)

The field of view (FoV) of the system is given in the form of the object height
h = 0.11 mm. Based on the proposed 3D polarization algebra [7], the polarization ray
tracing of the partially polarized light incident optical system can be completed. Since
the paths of each sampled ray in the optical system are not equal, the polarization trans-
formation effects of each sampled ray are not the same. Here, we arbitrarily choose the
two exampled rays at the exit pupil, and the 3 × 3 coherency matrices can be calculated
as follows:

Φ(E) ==

 0.5 −0.25i 0
0.25i 0.5 0

0 0 0

Φ(F) =

 0.25 0.125 0.125i
0.125 0.5 −0.125i
−0.125i 0.125i 0.25

 (13)

Firstly, we make the characteristic decompositions of the above 3 × 3 coherency matri-
ces included in Equation (7). Then, we apply the decomposition results to Equations (8)–(10),
and the polarimetric results of the two exampled rays are determined by points
E (0.5, 0.5, 0.6614) and F (0.1952, 0.6404, 0.4507), which are located in the quadric sur-
face shown in Figure 1. Therefore, the two exampled rays are 3D partially polarized fields,
and the colors of position E and position F depend on the values of the DoP, i.e., orange
and green, respectively.

Last but not least, we examine the second items Φ3D−pp(E) and Φ3D−pp(F) in the
characteristic decomposition results of these two examples included in Equation (13),

Φ3D−pp(E) ==

1 0 0
0 1 0
0 0 0

, Φ3D−pp(F) =

 0.5681 0.2425 0.4319i
0.2425 0.8638 −0.2425i
−0.4319i 0.2425i 0.5681

 (14)

Obviously, Φ3D−pp(E) is a 2D totally unpolarized field, but Φ3D−pp(F) is a 3D partially
polarized field with a DoP of 1/2. Combined with Equation (13), the first exampled 3D
electromagnetic field does not contain a z−component, i.e., the vibration directions at a
point are statistically in a constant 2D x–y plane at different times. However, the vibration
direction of the second exampled 3D electromagnetic field fluctuates in 3D space, so the
second polarized component is no longer 2D unpolarized.
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5. Conclusions

On the basis of previous research, we redefined the three polarization purities via the
characteristic decomposition of a 3 × 3 coherency matrix. Combined with the definition
of the 3D DoP, we mathematically explored the relationships between the three polariza-
tion purities and the 3D DoP. Then, the geometric visualization of a quadric surface was
constructed to quantify the 3D polarimetric information of an arbitrary electromagnetic
field. It is useful for 3D polarimetry to intuitively display the polarization properties of the
measured electromagnetic field, and this is also expected to be of application in near−field
optics, singular optics, and nanophotonics.
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