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Abstract: The resonant external field-assisted Breit–Wheeler process (Oleinik resonances) for strong
electromagnetic fields with intensities that are less than the critical Schwinger field that has been
theoretically studied. The resonant kinematics were studied in detail. The case of high-energy initial
gamma quanta and emerging ultrarelativistic electron–positron pairs was studied. The resonant
differential cross section was obtained. The generation of narrow beams of ultrarelativistic positrons
(for Channel A) and electrons (for Channel B) was predicted with a probability that significantly
exceeded the corresponding nonresonant process.
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1. Introduction

Over the past several decades, there has been significant interest in studying the
processes of quantum electrodynamics (QEDs) in external electromagnetic fields (see,
for example, reviews [1–7], monographs [8–10], and articles [11–57]). This is mainly asso-
ciated with the appearance of lasers with high radiation intensities and beams of small
transverse dimensions [11–18].

An important feature of high-order regarding the fine structure constant of QED pro-
cesses in an external field is the potential for their resonant occurrence, where virtual interme-
diate particles enter the mass shell. Such resonances were first considered by Oleinik [19,20].
Under resonance conditions, the conservation laws of energy and momentum are satisfied
for intermediate particles in an external field. As a result, second-order processes by the fine
structure constant effectively reduce into two sequential first-order processes. A detailed
discussion of resonant processes is presented in reviews [2,4], monographs [8–10], as well as
recent articles [28–31]. It is important to note that the probability of resonant processes can
significantly exceed the corresponding probabilities of nonresonant processes.

The process of electron–positron pair production by two gamma quanta was first con-
sidered by Breit and Wheeler [32]. Currently, there is a significant number of works devoted
to the study of the Breit–Wheeler process in an external electromagnetic field (see, for ex-
ample, [33–44]). It should be noted that a distinction should be made between the external
field-stimulated Breit–Wheeler process (a first-order process with respect to the fine structure
constant) and the external field-assisted Breit–Wheeler process (a second-order process with
respect to the fine structure constant). In this paper, Oleinik’s resonances for the external
strong field-assisted Breit–Wheeler process will be investigated. It should be noted that, in a
weak field, this process was considered in the article [44]. It is important to note that, under the
conditions of resonance and the absence of interference between different reaction channels,
the original second-order process effectively reduces to two first-order processes: the external
field-stimulated Breit–Wheeler process and the external field-stimulated Compton effect [44].
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Breit–Wheeler pair production (a nonresonant process) yielded by two high-frequency pho-
tons in the presence of a low-frequency field has also been considered in articles [45,46]. The
generation of highly collimated ultrarelativistic positron beams through laser-driven pair
production has also been studied in articles [47–49]. Currently, there are concrete plans in
various strong-field laboratories to measure the nonlinear Breit–Wheeler effect [50–52].

The main parameter for describing the Breit–Wheeler process in the field of a plane
electromagnetic wave is the classical relativistic invariant parameter:

η =
eFλ

mc2 , (1)

which is numerically equal to the ratio of the work of the field on the wavelength to the rest
energy of the electron. Here, e and m are the charge and mass of the electron, respectively,
F and λ = c/ω are the electric field strength and wavelength, respectively, and ω is the
frequency of the wave [1].

In this paper, we consider the resonant strong electromagnetic field-assisted Breit–Wheeler
process for high-energy gamma quanta with energies of h̄ω1,2 . 102 GeV. Therefore, we will
consider high-energy gamma quanta in the following, thereby ensuring that the produced
electron–positron pair in a field of the wave is ultrarelativistic.

h̄ω1,2 � mc2, E± � mc2. (2)

Here, h̄ω1,2 and E± are the energies of the initial gamma quanta and the final positron
or electron, respectively. Therefore, we will assume that the magnitude of the classical
parameter η is upper bounded by the following condition:

η � ηmax, ηmax = min
(

E±
mc2

)
. (3)

Let us estimate the maximum intensity of the electric field in the wave. For electron–positron
pair energies of E± . 102 GeV, it follows from Equation (3) that η � ηmax ∼ 105, or, for the
field strength, we have F � Fmax ∼ 1015 Vcm−1 (I � Imax ∼ 1028 Wcm−2). Thus, the prob-
lem will consider sufficiently large intensities of the electromagnetic wave. However, these
fields must be smaller than the Schwinger critical field F∗ ≈ 1.3× 1016 Vcm−1 [5,55].

In the following, the relativistic system of units is used: c = h̄ = 1.

2. Amplitude of the Process

Let us consider this process in the field of a plane that is a circularly polarized wave
propagating along the z axis:

A(ϕ) =
F
ω

(
ex cos ϕ + δey sin ϕ

)
, ϕ = (kx) = ω(t− z), δ = ±1. (4)

Here, ex and ey are the four polarization vectors of the external field that have the follow-
ing properties: ex = (0, ex), ey = (0, ey), exey = 0, and (ex)2 = (ey)2 = −1. The
external field-assisted Breit–Wheeler process is characterized by two Feynman diagrams
(Figure 1).
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Figure 1. Feynman diagrams of electron–positron pair production by two gamma quanta in an
external field, Channels A and B. External double lines correspond to Volkov functions of electron or
positron, wavy lines correspond to wave functions of initial gamma quanta, and internal double lines
correspond to Green’s electron function in the field of a plane electromagnetic wave.

The amplitude of the considered process is written as follows:

Si f = ie2
∫∫

d4x1d4x2Ψp−(x1|A)Â1(x1; k1)G(x2x1|A)Â2(x2; k2)Ψ−p+(x2|A) + (k1 ↔ k2), (5)

where k1,2 = (ω1,2, k1,2) respresents the four momenta of the initial gamma quanta, and
p± = (E±, p±) represents the four momenta of the final electron and positron. Here and
further, the notation for the convolution of a 4-vector polarization with the Dirac gamma
matrices is used: Â1,2 ≡ γµ Aµ

1,2 ; µ = 0, 1, 2, 3. The four potentials of the initial gamma
quanta Aj in expression (5) are determined by the following functions:

Aj(x; k j) =

√
2π

ωj
ε je
−ikjx, j = 1, 2, (6)

where ε j represents the four vectors of the polarization of the initial gamma quanta.
In the amplitude (5), the electron–positron pair corresponds to the Volkov functions [53,54]:

Ψp(x|A) = Jp(x)
up√
2E

, Jp(x) =
[

1 +
e

2(pk)
k̂Â(kx)

]
eiSp(x), (7)

and

Sp(x) = −(px)− e
(kp)

∫ kx

0
dϕ[pA(ϕ)− e

2
A2(ϕ)], (8)

where up is the Dirac bispinor. The intermediate state in the amplitude (5) corresponds to
the Green’s function of the electron in the field of a plane wave G(x2x1|A) [56]:

G(x2x1|A) =
∫ d4 p

(2π)4 Jp(x2)
p̂ + m

p2 −m2 Jp(x1). (9)

After simple transformations, the amplitude (5) can be represented as follows:

Si f =
+∞

∑
l=−∞

Sl , (10)

where the partial amplitude Sl corresponds to the absorption or emission of |l| photons
of the external wave. For the Channel A, the partial amplitude can be represented in the
following form:

Sl =
iπe2(2π)4e−id√

Ẽ−Ẽ+ω1ω2

[
up−Mlvp+

]
δ(4)(k1 + k2 − p̃− − p̃+ − lk). (11)
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Here, d is the phase, which is independent of the summation indices, and Ml represents
the the matrix determined by the following expression:

Ml = ε1µε2ν

+∞

∑
r=−∞

Kµ
l+r( p̃−, q̃−)

q̂− + m
q̃2
− −m2∗

Kν
−r(q̃−,− p̃+), µ, ν = 0, 1, 2, 3. (12)

In relation (12), the functions Kµ
l+r and Kν

−r have the following form:

Kµ′
n ( p̃′, p̃) = aµ′Ln( p̃′, p̃) + bµ′

− Ln−1 + bµ′

+ Ln+1. (13)

Here, the matrices aµ′ and bµ′

± have the following form:

aµ′ = γµ′ +
m2k̂

2(kp̃′)(kp̃)
kν, bµ′

± =
1
4

ηm

(
ê± k̂γµ′

(kp̃′)
+

γµ′ k̂ê±
(kp̃)

)
, (14)

and

e± ≡ ex ± iey, µ′ = µ, ν, n = l + r,−r, p̃ = − p̃+, q̃−, p̃′ = q̃−, p̃−. (15)

In relations (12) and (13), there are special functions Ln [3], which, in the case of the circular
polarization of the wave, can be represented using Bessel functions with integer indices:

Ln( p̃′, p̃) = exp(−inχ p̃′ p̃)Jn(γp̃′ p̃), (16)

where is then denoted as the following:

γp̃′ p̃ = mη
√
−Q2

p̃′ p̃, tan χ p̃′ p̃ = δ
(Q p̃′ p̃ey)

(Q p̃′ p̃ex)
, Q p̃′ p̃ =

p̃′

(p′k)
− p̃

(pk)
. (17)

In the expressions (11) and (12), p̃± = (Ẽ±, p̃±) and q̃− are the four quasimomenta
of the electron (positron) and intermediate electron, and m∗ is the effective mass of the
electron in the field of a circularly polarized wave (4) [1,2,8,29]:

q̃− = k2 + rk− p̃±, (18)

p̃± = p± + η2 m2

2(kp±)
k, q̃− = q− + η2 m2

2(kq−)
k, (19)

and
p̃2
± = m2

∗, m∗ = m
√

1 + η2. (20)

3. The Resonant Kinematics

Under resonance conditions, both an electron and a positron can be intermediate par-
ticles. Therefore, instead of two Feynman diagrams in the nonresonant case (see Figure 1),
under resonance conditions we will have four Feynman diagrams (see Figure 2): These are
Channels A and B, as well as Channels A’ and B’, which are obtained from Channels A and
B by rearranging the initial gamma quanta (k1 ↔ k2). Each channel in the resonance condi-
tions effectively decays into two first-order processes via the fine structure constant: the
external field-stimulated Breit–Wheeler process (EFSBWP) and the external field-stimulated
Compton effect (EFSCE) with intermediate electrons and positrons entering the mass shell:

q̃2
− = m2

∗, q̃2
+ = m2

∗. (21)
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Figure 2. Feynman diagrams of the resonant electron–positron pair production by two gamma
quanta in an external field for Channels A and B; to obtain Channels A’ and B’ replacement k1 ↔ k2

is needed.

Further considerations were carried out for the resonant Channels A and B (see Figure 2).
It is important to emphasize that the laws of conservation of energy and of momentum for the
intermediate processes of resonant Channels A and B have the following forms:

EFSBWP : k2 + rk = q̃∓ + p̃±, r = 1, 2, 3 . . . ; (22)

EFSCE : k1 + q̃∓ = p̃∓ + r′k, r′ = 1, 2, 3 . . . (r′ = l + r). (23)

Since the problem considers high-energy initial gamma quanta and ultrarelativistic
energies of the final electron–positron pair (2), under such conditions, the momenta of the
initial and final particles should lie within a narrow angle cone, which should be far away
from the direction of the wave propagation [29,31] (see Figure 3):

θj± ≡ ∠(kj, p±)� 1, θi ≡ ∠(k1, k2)� 1; (24)

θ ≡ ∠(p±, k) ∼ 1, θj ≡ ∠(kj, k) ∼ 1, j = 1, 2; θ ≈ θ1 ≈ θ2. (25)

Figure 3. Geometry of the initial and final particles of the resonant Breit–Wheeler process.

Let us note that, under conditions (2) and (3), the expression for the positron (electron)
quasienergy can be simplified:

Ẽ± = E±

[
1 +

1
4 sin2 θ

2

(
mη

E±

)2
]
≈ E±. (26)
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Let us determine the resonance energy of the positron (electron) for the second vertex
(see Figure 2). By taking into account relations (2), (3), (21) and (24) from the conservation
of the four momentum law (22) for the external field-stimulated Breit–Wheeler process, we
obtain the resonance energies of the positron (for Channel A) or electron (for Channel B) in
units of the total energy of the initial gamma quanta:

xj′(r) =
ω2

2ωi(ε2BW(r) + δ2
2j′)

[
ε2BW(r) ±

√
ε2BW(r)(ε2BW(r) − 1)− δ2

2j′

]
, j′ = +,−. (27)

Here, the following is indicated:

x±(r) =
E±(r)

ωi
, ωi = ω1 + ω2, δ2± =

ω2

2m∗
θ2±. (28)

In this case, the ultrarelativistic parameter δ2±, which determines the outgoing angle of the
positron or electron, is contained within the following interval:

0 ≤ δ2
2± ≤ δ2

2max, δ2
2max = ε2BW(r)(ε2BW(r) − 1). (29)

It is important to emphasize that, in Equation (27), the quantity ε2BW(r) is bounded from
below by the following unity:

ε2BW(r) = rε2BW ≥ 1, ε2BW =
ω2

ωBW
, (30)

where ωBW is the characteristic quantum energy of the following external field-stimulated
Breit–Wheeler process [29,30]:

ωBW =
m2
∗

ω sin2 θ
2

=


174 GeV if ω = 3 eV, I = 1.675× 1019 Wcm−2

5.22 GeV if ω = 0.1 keV, I = 1.861× 1022 Wcm−2

52.2 MeV if ω = 10 keV, I = 1.861× 1026 Wcm−2.
(31)

When estimating the value of the characteristic energy, the frequencies of the electromag-
netic waves in the optical and X-ray ranges were used in Equation (31), as well as values of
parameters η = 1 and θ = π. It is worth noting that the ratio between the initial energy
of the gamma quantum and the characteristic energy ωBW determines the value of the
parameter ε2BW (30), which can be either greater or less than unity. This significantly affects
the number of photons absorbed in the EFBWP. Specifically, if the initial energy of the
gamma quantum is less than the characteristic energy, then, as derived from Equations (30)
and (31), it follows that this process occurs if the number of absorbed wave photons is
above a certain minimum rmin value, which is greater than unity:

r ≥ rmin = dε−1
2BWe (ω2 < ωBW). (32)

If the initial energy of the gamma quantum is greater than the characteristic energy,
then this process takes place already when one photon of the wave is absorbed:

r ≥ 1 (ω2 ≥ ωBW). (33)

Thus, the resonant energy of a positron (for Channel A) or an electron (for Channel B) is deter-
mined by two parameters: the corresponding outgoing angle of the positron (δ2

2+) or electron
(δ2

2−), and the parameter ε2BW(r). At the same time, with a fixed parameter ε2BW(r), for each
outgoing angle of the positron or electron, there are two possible energies (see Equation (27)).

Figure 4 shows the dependence of the energy of the positron (for Channel A) or electron
(for Channel B) (see Equations (27)–(30)) for the external field-stimulated Breit–Wheeler
process with the absorption of one and two photons of the wave at different frequencies,
intensities of the electromagnetic wave (Equation (31), and various initial gamma quanta
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energies. From this figure, it follows that the interval for the outgoing angle of the positron
(electron) significantly depended on the number of absorbed photons of the wave. Addi-
tionally, for the same outgoing angle, there were two possible particle energies, except for
the maximum outgoing angle.

Now, let us determine the resonant electron (positron) energy at the first vertex (see
Figure 2). By taking into account Equations (2), (3), (21) and (24), from the conservation law
of the four momentum (Equation (23)) of the external field-stimulated Compton effect, we
obtained the resonant energies of the electron (for Channel A) or the positron (for Channel
B) in terms of the total energy of the initial gamma quanta:

x∓(r′) =
ω1

2ωi(ε1C(r′) − δ2
1∓)

[
ε1C(r′) +

√
ε2

1C(r′) + 4(ε1C(r′) − δ2
1∓)
]
. (34)

Here, it is denoted as follows:

x∓(r′) =
E∓(r′)

ωi
, δ1∓ =

ω1

m∗
θ1∓. (35)

ε1C(r′) = r′ε1C, ε1C =
ω1

ωC
, ωC =

1
4

ωBW . (36)

Here, ωC is the characteristic quantum energy of the external field-stimulated Compton
effect [31]. This energy was four times less than the characteristic energy for the external
field-stimulated Breit–Wheeler process. Additionally, it should be noted that the ultrarel-
ativistic parameter δ2

1∓, which determines the outgoing angle of the electron or positron,
should not take values close to ε1C(r′) in order to satisfy the condition x∓(r′) < 1 (see
Equation (34)). It should also be noted that there were no limitations on the parameter
ε1C(r′) for the external field-stimulated Compton effect. Therefore, this process occurred
for any number of emitted photons of the wave r′ ≥ 1, whic is in contrast to the external
field-stimulated Breit–Wheeler process, which had a threshold value for parameter ε2BW(r)
(see Equations (30) and (32)).

1: r=1

2: r=2

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

2±
2

x
±
(r
)

(a) =3 eV, I=1.675·1019Wcm-2

1: r=1

2: r=2

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

2±
2

x
±
(r
)

(b) =100 eV, I=1.861·1022Wcm-2

1: r=1

2: r=2

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

2±
2

x
±
(r
)

(c) =10 keV, I=1.861·1026Wcm-2

Figure 4. The energy of the positron (Channel A) or electron (Channel B) (27)–(30) for the external field-
stimulated Breit–Wheeler process with the absorption of one and two photons of the wave at different
frequencies and intensities of the electromagnetic wave (31). Solid lines correspond to the “+” signs,
and dashed lines correspond to the “–” signs before the square root in (27). The energies of the initial
gamma quanta were the following: (a) ω1 = 10 GeV, ω2 = 180 GeV; (b) ω1 = 0.5 GeV, ω2 = 7 Gev;
and (c) ω1 = 10 MeV, ω2 = 80 MeV.
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Furthermore, we assumed that the energies of the initial gamma quanta, within the
framework of conditions (2), satisfied the additional conditions:

ω2 > ωBW , ω1 � ωBW . (37)

Conditions (37) represent the parameter ε2BW > 1 and the parameter ε1BW � 1 (see
Equations (30) and (31)). Therefore, in Channels A and B, the external field-stimulated
Breit–Wheeler process occurs with a number of absorbed photons of the wave r ≥ 1,
and, for the exchange resonant diagrams A’ and B’, the number of absorbed photons is
r ≥ rmin = dε−1

1BWe � 1. Thus, within the framework of conditions (37), the resonant
Channels A’ and B’ would be suppressed, so we only considered two resonant Channels
A and B (see Figure 2). It is also important to consider that, for Channel A, the resonant
energy of the positron was determined by its outgoing angle relative to the momentum of
the second gamma quantum in the EFBWP, while the resonant energy of the electron was
determined by its outgoing angle relative to the momentum of the first gamma quantum in
the EFSCE. For Channel B, we had the opposite situation, where the energy of the electron
was determined by its outgoing angle relative to the momentum of the second gamma
quantum, and the energy of the positron was determined by its outgoing angle relative to
the momentum of the first gamma quantum (see Figure 2). Therefore, Channels A and B
were distinguishable and did not interfere with each other.

It is important to note that, under resonance conditions (21), the resonant energies of
the positron and electron for each reaction channel are determined by different physical
processes: the external field-stimulated Breit-Wheeler process (27) and the Compton exter-
nal field-stimulated effect (34). At the same time, the energies of the electron–positron pair
are related to each other by the general law of the conservation of energy.

x+ + x− ≈ 1 (x± =
E±
ωi

). (38)

It should be noted that, in Equation (38), we neglected a small correction term |l|ω/ωi � 1.
Taking into account Equations (27) and (34), as well as the law of conservation of energy (38)
for Channels A and B, we obtained the following equations relating the outgoing angles of
the positron and electron:

δ2
1∓ = ε1C(r′) −

(ω1/ωi)

(1− x±(r))

[
ε1C(r′) +

(ω1/ωi)

(1− x±(r))

]
. (39)

Here, the upper (lower) sign corresponds to Channel A (B). In Equation (39), the left side
represents the ultrarelativistic parameter associated with the outgoing angle of the electron
(positron) relative to the momentum of the first gamma quantum, and the right side is the
function of the ultrarelativistic parameter δ2± associated with the outgoing angle of the
positron (electron) relative to the momentum of the second gamma quantum. Under the
given parameters ε1C(r′) and ε2BW(r), Equation (39) uniquely determines the outgoing angles
of the electron and positron, and, therefore, their resonant energies (see Figures 4 and 5).

Figure 5 presents the dependence of the energy of the electron (for Channel A) or
positron (for Channel B) (34), (39) for the external field-stimulated Compton effect at different
frequencies, intensities of the electromagnetic wave (31), and initial gamma quanta energies
under the condition of energy conservation in the first and second vertices (38). The graphs
are given for different numbers of absorbed (r) and emitted (r′) photons of the wave.

It is also worth noting the important case when the quantum parameter was ε2BW(r) � 1.
In this case, as derived from the expression (27) with the “+” sign before the square root,
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the energy of the positron (Channel A) or electron (Channel B) approached the energy of
the highly energetic second gamma quantum:

E± ≈ ω2

[
1−

(1 + 4δ2
2±)

4ε2BW(r)

]
−→ ω2 (δ2

2± � ε2BW(r)). (40)

The expression with the “−” sign before the square root in Equation (27) leads to the
minimum energy of the positron or electron E± ∼ ω2/ε2BW(r) � ω2. However, this case
is unlikely. Similarly, for the first gamma quantum, when the quantum parameter was
determined as ε1C(r′) � 1, we obtained that the energy of the electron (Channel A) or
positron (Channel B) approached the energy of the first gamma quantum:

E∓ ≈ ω1

[
1−

(1 + δ2
1∓)

ε1C(r′)

]
−→ ω1 (δ2

1∓ � ε1C(r′)). (41)

Thus, if the quantum parameters ε1C(r′) and ε2BW(r) were to take large values, the resonant
energies of the positron and electron would tend towards the energies of the corresponding
initial gamma quanta.
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Figure 5. The dependence of the energy of the electron (Channel A) or positron (Channel B) (34), (39)
for the external field-stimulated Compton effect at different frequencies, intensities of the electromag-
netic wave (31), and initial gamma quanta energies under the condition of energy conservation in the
first and second vertices (38). Solid lines correspond to the “+” , and dashed lines correspond to the
“–” signs before the square root in expressions (27), (34), and (39). The energies of the initial gamma
quanta were the following: (a,a’) ω1 = 10 GeV, ω2 = 180 GeV; (b,b’) ω1 = 0.5 GeV, ω2 = 7 Gev; and
(c,c’) ω1 = 10 MeV, ω2 = 80 MeV.
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4. The Resonant Differential cross Section

Previously, it has been shown that, in conditions (2), (3), and (37), the exchange
Channels A’ and B’ were suppressed. In addition, Channels A and B were distinguishable
and, therefore, did not interfere (see text after Equation (37)). It is also important to
note that the resonance processes with different numbers of absorbed and emitted wave
photons corresponded to significantly different probabilities and energies of the final
electron–positron pair. Therefore, they did not interfere either. Due to this, a summation
of all the possible processes with absorption of r wave photons was not necessary in the
amplitude (12).

Mrr′ = ε1µε2νKµ
r′( p̃−, q̃−)

q̂− + m
q̃2
− −m2∗

Kν
−r(q̃−,− p̃+), r′ = l + r. (42)

The resonant differential cross section for Channels A and B, as well as the unpolarized
initial gamma quanta and the final electron–positron pair, were obtained from the amplitude
calculated from (10), (11) and (42) in a standard way [58]. After simple calculations, we
obtained the following:

dσrr′ =
2m6r2

e

Ẽ−Ẽ+m2∗δ
2
ηi

K1∓(r′)P2±(r)
|q̃2
∓ −m2∗|2

δ(4)
[
k1 + k2 − p̃− − p̃+ − (r′ − r)k

]
d3 p̃−d3 p̃+. (43)

Here, the upper (lower) sign corresponds to Channel A (B), and re = e2/m is the classical
electron radius. In obtaining the resonant differential cross section (43), the resonant
probability was divided by the flux density of the initial gamma quanta [58], whose
equation is shown as follows:

j =
(k1k2)

ω1ω2
≈ m2

∗
2ω1ω2

δ2
ηi, δ2

ηi ≡
ω1ω2

m2∗
θ2

i . (44)

In expression (43), the function P2±(r) determines the probability of the external field-
stimulated Breit–Wheeler process [1], and the function K1∓(r′) determines the probability
of the external field-stimulated Compton effect [1], which is defined as follows:

P2±(r) = J2
r (γ2±(r)) + η2(2u2±(r) − 1)

[(
r2

γ2
2±(r)

− 1

)
J2
r + J′2r

]
, (45)

and

K1∓(r′) = −4J2
r′(γ1∓(r′)) + η2

[
2 +

u2
1∓(r′)

1 + u1∓(r′)

]
(J2

r′−1 + J2
r′+1 − 2J2

r′). (46)

The arguments of the Bessel functions for the external field-stimulated Breit–Wheeler
process (45) and the external field-stimulated Compton effect (46) have the following forms:

γ2±(r) = 2r
η√

1 + η2

√√√√u2±(r)
v2±(r)

(
1−

u2±(r)
v2±(r)

)
, (47)

and

γ1∓(r′) = 2r′
η√

1 + η2

√√√√u1∓(r′)
v1∓(r′)

(
1−

u1∓(r′)
v1∓(r′)

)
. (48)

Here, the relativistic invariant parameters are equal to the following:

u1∓(r′) =
(k1k)
(p∓k)

≈ (ω1/ωi)

x∓(r′)
, v1∓(r′) =

2r′(q∓k)
m2∗

≈ ε1C(r′)

( x∓(r′)
(ω1/ωi)

− 1
)

, (49)
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and

u2±(r) =
(k2k)2

4(p±k)(q∓k)
≈ (ω2/ωi)

4x±(r)
(

1− x±(r)
(ω2/ωi)

) , v2±(r) = r
(k2k)
2m2∗

≈ ε2BW(r). (50)

The elimination of the resonant singularity in expression (43) was carried out by the
Breit–Wigner procedure [44,57]:

m∗ −→ µ∗ = m∗ − iΓ∓(r), Γ∓(r) =
q̃0
∓

2m∗
W1, (51)

where W1 is the total probability (per unit of time) of the external field-stimulated Compton
effect on the intermediate electron (for Channel A) or positron (for Channel B) [1,31], which
is derived through the following equations:

W1 =
αm2

4πq̃0
∓

K(ε1C), (52)

and

K(ε1C) =
∞

∑
s=1

∫ sε1C

0

du
(1 + u)2 K(u, sε1C). (53)

Here, α is the fine-structure constant, and the function K(u, sε1C) is determined by the
following expression:

K(u, sε1C) = −4J2
s (γ1(s)) + η2

[
2 +

u2

1 + u

]
(J2

s−1 + J2
s+1 − 2J2

s ) (54)

γ1(s) = 2s
η√

1 + η2

√
u

sε1C

(
1− u

sε1C

)
. (55)

By taking into account the relations (51)–(55), the resonant denominator in the cross
section (43) takes the following form:

|q̃2
∓ −m2

∗|2 −→ m4
∗

x2
∓(r′)

(ω1/ωi)2

[(
δ2

1∓(0) − δ2
1∓

)2
+ Υ2

∓(r′)

]
. (56)

Here, the ultrarelativistic parameter δ2
1∓ is related to the resonance energy of the electron

(for Channel A) or positron (for Channel B) by the relation (34), and the corresponding
parameter δ2

1∓(0) can take arbitrary values that are unrelated to the energy of the electron
(positron). In this case, the corresponding angular width of the resonance Υ∓(r′) was
determined by the following expression:

Υ∓(r′) =
αm2

4πm2∗

ω1

ωix∓(r′)
K(ε1C). (57)

Considering relation (26), we set d3 p̃± ≈ d3 p± and integrated the three-dimensional
momentum of the electron (positron), as well as the energy of the positron (electron) for
Channel A (for Channel B), using the delta-function in expression (43). After simple
calculations, we obtained the following expression for the resonant differential cross section
for Channels A and B:

R2±(rr′) =
dσrr′

dδ2
2±

= 8πr2
e

(
m

δηiωi

)2 x±(r)
x3
∓(r′)

(
m
m∗

)4(ω1

ω2

)2 K1∓(r′)P2±(r)[(
δ2

1∓(0) − δ2
1∓

)2
+ Υ2

∓(r′)

] . (58)
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Here, the upper (lower) sign corresponds to Channel A (B). It should be noted that the
differential cross section (58) had a characteristic Breit–Wigner resonance structure [57]. Let
us now determine the maximum resonant differential cross section:(

δ2
1∓(0) − δ2

1∓

)2
� Υ2

∓(r′). (59)

Under conditions (59), the resonant cross section (58) takes its maximum value, which is
equal to the following:

Rmax
2±(rr′) =

dσmax
rr′

dδ2
2±

= r2
e cηiΨ±(rr′). (60)

Here, the function cηi is determined by the initial setup parameters

cηi =
2(4π)3

α2K2(ε1C)

(
m

δηiω2

)2

∼ 108

(
m

δηiω2

)2

, (61)

and the functions Ψ±(rr′) determine the spectral–angular distribution of the generated
electron–positron pair:

Ψ±(rr′) =
x±(r)

1− x±(r)
K1∓(r′)P2±(r). (62)

It is important to emphasize that the magnitude of the maximum resonant differential cross
section significantly depends on the value of the function cηi (61). Let us require that the
function cηi > 1. Then, as derived from relation (61), we obtain a condition for the initial
ultrarelativistic parameter δ2

ηi (44):

δ2
ηi <

(
104 m

ω2

)2
. (63)

It should be noted that the corresponding Breit–Wheeler differential cross section without
an external field in the kinematics (24) has the following order of magnitude [32]:

RBW =
dσBW

dδ2
2±
∼ r2

e

(
m

δiωi

)2
, δi =

√
ω1ω2θi

m
. (64)

As derived from relations (60)–(62) and (64), it can be seen that the maximum resonant cross
section significantly exceeded the corresponding Breit–Wheeler cross section without an
external field. Indeed, we estimated the value of the Breit–Wheeler differential cross section
without an external field RBW (64). Thus, for δηi = 10−2 and different energies of the initial
gamma quanta (see Table 1) we derived the following: if ω1 = 10 MeV, ω2 = 80 MeV, then
RBW ∼ 10−1 r2

e ; if ω1 = 0.5 GeV, ω2 = 7 GeV, then RBW ∼ 10−5 r2
e ; and if ω1 = 10 GeV,

ω2 = 180 GeV, then RBW ∼ 10−7 r2
e .

Figure 6 shows the dependencies of the maximum resonance differential cross sec-
tion (60) on the positron outgoing angle (for Channel A) or electron outgoing angle (for
Channel B) for various frequencies and intensities, as well as the numbers of absorbed and
emitted photons at the first and second vertices (see Figure 2). The study focused on the
regions of optical and X-ray frequencies of the external strong electromagnetic wave (31)
at different sufficiently high energies of initial gamma quanta. It is important to note that
the energy of the second high-energy gamma quantum for each frequency and intensity of
the wave was chosen according to condition (33) in order for the stimulated Breit–Wheeler
process to occur with the highest probability, and the energy of the first gamma quantum
was chosen to be much lower than the energy of the second gamma quantum (37). In this
case, with the increasing frequency of the external field, the characteristic energy of the
Breit–Wheeler process decreased (see relation (31)). Therefore, the energies of the initial
gamma quanta were chosen to be lower for the X-ray frequency range than for the optical
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frequency range. As a result, the function (61) increased, leading to an increase in the
maximum resonance cross section. This case is shown in Figure 6a–c. However, when the
energy of initial gamma quanta remained constant and the intensity of the external field
increased, then the maximum resonance cross section decreased (see Figure 6c,c’). Table 1
displays the values of the positron (for Channel A) and electron (for Channel B) energies,
as well as the corresponding maximum values of the resonance differential cross section
according to their spectral-angular distribution (see Figure 6a–c’) for different frequencies
and intensities of the wave and the different energies of initial the gamma quanta.
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Figure 6. The dependence of the maximum resonance differential cross section (60) (in units of
r2

e ) on the ultrarelativistic parameter δ2
2+ for (Channel A) or δ2

2− (Channel B) for various frequen-
cies and intensities, as well as the numbers of absorbed (r) and emitted (r′) photons. The value
of the initial ultrarelativistic parameter was δ2

ηi = 10−4. The energies of the initial gamma
quanta were the following: (a) ω1 = 10 GeV, ω2 = 180 GeV; (b) ω1 = 0.5 GeV, ω2 = 7 Gev; and
(c,c’) ω1 = 10 MeV,ω2 = 80 MeV.

From Table 1, it can be observed that when the energy of one of the initial gamma
quanta slightly exceeded the characteristic Breit–Wheeler energy, the production of
electron–positron pairs occurred with a very large cross section. For the optical frequency
range, the resonance differential cross section could exceed the value of r2

e in magnitude by
a factor of 47, while, for the X-ray frequency range, it could exceed the value of r2

e by eight
orders of magnitude. In this case, the positrons (electrons) were emitted in a narrow cone
and with very high energy.

We would like to emphasize that the article considered the circular polarization of an
external electromagnetic wave. For this polarization, there was an azimuthal symmetry in
the problem. We also emphasize that unpolarized gamma quanta were considered in the
article. The study of this resonant process for the linear polarization of a wave or randomly
polarized waves will significantly affect the angular distribution of an electron-positron
pair [33–35,39,40,42]. At the same time, the effect of polarization of the initial gamma
quanta on the Breit–Wheeler resonant process in strong fields is of undoubted interest and
is an independent task that will be studied in future publications.



Photonics 2023, 10, 949 14 of 17

Table 1. The values of the ultrarelativistic parameter δ
2(∗)
2± and the resonant energies of the positron

(electron) x(∗)±(r) that corresponded to the maximum values Rmax(∗)
2±(rr′) (in units of r2

e ) of the spectral–
angular distribution for the resonant differential cross sections (60) (see Figure 6).

(r, r′) δ
2(∗)
2± x(∗)±(r) Rmax(∗)

2±(rr′)

I = 1.675× 1019 Wcm−2,
ω = 3 eV,

ω1 = 10 GeV,
ω2 = 180 GeV

(1,1) 0 0.56 47

(1,2) 0 3

(2,1) 0.12 0.76 31

(2,2) 0.06 0.78 11

I = 1.861× 1022 Wcm−2,
ω = 100 eV,

ω1 = 0.5 GeV,
ω2 = 7 GeV

(1,1) 0 0.70 3.3× 104

(1,2) 0 6.0× 103

(2,1) 0.06 0.82 1.4× 104

(2,2) 0.07 0.81 5.9× 103

I = 1.861× 1026 Wcm−2,
ω = 10 keV,

ω1 = 10 MeV,
ω2 = 80 MeV

(1,1) 0 0.71 2.3× 108

(1,2) 0 7.4× 107

(2,1) 0.03 0.8 2.0× 108

(2,2) 0.08 0.79 4.2× 107

I = 1.675× 1027 Wcm−2,
ω = 10 keV,

ω1 = 10 MeV,
ω2 = 80 MeV

(4,1) 0.22 0.47 2.0× 106

(4,2) 0.16 0.5 1.5× 106

(5,1) 0.07 0.64 1.2× 107

(5,2) 0.22 0.56 1.8× 106

5. Conclusions

We considered the resonant Breit–Wheeler process modified by an external strong
electromagnetic field for high-energy initial gamma quanta when the energy of one of them
significantly exceeded the energy of the other. The following results were obtained:

1. The resonant kinematics of the process were studied in detail. It was demonstrated
that the problem involves two characteristic energies: the Breit–Wheeler energy ωBW
(31) and the Compton effect energy ωC (36). These energies differed from each other by
a factor of four. The ratios of the initial gamma quanta energies to these characteristic
energies significantly affected the number of absorbed or emitted wave photons and,
ultimately, the probability of the process.

2. The resonant energies of the positron and electron strongly depended on their outgo-
ing angles, as well as the characteristic quantum parameters ε2BW(r) (30) and ε1C(r′)
(36). Furthermore, the outgoing angles of the electron and positron were deemed to
be interdependent (39).

3. The maximum resonant differential cross section was achieved when the energy of
one of the initial gamma quantum slightly exceeded the characteristic Breit–Wheeler
energy. In this case, for the optical frequency range and ω2 = 180 GeV, the maximum
resonant cross section was Rmax

2±(rr′) = 47 r2
e , whereas, for the X-ray frequency range, it

was Rmax
2±(rr′) ∼ (106 ÷ 108) r2

e .

The obtained results can be utilized to achieve ultrarelativistic positron (electron)
beams with a very high probability in external field-modified Breit–Wheeler processes.
Additionally, these results can be employed to explain the fluxes of ultrarelativistic positrons
(electrons) near neutron stars and magnetars [59,60], as well as in the modeling of physical
processes involving laser-induced thermonuclear fusion [61].
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