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Abstract: The response of plasmonic metal particles to an electromagnetic wave produces significant
features at the nanoscale level. Different properties of the internal composition of a metal, such as its
ionic background and the free electron gas, begin to manifest more prominently. As the dimensions
of the nanostructures decrease, the classical local theory gradually becomes inadequate. Therefore,
Maxwell’s equations need to be supplemented with a relationship determining the dynamics of cur-
rent density which is the essence of nonlocal plasmonic models. In this field of physics, the standard
(linearized) hydrodynamic model (HDM) has been widely adopted with great success, serving as the
basis for a variety of simulation methods. However, ongoing efforts are also being made to expand
and refine it. Recently, the GNOR (general nonlocal optical response) modification of the HDM
has been used, with the intention of incorporating the influence of electron gas diffusion. Clearly,
from the classical description of fluid dynamics, a close relationship between viscosive damping
and diffusion arises. This offers a relevant motivation for introducing the GNOR modification in an
alternative manner. The standard HDM and its existing GNOR modification also do not include the
influence of interband electron transitions in the conduction band and other phenomena that are part
of many refining modifications of the Drude–Lorentz and other models of metal permittivity. In this
article, we present a modified version of GNOR-HDM that incorporates the viscosive damping of the
electron gas and a generalized Drude–Lorentz term. In the selected simulations, we also introduce
Landau damping, which corrects the magnitude of the standard damping constant of the electron
gas based on the size of the nanoparticle. We have chosen a spherical particle as a suitable object for
testing and comparing HD models and their modifications because it allows the calculation of precise
analytical solutions for the interactions and, simultaneously, it is a relatively easily fabricated nanos-
tructure in practice. Our contribution also includes our own analytical method for solving the HDM
interaction of a plane wave with a spherical particle. This method forms the core of calculations of
the characteristic quantities, such as the extinction cross-sections and the corresponding components
of electric fields and current densities.

Keywords: hydrodynamic model; spherical metal nanoparticle; nonlocal response; general nonlocal
optical response; viscosive damping; Drude–Lorentz term

1. Introduction

Metallic nanoparticles are currently being intensively studied both in terms of de-
scribing their interaction with electromagnetic radiation and for utilizing their unique
properties. Their application as plasmonic nanostructured materials can find use in various
fields, such as sensors utilizing the effect of phosphorescence [1], extraordinary optical
transmission (EOT) [2], photothermal applications [3], Raman spectroscopy (SERS) [4,5],
designs of highly sensitive gas sensors [6–9], unique anti-reflective coatings to enhance the
efficiency of solar cells [10], integrated optical or quantum signal processing [11], battery
research [12,13], biomedical applications [4,14,15], and even in designing metamaterials
with unique properties such as negative refractive index [16], among others.
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The existing research and development of new applications in the aforementioned di-
rections, necessarily relies on adequately precise calculations. At the current level of knowl-
edge, approximate solutions in the form of quasistatic models appear insufficient [17,18],
even though in the early days of plasmonics, these theories provided many satisfactory
explanations [19]. A fundamental breakthrough for the entire field of plasmonics was
represented by Mie’s theory [20], which accurately determined the position and value
of resonant extinction maxima and associated quantities characterizing the behavior of
spherical particles interacting with incident electromagnetic waves.

The demand for accuracy in description, and thus the relevance of simulations derived
from them, increases in parallel with the growing technological capabilities of preparations
of nanostructures and nanostructured surfaces [21–23]. As an example, sensor applications
based on SERS technology can be mentioned, where the sensitivity of the sensor relies
on the amplification of the field at the specifically designed site where the binding of the
detected molecule is intended to occur.

Just as the quasistatic theory has proven to be inadequate, the classical solutions of
Maxwell’s equations now also appear unsatisfactory, particularly when a high precision
of results is required to simulate the interaction of plasmonic nanostructures with electro-
magnetic waves. Based on numerous experiments, it is becoming evident that standard
simulations, in some cases, significantly overestimate the intensity of the electromagnetic
field in the vicinity of sharp edges and interfaces of nanostructures [24]. In the case of
nanostructures with characteristic dimensions on the order of a few nanometers, as men-
tioned above, the classical theory also inaccurately determines the position of resonant
maxima for characteristic quantities.

These shortcomings can become a significant problem in practice. A clear example can
be found in sensor applications, where in addition to accurately determining the resonant
frequency, the intensity of the electric field in specific detection locations of the sensor also
plays a significant role. The mentioned requirements for high calculation accuracy have
given rise to the need to incorporate nonlocal response.

In contrast to the classical description (Maxwell’s equations and Ampere’s law), the
nonlocal theory assumes a more complex relationship between current density and electric
field evolution than a simple proportional relationship. The most widely used nonlocal
model in the field of plasmonics has become the so-called standard hydrodynamic model
(HDM) [25]. However, there are also alternative nonlocal models [26,27].

Using the HDM, Mie theory has already been generalized [28,29], and several other
analytical solutions have been found for metallic interfaces [30], such as the generalized
Fresnel equations [31,32]. For the structure of an infinitely long cylinder, the need for finding
an accurate solution has been demonstrated, as the so-called curl-free approximation
exhibits significant numerical drawbacks in the form of spurious resonances below the
plasma frequency [33].

While the standard HDM has become a successful mathematical tool for predicting var-
ious phenomena, such as the blue shift of the main extinction maximum in gold and silver
spherical nanoparticles with diameters smaller than 10 nm, theoretical research in this field
continues with the aim of achieving the most accurate description. Recently, a modification
of HDM called GNOR (general nonlocal optical response) has been proposed [34,35] which
incorporates the diffusion of the electron gas. The influence of Landau (Kreibig) damping,
which is inversely proportional to the nanoparticle size [36–38], is also being discussed.
Simultaneously, efforts are being made to find solutions for a more accurate nonlinearized
form of HDM [39,40], and the question of viscosive damping of the electron gas is gaining
prominence [41–44]. The hydrodynamic model itself is based on the concept of a jellium
model which can be interpreted as the electron fluid moving with respect to a positively
charged background of metal ions. From this perspective, the question directly arises of
how much of the overall material response of a metal belongs to the electron fluid itself
and how much to the ion background. The standard HDM, for example, does not consider
the influence of energy transitions of electrons within the conduction band, and thus this
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response is implicitly attributed from a mathematical perspective to the ion background
of a metal. From the description of fluid dynamics, there is also a well-known connection
between diffusion and viscosive damping, which suggests incorporating the influence of
diffusion in an alternative way, different from the GNOR modification. These aforemen-
tioned insights are, in our opinion, a relevant stimulus for considering further possible
modifications of the hydrodynamic model, which is also the main goal of our article.

The contributions of our article are thus numerous. Among other things, we provide a
relatively detailed mathematical procedure for solving HDM in the case of the interaction
of a metallic spherical particle with a planar wave. We also compare selected calculations
between the classical (Mie) and nonlocal HD models. However, the main contribution
lies in presenting a possible approach for further generalizing the standard HDM through
the modification of the existing GNOR-HDM by incorporating viscosive damping and
considering the general form of the Drude–Lorentz term. Furthermore, in analogy with
the previous approach, we compare the computations obtained by solving each variant of
the HDM.

The remaining sections of the article are organized as follows: in the second section of
the article, we briefly recapitulate the procedure of solving the problem of the interaction
between a plane wave and a spherical metal nanoparticle within the framework of the
HD model, and subsequently present important new results in the form of an explicit
expression for the field expansion coefficients; in the third section, the effective extinction
cross sections of gold and silver particles determined according to the classical Mie theory
and the standard HD model are compared. Additionally, the influence of Kreibig damping
on the behavior of the mentioned quantities is briefly analyzed; the fourth section is
dedicated to the generalization of the GNOR-HDM, so that the new model incorporates
viscosive damping of the electron gas and the general Drude–Lorentz term. Furthermore,
the procedure for the possible solution of our modified GNOR-HDM is discussed; the final
fifth section of the article is focused on comparing the results of individual variants of HD
models, with the emphasis on comparing the calculations of selected quantities using the
standard HD model and our generalized GNOR-HDM, also referred to as the HD model
with viscosive damping; finally, the paper is concluded with the conclusions together with
possible future activities.

2. Review of the Standard Hydrodynamic Model and Calculation Procedure

In this section, we review the standard hydrodynamic model calculation proce-
dure [29], and subsequently also show our implementation of the technique (Section 3),
which will be later used for the generalized hydrodynamic model (Section 4). From a
mathematic point of view, the HD model and its modifications represents a system of
two linear differential equations for the vector functions of the electric field E and the in-
duced current density J. In this article, we will use simplified notation for vector functions
E ≡ E(r, θ, ϕ, ω), J ≡ J(r, θ, ϕ, ω), where ω is the angular frequency and r, θ, and ϕ are the
spherical coordinates (see Figure 1).

In the traditional HDM, the electrical field and the current density are given by the
solutions of the wave equation and the hydrodynamic equation-of-motion [38]. We will
concentrate here on the specific spherical geometry of a nanoparticle, although some parts
of the calculation are more general (primarily the determination of the nonlocal wave
number). Clearly, derived expansion coefficients of the fields are generally dependent
on the particle shape and analytically can be determined only for a spherical geometry
considered here.
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Figure 1. Schematic representation of a plane wave interacting with a spherical metallic particle. A 
plane wave with the electric intensity 𝑫  and wave vector 𝒌  is incident along the Z-axis onto 
a spherical particle. The electric field 𝑬  is induced within the particle and simultaneously the 
scattered electric field 𝑬  is formed in the vicinity of a particle. 

The basic HD model can be formulated with Equations (1) and (2) as follows: 𝛽 ∇(∇. 𝑱) + ω(𝜔 + 𝑖𝛾)𝑱 = 𝑖𝜔𝜔 𝜀 𝑬, (1)

∇ × (∇ × 𝑬) − 𝜔𝑐 𝜀 − 𝜀 𝑬 = 𝑖𝜔𝜇 𝑱. (2)

Here, the constants 𝜀 , 𝜇  and 𝑐 represent vacuum permittivity, vacuum permeabil-
ity, and the speed of light, respectively. Next, quantities of the HD model 𝜀  and 𝜀   in-
dicate the permittivity of electron gas and the total permittivity of a metal, respectively. 

The next assumption is concerned with the expression for the permittivity of an elec-
tron gas. The HDM modification unfortunately provides no clue which particular form 
should represent the electron gas permittivity. Clearly, one possibility is to use the expres-
sion often formulated in the literature; for example in [45,46]. This expression for the elec-
tron gas permittivity is, in fact, the Drude–Lorentz relation for the permittivity, and can 
be stated as follows: 𝜀 =  𝜀 − 𝜔𝜔(𝜔 + 𝑖𝛾). (3)

Here, the difference 𝜀 − 𝜀  has the meaning of permittivity of the ionic background 
of the metal. Other parameters of the HD model are the plasma angular frequency 𝜔 , the 
attenuation constant 𝛾, and the nonlocal constant  𝛽 ≡  3 5⁄ 𝑣 , where 𝑣  is the Fermi 
velocity. At this point, it is appropriate to provide specific values for the parameters. Ac-
cording to [38], for gold, the values are 𝜔 = 1.3673 ∙ 10 Hz , 𝛾 = 𝜔 127⁄   and 𝑣 =1.39 ∙ 10 m ∙ s  , in the case of silver, the values are 𝜔 = 1.3627 ∙ 10 Hz , 𝛾 = 𝜔 360⁄  
and 𝑣 = 1.39 ∙ 10 m ∙ s . The mentioned values of parameters are used in the analysis 
of selected quantities in the third and fifth part of this article. 

For solving this system of equations, at first it is necessary to determine both longi-
tudinal and transversal wave numbers, as applied, e.g., in [29]. We note that while the 
longitudinal wave number belongs to the electric field with the vector of electric intensity 
oscillating in the direction of the wave vector of the field, the transversal wave number 
belongs to the field which oscillates perpendicularly with respect to the direction of prop-
agation. Following [29], the transversal and longitudinal field components can be de-
scribed as 𝑬 = ∇ × 𝜳  and  𝑬 = ∇Φ , respectively, where 𝑬   is the transversal electric 
field, 𝜳 is some vector function, 𝑬  is the longitudinal electric field and Φ some scalar 
function. Although these assumptions are not absolutely general, they are typically used 
(as in Equation (1)) and allow us to obtain the analytical results, as required. It should be 
also noted that there exists an alternative procedure based on the mathematical theory of 

Figure 1. Schematic representation of a plane wave interacting with a spherical metallic particle. A
plane wave with the electric intensity Dinc and wave vector kinc is incident along the Z-axis onto
a spherical particle. The electric field Eint is induced within the particle and simultaneously the
scattered electric field Esca is formed in the vicinity of a particle.

The basic HD model can be formulated with Equations (1) and (2) as follows:

β2∇(∇.J) +ω(ω + iγ)J = iωω2
pε0E, (1)

∇× (∇× E)− ω2

c2

(
εt − εeg

)
E = iωµ0J. (2)

Here, the constants ε0, µ0 and c represent vacuum permittivity, vacuum permeability,
and the speed of light, respectively. Next, quantities of the HD model εeg and εt indicate
the permittivity of electron gas and the total permittivity of a metal, respectively.

The next assumption is concerned with the expression for the permittivity of an
electron gas. The HDM modification unfortunately provides no clue which particular
form should represent the electron gas permittivity. Clearly, one possibility is to use the
expression often formulated in the literature; for example in [45,46]. This expression for the
electron gas permittivity is, in fact, the Drude–Lorentz relation for the permittivity, and can
be stated as follows:

εeg = ε∞ −
ω2

p

ω(ω + iγ)
. (3)

Here, the difference
(
εt − εeg

)
has the meaning of permittivity of the ionic background of the

metal. Other parameters of the HD model are the plasma angular frequency ωp, the attenu-
ation constant γ, and the nonlocal constant β2 ≡ 3/5v2

F, where vF is the Fermi velocity. At
this point, it is appropriate to provide specific values for the parameters. According to [38],
for gold, the values are ωp = 1.3673·1016 Hz, γ = ωp/127 and vF = 1.39·106 m·s−1, in the
case of silver, the values are ωp = 1.3627·1016 Hz, γ = ωp/360 and vF = 1.39·106 m·s−1.
The mentioned values of parameters are used in the analysis of selected quantities in the
third and fifth part of this article.

For solving this system of equations, at first it is necessary to determine both lon-
gitudinal and transversal wave numbers, as applied, e.g., in [29]. We note that while
the longitudinal wave number belongs to the electric field with the vector of electric in-
tensity oscillating in the direction of the wave vector of the field, the transversal wave
number belongs to the field which oscillates perpendicularly with respect to the direction
of propagation. Following [29], the transversal and longitudinal field components can be
described as Et = ∇× Ψ and El = ∇Φ, respectively, where Et is the transversal electric
field, Ψ is some vector function, El is the longitudinal electric field and Φ some scalar
function. Although these assumptions are not absolutely general, they are typically used
(as in Equation (1)) and allow us to obtain the analytical results, as required. It should
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be also noted that there exists an alternative procedure based on the mathematical theory
of generalized functions [2], but this approach brings another difficulty connected with
the fulfillment of the boundary conditions and thus is not very practical. A reader can
find a classification of HD models from the perspective of such a generalized function
(including also the derivation of Green functions) in [47]. Returning to our approach, for
the spherical geometry considered, Et is therefore necessarily a spherical vector function
and the Φ function satisfies the scalar wave equation. The fields Et and El , hence, satisfy
the following Equations (4) and (5), respectively; this follows from the definition of vector
spherical harmonics.

∆El = −k2
l El , (4)

∆Jl = −k2
l Jl . (5)

Further, these relations (4) and (5) will be substituted into Equations (1) and (2), to
obtain the following equations

−β2k2
l Jl +ω(ω + iγ)(Jl + Jt) = iωω2

pε0(El + Et), (6)

k2
t Et −

ω2

c2

(
εt − εeg

)
(El + Et) = iωµ(Jl + Jt). (7)

These two equations can be further converted to describe the longitudinal and transver-
sal fields separately. This will enable assuming the fields can be described by scalar func-
tions and hence the mathematical operators of rotation and gradient can be applied to them,
providing for the longitudinal case

−β2k2
l Jl +ω(ω + iγ)Jl = iωω2

pε0El , (8)

−ω2

c2

(
εt − εeg

)
El = iωµJl , (9)

and similarly, for the transversal field and transversal wave number

ω(ω + iγ)Jt = iωω2
pε0Et, (10)

k2
t Et −

ω2

c2

(
εt − εeg

)
Et = iωµJt. (11)

This will further allow expressing the longitudinal wave number from Equations (8)
and (9), and correspondingly, the transversal wave number, from Equations (10) and (11),
as

k2
t =

ω2

c2

(
εt − εeg −

ω2
p

ω(ω + iγ)

)
, (12)

k2
l =

1
β2

(
ω(ω + iγ)−

ω2
p(

εt − εeg
) .

)
(13)

Unfortunately, if we assume that εeg is zero, as it follows from standard Maxwell
equations, then nonphysical results appear, specifically, the extinction cross section will
follow wrong functional dependence and the extinction maxima will not follow correct
spectral position for bigger particles, in accordance with the Mie theory. Here, we will
track the calculation method, introduced in [29], to obtain the correct results. The idea
of this technique is based on expressing the unknown permittivity of an electron gas
εeg as −ω2

p/ω(ω + iγ) (see Equations (3) and (12)). Applying this, the transversal wave
number follows the predictions for the electric and magnetic fields from the Mie theory [48].
The HD model, however, as compared to the standard Mie theory, also considers the
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longitudinal wave number (which often has a significantly larger value). Clearly, from the
wave number formulas, one can further proceed with the calculations of the scattered field
around a particle and the induced field in a particle (i.e., the absorbed field). First, we must
specify the proper boundary conditions. Although Maxwell boundary conditions allow
discontinuity of the tangential magnetic field component, the Mie theory assumes their
continuity. The same boundary conditions are used in the case of solving HDM in [29].
Second, the tangential electric field is naturally continuous on the boundary of a particle.
Finally, the last boundary condition determines the zero normal component of the electric
current density on the particle boundary. Overall, following the expansion of the fields
in the spherical coordinates (θ, ϕ), we obtain five boundary conditions on the particle
boundary

Einc
θ (a) + Es

θ(a) = Ep
θ (a), Einc

ϕ (a) + Es
ϕ(a) = Ep

ϕ(a), (14)

Hinc
θ (a) + Hs

θ(a) = Hp
θ (a), Hinc

ϕ (a) + Hs
ϕ(a) = Hp

ϕ(a), (15)

Jr(a) = 0. (16)

Here, Ep
ϕ(a), Ep

θ (a) and Hp
ϕ(a), Hp

θ (a) are the components of the total electric and
magnetic field inside a particle, in the directions of spherical coordinates ϕ and θ, re-
spectively. Similarly, Es

ϕ(a), Es
θ(a) and Hs

ϕ(a), Hs
θ(a) are the components of the scattered

fields, and Einc
ϕ (a), Einc

θ (a) and Hinc
ϕ (a), Hinc

θ (a) represent the incident fields. All fields are
considered on the surface of a particle. Before starting the determination of expansion
coefficients of the fields, let us make some remarks. We will follow the procedure of
decomposing the transversal fields into series of vector spherical wave functions M and
N of both even (index e) and odd (index o) components which we will denote as Mh

nme,
Mnme, Nh

nme, Nnme, Mh
nmo, Mnmo, Nh

nmo, Nnmo. Here, the index n belongs to the radial part
whereas the index m represents the azimuthal part of the wave function, respectively.

In order to describe the longitudinal fields, it is necessary to find the solution of
Equation (5) in spherical coordinates. We will thus define the scalar even and odd functions
Φnme and Φnmo. It is also convenient to distinguish the mentioned functions according to
the wave number in the argument of their radial functions, therefore we add the given
wave number as the superscript of the respective functions. The index n takes values from
1,2. . .∞, the index m should be restricted only to the values −1 or 1 because we consider
the case of a single spherical particle and an incident plane wave. Clearly, in the case of a
Gaussian beam (or an evanescent wave), this symmetry is broken. The vector functions
with no upper index are expressed with radial spherical Bessel functions jn(r), vector
functions with index h include a spherical Hankel function of the first type hn(r). Index o
denotes the odd function sin(mϕ) and index e denotes the even function cos(mϕ).

The mathematical form of the vector spherical harmonics in the spherical coordinates
r, θ, and ϕ are well known, and can be found, for example in [20] or [49]. The explicit
expression of the gradient of the Φkl

nme and Φkl
nmo functions necessary for the decomposition

of the longitudinal fields is thus as follows:

∇Φkl
nme =


klcos (mϕ)Pn,m(cos θ)

d jn(klr)
d (klr)

cos(mϕ) d
dθ (Pn,m(cos θ))r−1 jn(klr)

−sin(mϕ)
m Pn,m(cos θ)

sin θ r−1 jn(klr)

, (17)

∇Φkl
nmo =


klsin(mϕ)Pn,m(cos θ)

d jn(klr)
d (klr)

sin(mϕ) d
dθ (Pn,m(cos θ))r−1 jn(klr)

cos(mϕ)
m Pn,m(cos θ)

sin θ r−1 jn(klr)

. (18)
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Using the vector harmonics M and N and the gradients of the scalar functions men-
tioned above, it is possible to decompose the fields. For the selected index m and n, the
following relations can be found:

Einc
n,m =

[
Mk0

nmo − iNk0
nme

]
, (19)

Hinc
n,m =

[
Mk0

nme + iNk0
nmo

]
, (20)

Ep
n,m =

[
BeMkt

mne + BoMkt
mno − iAeMkt

mne − iAoMkt
mno + Ce∇Φkl

mne + Co∇Φkl
mno

]
, (21)

Hp
n,m =

kt

ωµ0

[
AeMkt

nme + AoMkt
nmo + iBeNkt

nme + iBoNkt
nmo

]
, (22)

Jm,n = −T
[
iAeMkt

mne + iAoMkt
mno − iBeNkt

nme − iBoNkt
nmo

]
+ S

[
Ce∇Φkl

mne + Co∇Φkl
mno

]
, (23)

Es
n,m =

[
−βeM

h,k0
nme − βoMh,k0

nmo + iαeN
h,k0
nme + iαoNh,k0

nmo

]
, (24)

Hs
n,m = − k0

ωµ0

[
iβeM

h,k0
nme + iβoMh,k0

nmo + iαeN
h,k0
nme + iαoNh,k0

nmo

]
. (25)

Relations (19) and (20) hold for the incident plane wave, see Figure 1, and its electric
and magnetic components, respectively. The electric and magnetic fields and the induced
current density inside the particle can be determined by Equations (21)–(23). Similar to the
incident field around the particle, relations for the scattered field can be established in the
form of Equation (24) for the electric field and (25) for the magnetic field.

The individual wave numbers are marked as follows: k0 is the (vacuum) wave number
of the incident and scattered field, kt and kl are the wave numbers of the transversal
and longitudinal fields inside the nanoparticle. Parameters S and T take the follow-

ing form S = iωε0
(
εt + εeg

)
, T = iωε0

(
εt + εeg

)
− ik2

t
µω . To obtain the total fields E, H

and current density J, it is necessary to sum the components in Equations (19)–(25),
over all n and m. Before summation, one must determine ten unknown coefficients,
Ae, Ao, Be, Bo, αe, αo, βe, βo, Ce, Co by substituting the components from Equations (19)–(25)
into Equations (14)–(16). In our situation of the nonlocal case, the gradients in Equations (17)
and (18) will be applicable. Next, we can proceed with solving five boundary conditions
using the finding that the expansion coefficients Ao, Be, αo, βe, Co are, in fact, zero. That
is implied by the fact that we have only five linear equations for the ten unknowns. It
is thus possible to determine the expansion coefficients in the form shown below. Here,
it is convenient to define the following effective labelling: jkt

n = jn(kta), hk0
n = hn(k0a),

Zj,k0
n = d(k0rjn(k0r))

d(k0r) |a, djkl
n = djn(klr)

d(klr)
|a, and similarly for other indices. The expansion coeffi-

cients An
e , αn

e , Dn
e , Bn

o , βn
o , after some algebraic manipulation, take the following form:

An
e =

k0kt

(
Zh,k0

n jk0
n − Zj,k0

n hk0
n

)
k2

0

(
k2

t
k2

0
Zh,k0

n jkt
n − Zj,kt

n hk0
n + hk0

n jkl
n jkt

n
T n (n+1)

a S kl dj
kl
n

) , (26)

αn
e =

jk0
n

hk0
n
− kt jkt

n

k0hk0
n

An
e , (27)

Dn
e =

i T n(n + 1)jkt
n

kt a S kl djkl
n

An
e , (28)
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Bn
o =

Zj,k0
n hk0

n − Zh,k0
n jk0

n

Zj,kt
n hk0

n − Zh,k0
n jkt

n
, (29)

βn
o =

Zj,kt
n jk0

n − Zj,k0
n jkt

n

Zj,kt
n hk0

n − Zh,k0
n jkt

n
. (30)

In order to facilitate the reader’s possible work when deriving these expansion coeffi-
cients for the fields, we present here their explicit expressions. Now, from the knowledge
of the αn

e and βn
o coefficients, it is clearly possible to evaluate the effective cross-section of

extinction:
σext =

2π

k2
0

∑∞
n=1(2n + 1)Re(αn

e + βn
o ). (31)

The expansion coefficients An
e , αn

e , Dn
e , Bn

o , βn
o are also necessary for calculation of

induced current density in a particle, electric and magnetic fields in the surroundings and
within the volume of a particle. The coefficients have a general form for the spherical
particle, therefore parametric modifications of the HD model would change only the
formulas for the wave numbers and electron gas permittivities.

One possible modification of the HD model is the so-called general nonlocal optical
response (GNOR) theory [34,38]. This theory should unify quantum-pressure convection ef-
fects and induced charge-diffusion kinetics. GNOR also describes size-dependent damping
and corresponding frequency shifts. By considering the diffusion effect within the GNOR
model, the nonlocal constant is modified as follows: β2 → β2 + D(ω + iγ) , where D is
the diffusion constant that can be estimated using the relation D ∼= v2

F/γ. The diffusion
effect modifies the nonlocal constant which manifests as a change in the longitudinal wave
number. This effect could be easily added to our model, too. Another possible modification
concerns the correction of the damping constant value with respect to the particle size.
Experimental measurements of extinction spectra of small plasmonic particles using EELS
(electron energy loss spectroscopy) have revealed broadening and shifts of the resonance
peaks which can be explained by the size-dependent dependence of the damping constant.
Phenomenologically, as proposed by Kreibig, this phenomenon can be described by a
correction to the damping constant, where γ→ γ + AvF/r . From the theoretical expla-
nation of this phenomenon found by Landau [37], it follows that the enhanced damping
is a result of the direct excitation of electron-hole pairs in the metal within the region of
highly confined surface plasmon field. For a spherical metal particle, one can deduce [34]
an estimate A ∼ 1, this estimation was used in our model. The effect of this attenuation on
the spectral behavior of the extinction will be shown in the next section.

3. Model Implementation—Comparison of Local and Standard Nonlocal HD Model

In this section, we will briefly show the results of our implementation of the standard
nonlocal HD model, presented in the previous section, in comparison with the local method,
to demonstrate the differences and thus the correct implementation of the HDM. For such
a demonstration, we will use the quantity of the extinction cross section which allows
identifying positions of the resonance maxima and revealing the extent to which the
spherical particle interacts with incident electromagnetic radiation. Let us note that the
absorption spectra play a dominant role, especially for small particles (below 10 nm in
radius). Figures 2 and 3 display a comparison of the extinction cross section between Mie’s
and HDM results, for a spherical gold (Figure 2) and silver (Figure 3) particle in a vacuum
and water environment.
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As is seen and is well known, HD theory predicts a significant blue shift of the posi-
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for the case of a vacuum and water environment, we can follow the effect of Landau’s 
damping, incorporated into our standard HD model. Evidently, it modifies the shape of 
the extinction spectra curve, as compared to the standard HDM. Additionally, Landau’s 
damping changes the local maximum extinction values and values of the extinction for 
shorter wavelengths (both decrease) whereas for longer wavelengths, a more relaxed dec-
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Figure 2. Comparison of the extinction cross sections of a gold spherical particle with a diameter of
3 nm according to the classical Mie theory and the nonlocal HD model, (a) for a vacuum environment
and (b) for a water environment.
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Figure 3. Comparison of the extinction cross-sections of a silver spherical particle with a diameter of
3 nm according to the classical Mie theory and the nonlocal HD model, (a) for a vacuum environment
and (b) for a water environment.

As is seen and is well known, HD theory predicts a significant blue shift of the position
of extinction maxima, in comparison to the Mie theory. As one can see, these differences
are more significant in a water environment. As expected, in a water environment, both
models predict circa three times larger extinction maxima and also maximum spectral
shifts towards longer wavelengths. Concerning the nonlocality, a blue shift of the nonlocal
curve is slightly more significant in a water environment. Further, in Figure 4, again for the
case of a vacuum and water environment, we can follow the effect of Landau’s damping,
incorporated into our standard HD model. Evidently, it modifies the shape of the extinction
spectra curve, as compared to the standard HDM. Additionally, Landau’s damping changes
the local maximum extinction values and values of the extinction for shorter wavelengths
(both decrease) whereas for longer wavelengths, a more relaxed declination to zero value is
visible, in comparison with the standard HD model without Landau’s damping.



Photonics 2023, 10, 913 10 of 23Photonics 2023, 10, x FOR PEER REVIEW 10 of 22 
 

 

  
(a) (b) 

Figure 4. Comparison of the extinction cross-sections of a silver spherical particle with a diameter 
of 3 nm according to the standard HDM and the HDM–L.D. (HDM with Landau damping) model, 
(a) for a vacuum environment and (b) for a water environment. 

Finally, in Figures 5 and 6, we can see main differences in distribution of the X-com-
ponent of the electric field calculated by Mie’s theory and standard HD model, for two 
selected wavelengths (𝜆 = 527.3 nm—maximum prediction for the Mie model, and 𝜆 =486 nm for the HD model). It is apparent that, in accordance with the results of others 
[24], the HD model predicts smaller values of the electric field inside a particle (and also 
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resented with the scattered field, are positioned along the Y direction, as expected. 

  
(a) (b) 

Figure 5. The X-component of the electric field calculated for the wavelength of λ = 527.3 nm and 
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Figure 4. Comparison of the extinction cross-sections of a silver spherical particle with a diameter
of 3 nm according to the standard HDM and the HDM–L.D. (HDM with Landau damping) model,
(a) for a vacuum environment and (b) for a water environment.

Finally, in Figures 5 and 6, we can see main differences in distribution of the X-
component of the electric field calculated by Mie’s theory and standard HD model, for
two selected wavelengths (λ = 527.3 nm—maximum prediction for the Mie model, and
λ = 486 nm for the HD model). It is apparent that, in accordance with the results of
others [24], the HD model predicts smaller values of the electric field inside a particle (and
also in its vicinity). Let us also note an interesting fact, that the electric field is weaker
around the particle surface for the HD model. It should be noted, because of this HDM, in
agreement with the Mie scattering (and even quasistatic approximation) that the hot spots,
represented with the scattered field, are positioned along the Y direction, as expected.
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case of a gold spherical particle with a diameter of 3 nm in a water environment, according to (a) Mie
theory and (b) HDM.
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theory and (b) HDM.

4. Nonlocal Hydrodynamic Model with Viscosive Damping and Generalized
Drude–Lorentz Term

The standard HDM, analyzed in the previous section, is based on the perception of an
electron gas as a charged continuum which can be described, in a certain approximation
with a model, relying on the equations of motion of a fluid flow. Recently, an extension of
the HDM has been proposed that includes the diffusion of an electron gas; a phenomenon
occurring regularly in liquids and gases. Within the physics of fluids, the Stokes–Navier
equations play a crucial role, which, among other issues, establishes a close connection
between diffusion and viscosive damping. Therefore, it is natural to generalize the standard
HDM by introducing viscosive damping of the electron fluid. Starting from the derivation
of HDM in [25] and the Stokes–Navier equations for the case of convective form [50], it is
straightforward to arrive at the initial Equation (32), which can be further modified to find
the generalized variant of HDM.

ρm(−iω + v·∇)v = −eρe(E + v× B)− ρmγv− ρm

iω
β2∇∇·v + µv4 v +

1
3

µv∇∇·v. (32)

The left-hand side of Equation (32) represents the total derivative of the velocity vector v
of the electron fluid with respect to time. The first term on the right-hand side represents
the Lorentz force acting on an individual volume element of the electron fluid. The second
term is the standard damping term, the third term is the standard nonlocal expression, and
the last two terms of the equation involve viscosive damping. The individual parameters
of the model are as follows: B is the magnetic field, ρm is the mass density of the electron
fluid, e is the charge of the electron, ρe is the charge density, β is the same nonlocal constant
as in the standard HDM, and terms µv and 1

3 µv represent the relevant damping terms of
viscosive attenuation in the convective form of the Navier–Stokes equation.

To proceed further, it is first convenient to assume the behavior of the electron gas
density in the form: n(r, t) ≈ n0 + n1(r, t), where n0 is a constant equilibrium density and
n1(r, t) is a linear deviation. Subsequently, it is possible to linearize the Equation (32), which
leads to neglecting the influence of the magnetic field and introducing an approximate
expression for the current density, charge density and mass density as: J ≈ en0v, ρe ≈ en0,
and ρm ≈ men0, where me is the electron mass. If we multiply Equation (32) by the term
−e/me and perform the mentioned linearization, we obtain:

(
ω2 + iωγ

)
J = in0

ωe2

me
E− β2∇∇·J + iω

men0
µv∆J +

iω
3men0

µv∇∇·J. (33)
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If we introduce a new damping parameter, γv = µv
men0

, which is analogous to kinematic
viscosity in the classical approach, and further, according to the common definition, the

plasma frequency ωp =
√

e2n0
meε0

, then by straightforward adjustments of Equation (33), we
obtain a modified novel version of the first equation of the standard HDM as follows:(

β2 − 1
3

iωγv

)
∇(∇·J)− iωγv∆J + ω(ω + iγ)J = iωω2

pε0E. (34)

Now the question arises whether it is possible to further generalize Equation (34).
Since the HDM can be considered as a more sophisticated version of the Drude model for
the electron dispersion in a metal, it is worth considering a similar modification approach
as in the case of the actual Drude model. As it is well known, the original Drude model of
the permittivity of a metal can be modified by the additional Lorentzian terms, resulting in
the Drude–Lorentz model [51,52], to account for intraband (within the conduction band)
and interband (between bands) electron energy transitions. By a simple analysis of the
first equation of the HDM, i.e., the current Equation (34), by substituting the transverse
fields, it can be determined that precisely the term ω(ω + iγ)J is crucial for the Drude-type
response of the permittivity εeg of a free electron gas. Let us assume a generalization:
ω(ω + iγ) → ω(ω + iγ) + ξ(ω) , where ξ(ω) is an as-yet undetermined function. For
better clarity, let us denote U = ω(ω + iγ) + ξ(ω) and introduce an HDM with viscosive
damping and a generalized Drude–Lorentz term in the following form:(

β2 − i
1
3

ωγv

)
∇(∇·J)− iωγv∆J + UJ = iωω2

pε0E, (35)

∇× (∇× E)− k2
0
(
εt − εeg,v

)
E = iωµ0J. (36)

The generalized HDM defined by Equations (35) and (36) includes the three unknown
parameters γv, U, εeg,v for which it will be necessary to establish the three conditions.
The term εeg,v has a similar meaning as εeg in the case of classical HDM, representing the
permittivity of the electron gas, but it is generally different from εeg. The total permittivity εt
of the metal is the same as in the classical HDM and is determined by tabulated values [53].
All these three parameters are clearly frequency dependent, however, for the sake of clarity
in the mathematical notation, it will not be shown here.

Finding a solution for the generalized HDM is possible in a similar way to the classical
HDM. From Equation (36), it is possible to express the relationship for current density
J and substitute it into Equation (35). In this way, an equation for the total electric field
E only is obtained, which can be solved separately for its transverse and longitudinal
components. In the case of a transverse field, it is advantageous to use the relationships
between vector spherical harmonics ∇×M = ktN, ∇×N = ktM and operator identities:
∇×∇×Ψ = ∇∇·Ψ − ∆Ψ, ∇·∇×Ψ = 0, valid for any vector function Ψ. In the case of a
longitudinal field, it is beneficial to use the identities ∇∇·∇ ϕ = ∇∆ϕ and ∇×∇ϕ = 0.
Based on the mentioned procedure, the relationships for the transversal and longitudinal
wave numbers can be obtained in the following form:

k4
t −

(
iU

ωγv
+ k2

0
(
εt − εeg,v

))
k2

t −
ik2

0
ωγv

(
ω2

p −U
(
εt − εeg,v

))
= 0, (37)

k2
l,v =

1
β2 + 4

3 iωγv

(
U −

ω2
p(

εt − εeg,v
)). (38)

Equations (37) and (38) serve as a starting point for finding the additional relation-
ships for the parameters γv, U, and εeg,v. The classical HDM already includes a closely
unspecified parameter εeg. However, to ensure that the HDM solution is not too far from
the experimentally measured values, a condition kt = k0

√
εt has been introduced for the
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transverse wave number [29] which is widely utilized, and which will be also applied here.
Considering that the standard solution of Equation (37) as a quadratic equation would
provide only one condition, it seems reasonable to proceed by evaluating the brackets in
(37), which allows us to obtain a pair of additional expressions without the need for the
introduction of ad hoc parameters. One possibility is to set the second term in Equation (37)
equal to kt and the third term equal to zero. However, it can be easily verified that such a
solution implies a zero value for the longitudinal wave number and therefore the absence
of the nonlocal response. One option is to set the second term in Equation (37) equal to k2

t
and the third term equal to zero. However, such a solution implies a zero value for the
longitudinal wave number, and therefore the absence of a nonlocal response. Therefore,
as a solution, it is suggested to set the first bracket in Equation (37) to zero and assign the
value of k4

t to the last term in Equation (37). From Equation (37), we can easily obtain two
conditions in the following form:

iωγvk2
0
(
εt − εeg,v

)
−U = 0, (39)

U
(
εt − εeg,v

)
−ω2

p = iωγvk2
0ε2

t . (40)

To establish the final condition, it is possible to start from the following consideration.
Let us assume that the diffusion phenomenon is well phenomenologically described by the
GNOR modification [34] of the HDM, although the magnitude of the diffusion constant
D may still be the subject of investigation [38]. Thanks to the fact that the fourth term
in the right-hand side of Equation (32) is responsible for the diffusion according to the
classical description of fluid dynamics, this diffusion is indeed included in Equation (32).
From the comparison of the GNOR model with the classical HD, it follows that diffusion
manifests only in the change in the nonlocal parameter as: β2 → β2 + D(γ− iω) . Under
the assumption that diffusion is the main accompanying phenomenon caused by viscosive
damping, it can be presumed that such viscosive damping will manifest in a similar way,
primarily through a certain change in the nonlocal constant β. Based on the mentioned
considerations and Equation (38), the third condition can be written in the following form:

γv = −3
4

iDω−1(γ− iω). (41)

From the given conditions (39)–(41), the relationships for the parameters U and εeg,v
can be derived. Specifically, from Equations (39) and (41), it is straightforward to obtain the
following relationship for εeg,v as:

εeg,v = εt −
4
3

U
D(γ− iω)k2

0
. (42)

Subsequently, from Equations (40)–(42), the relationship for U can be derived in the
following form:

U = k0

(
3
4

D(γ− iω)
(

ω2
p + iωk2

0ε2
t

)) 1
2
. (43)

From the above Equations (41)–(43), it is finally possible to determine the longitudinal
wave number defined by (38). As mentioned before, for the transverse wave number, the
relationship kt = k0

√
εt holds. The value of the diffusion constant can be approximated

as D ∼ v2
F/γ according to [38,53] which we have also used in our calculations. It remains

to be mentioned that the expansion coefficients of the fields, including the substitution
relations denoted by S and T, given in the second section, can be still used in the same
form, but with a logical replacement of kl , εeg, and ω(ω + iγ) by kl,v, εeg,v, and U. For the
calculation of extinction, the same approach as in the case of the classical HDM, is clearly
now applicable as well. The Formulas (26) to (30), together with Equation (31), can be used,
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with the difference that the longitudinal wave number is now determined with the new
corresponding relation, i.e., according to Equation (38).

5. Results of HDM with Generalized Drude–Lorentz Term and Viscosive Damping

In this section, we turn to the results of the generalized HD model. From the outcome
of our simulations, it is possible to come up with the following findings. First, in Figure 7,
our viscosive damping generalization of the HDM model in comparison with the standard
HDM, for a gold spherical nanoparticle, provides the extinction cross-section (standard
HDM and our HDM–Vis.D. model) for a gold spherical particle (3 nm) in a vacuum
(Figure 7a) and in water (Figure 7b). Additionally, the HDM–Vis.D. model has caused
a small red correction to the blue shift of extinction local maxima (about 4 to 8 nm).
Additionally, local maxima for gold spherical particles, for the smallest particles, have
disappeared, in comparison with the results from the standard HDM.
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tra which are represented in Figure 7. This modification, the Landau damping, denotes 
additional size-dependent damping of localized plasmons on the interface of a metal 
structure. Figure 9 shows that the extinction cross-section of a gold spherical particle in a 
water environment has almost the same value at shorter wavelengths (between 350–400 

Figure 7. Comparison of the extinction cross-sections of a gold spherical particle with a diameter of
3 nm according to the HDM and the HDM–Vis.D model: (a) for a vacuum environment and (b) for a
water environment.

This is visible in Figure 7 where a blue curve, which represents the hydrodynamical
model with viscosive damping, reaches in both cases (vacuum or water) higher values.
Our model predicts a red correction to the blue shift of about 3 nm in both cases (vacuum
or water), the extinction cross-section in the main resonance peak, as predicted from our
model, has about a 5% higher value. Both HDM models also show that the resonance
maximum is larger and narrower in the case of water surroundings. It is also seen in
Figure 7 that both models converge to the same values in the case of a water environment
for shorter wavelengths (350–450 nm).

Next, Figure 8 shows a similar comparison of both models, now for a silver spherical
nanoparticle in a vacuum and a water environment. The permittivity spectral dependence
is for silver obtained by the Drude–Lorentz dispersion model. In Figure 8, we can notice
again weak differences between calculated values of the two models, as expected. Similar
to gold, our model again predicts a red correction to the blue shift, somewhat higher values
of extinction at the resonance peak (more noticeable for a vacuum) and larger half-width
values (also more obvious for a vacuum).
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water environment has almost the same value at shorter wavelengths (between 350–400 

Figure 8. Comparison of the extinction cross-sections of a silver spherical particle with a diameter of
3 nm according to the HDM and the and HDM–Vis.D. model: (a) for a vacuum environment and
(b) for a water environment.

Further, Figure 9 shows additional modification of calculations of the extinction spec-
tra which are represented in Figure 7. This modification, the Landau damping, denotes
additional size-dependent damping of localized plasmons on the interface of a metal struc-
ture. Figure 9 shows that the extinction cross-section of a gold spherical particle in a water
environment has almost the same value at shorter wavelengths (between 350–400 nm),
similar to Figure 7, whereas a particle in a vacuum exhibits little difference between the
two model predictions, at these short wavelengths.

Photonics 2023, 10, x FOR PEER REVIEW 15 of 22 
 

 

nm), similar to Figure 7, whereas a particle in a vacuum exhibits little difference between 
the two model predictions, at these short wavelengths. 

  
(a) (b) 

Figure 9. Comparison of the extinction cross-sections of a gold spherical particle with a diameter of 
3 nm according to the HDM–L.D and the HDM–Vis.D. L.D. (both HDM and HDM–Vis.D. with Lan-
dau damping): (a) for a vacuum environment and (b) for a water environment. 

The HDM model with both viscosive and Landau damping, again predicts correc-
tions to the blue shift for both cases of surrounding environment and it also shows slightly 
larger values in the resonance maxima, as compared to Figure 7. It is clearly visible that 
additional inclusion of Landau damping into the model causes a lowering of resonance 
maxima and slower convergence to zero values of the extinction cross-section for long 
wavelengths (up to 650 nm). 

As we can see in Figure 10, again our model with both viscosive and Landau damp-
ing, compared to the standard HDM, predicts corrections of blue shift and a slightly larger 
resonance maximum value. Clearly, silver particles exhibit a stronger influence of Landau 
damping, thus the resonance maxima peak is significantly larger and narrower (compared 
to Figure 7). Descent of the extinction of the resonance wavelength up to 400 nm is sur-
prisingly faster. Our model with viscosive and Landau damping predicts new, although 
very weak, resonance on shorter wavelengths. This effect may be caused by the Drude–
Lorentz model for metal permittivity data. 

  
(a) (b) 

Figure 10. Comparison of the extinction cross-sections of a silver spherical particle with a diameter 
of 3 nm according to the HDM–L.D and the HDM–Vis.D. L.D. (both HDM and HDM–Vis.D. with 
Landau damping): (a) for a vacuum environment and (b) for a water environment. 

Next, Figure 11 shows the calculated X-component of the electric field for our HDM 
with viscosive damping and classical HDM at the frequency of the resonant maximum of 
the HDM. At the first glance of the figures, a difference in the negative field values is 

Figure 9. Comparison of the extinction cross-sections of a gold spherical particle with a diameter
of 3 nm according to the HDM–L.D and the HDM–Vis.D. L.D. (both HDM and HDM–Vis.D. with
Landau damping): (a) for a vacuum environment and (b) for a water environment.

The HDM model with both viscosive and Landau damping, again predicts corrections
to the blue shift for both cases of surrounding environment and it also shows slightly larger
values in the resonance maxima, as compared to Figure 7. It is clearly visible that additional
inclusion of Landau damping into the model causes a lowering of resonance maxima and
slower convergence to zero values of the extinction cross-section for long wavelengths (up
to 650 nm).

As we can see in Figure 10, again our model with both viscosive and Landau damping,
compared to the standard HDM, predicts corrections of blue shift and a slightly larger
resonance maximum value. Clearly, silver particles exhibit a stronger influence of Landau
damping, thus the resonance maxima peak is significantly larger and narrower (compared
to Figure 7). Descent of the extinction of the resonance wavelength up to 400 nm is
surprisingly faster. Our model with viscosive and Landau damping predicts new, although
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very weak, resonance on shorter wavelengths. This effect may be caused by the Drude–
Lorentz model for metal permittivity data.
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Figure 10. Comparison of the extinction cross-sections of a silver spherical particle with a diameter
of 3 nm according to the HDM–L.D and the HDM–Vis.D. L.D. (both HDM and HDM–Vis.D. with
Landau damping): (a) for a vacuum environment and (b) for a water environment.

Next, Figure 11 shows the calculated X-component of the electric field for our HDM
with viscosive damping and classical HDM at the frequency of the resonant maximum
of the HDM. At the first glance of the figures, a difference in the negative field values is
noticeable. The calculated profile of the electric field inside a particle using HDM can help
us evoke the idea of the direction of the incident plane wave, but this deduction using
the field distribution in the particle calculated by HDM with viscosive damping is not
so apparent.
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Figure 11. The X-component of the electric field calculated for the wavelength of λ = 471 nm and
the case of a gold spherical particle with a diameter of 3 nm in a vacuum environment, according to
(a) HDM and (b) HDM–Vis.D.

Figure 12 represents the electric current distribution in the plane cut through a spheri-
cal particle in the X and Y axes. Both graphs display a symmetric distribution of the current
density in the X and Y direction. At first sight, these current profiles are very similar, but
more detailed examination reveals that our HDM with viscosive damping predicts higher
absolute values of the current density, and the area around the maxima value is situated
away from the center of the particle (in the middle of each hemisphere) while classical
HDM provides the maxima values near the center of the particle. It can be also mentioned,
that classical HDM predicts a slower descent to zero values of the current density near the
boundary of a particle.
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Figure 12. The radial component of the current density calculated for the wavelength of λ = 471 nm
and the case of a gold spherical particle with a diameter of 3 nm in a vacuum environment, according
to (a) HDM and (b) HDM–Vis.D.

In Figure 13, when comparing the X-component electric fields calculated by the HDM
and our HDM with viscosive damping, we can notice three major differences. The first
distinction is that our model predicts only a twice as strong positive maximum value than
the maximum negative value, whereas the classical HDM predicts this ratio to be about
three. Next, the majority of the area inside a particle exhibits an inverse value of the field,
i.e., where the HDM calculations display negative values, our model shows positive values
and the converse. The last difference is related to the close vicinity of a particle, in the case
of the classical HDM, the particle is surrounded by a region with maximum positive values
of the field, whereas positive values of the field obtained by our model are located mainly
in the direction of the Y axes.
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Figure 13. The X-component of the electric field calculated for the wavelength of λ = 487 nm and
the case of a gold spherical particle with a diameter of 3 nm in a water environment, according to
(a) HDM and (b) HDM–Vis.D.

Figure 14 shows the density of the energy displayed in a plane cut that is defined
by the X and Y axes. Now the reader can see, that the classical HDM predicts a larger
range of the energy density values than the previous case with a vacuum environment.
If we compare maximum and minimum values of the energy density within a particle,
we find that the classical HDM predicts an unusually large difference in these values,
moreover, there are visible areas inside the particle of a near zero density. Our model,
however, predicts a different shape of distribution density of energy inside a particle and a
significantly larger minimal value.
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Figure 14. The density of electromagnetic field energy calculated for the wavelength of λ = 487 nm
and the case of a gold spherical particle with a diameter of 3 nm in a water environment, according to
(a) HDM and (b) HDM–Vis.D.

Additionally, Figure 15 shows a very similar situation to Figure 13, however our model
predicts larger attenuation (positive maxima values) in comparison with the classical HDM.
Figure 15b, corresponding to the HDM with viscosive dumping, shows that the lowest
values of the X component of the electric field are located outside the particle, whereas the
HDM predicts that these values are located inside the particle and their absolute values are
larger as compared to the HDM with viscosive dumping.
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metric to the Y axis. A further finding from these calculations is that our model shows a 
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the area with the largest current density calculated by HDM is located near the center of 
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there is a large area where the current density is nearly zero. 

Figure 15. The X-component of the electric field calculated for the wavelength of λ = 338 nm and the
case of a silver spherical particle with a diameter of 3 nm in a vacuum environment, according to
(a) HDM and (b) HDM–Vis.D.

Next, Figure 16 shows us the distribution of the energy density in the plane cut defined
by the X and Y axes. Differences between the HDM and our model are clearly visible. HDM
predicts that the areas with maximal energy density are located mainly inside a particle and
its vicinity. It can be further read from the figures that our model predicts higher values of
the lowest energy density. The lowest energy is in both cases of HD models, located inside
the particle, but the area of the highest energy density calculated by our model is oriented
diagonally and mainly outside of the particle.
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Figure 16. The density of electromagnetic field energy calculated for the wavelength of λ = 338 nm
and the case of a silver spherical particle with a diameter of 3 nm in a vacuum environment, according
to (a) HDM and (b) HDM–Vis.D.

As the reader can see from Figure 17, both models predict different distributions of the
current density, but every calculated pattern is symmetric to the X axis and antisymmetric
to the Y axis. A further finding from these calculations is that our model shows a two times
larger current density, which is situated near the edge of the particle, whereas the area with
the largest current density calculated by HDM is located near the center of the particle.
Another interesting point is that our model also shows that inside a particle there is a large
area where the current density is nearly zero.
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Figure 17. The radial component of the current density calculated for the wavelength of λ = 338 nm
and the case of a silver spherical particle with a diameter of 3 nm in a vacuum environment, according
to (a) HDM and (b) HDM–Vis.D.

Additionally, Figure 18 displays, similarly, to Figure 16, the X-component of the electric
field but for a water environment and at a different wavelength. Although these two cases
are not directly comparable, we can see that the shape of the field distribution of the electric
field is similar to that predicted with the HDM. In contrast to the HDM calculation, however,
of our model shows the opposite distribution of positive and negative values of the electric
field in a particle. Very apparent, is also a different distribution of the electric field outside
of a particle, as it is determined by our model in comparison with the HDM. Again, our
model predicts significantly smaller negative and positive values of the electric field.
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Figure 18. The X-component of the electric field calculated for the wavelength of λ = 360 nm and
the case of a silver spherical particle with a diameter of 3 nm in a water environment, according to
(a) HDM and (b) HDM–Vis.D.

Finally, Figure 19 shows quite important data, demonstrating another disadvantage of
the classic HDM. It should be noted that the same formula was used for these calculations
of energy density as for the calculations shown in Figure 16. A quite strange finding is that
standard HDM shows negative values of energy density in some places inside a particle
volume; these non-physical values are not found when applying the same calculations to a
gold particle. The standard HDM, unlike our model, displays large energy densities on the
edge of a particle which are about three times larger than the maximum density calculated
by our model. With these presented results we clearly demonstrated the applicability of
our HD model with viscosive damping and generalized Drude–Lorentz term.
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Figure 19. The density of electromagnetic field energy calculated for the wavelength of λ = 360 nm in
the case of a silver spherical particle with a diameter of 3 nm in a water environment, according to
(a) HDM and (b) HDM–Vis.D.

6. Conclusions

In this article, we have studied theoretically and numerically the linearized nonlocal
plasmonic interaction of light with a simple spherical metallic nanoparticle. We have
concentrated on understanding the interaction and developing a simple model capable
of predicting the longitudinal nonlocal response based on the linearized hydrodynamic
model, generalizing the standard nonlocal HD model. Using this model, we have studied
the electric field interaction with a nanoparticle immersed in a dielectric surrounding media
(such as air or water). Our generalization conveys the inclusion of the generalized Drude–
Lorentz term and viscosive current damping in connection to Landau damping. We have
demonstrated the applicability of our extended model by comparing the extinction cross-
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section predictions of both gold and silver spherical nanoparticles. The results confirm the
generally assumed conclusion, that metallic particles with a diameter of a few nanometers
possess a blue resonance shift. It was also found that the HD model predicts a lower
electric field intensity inside and around the particle. The modification in the form of
Landau’s attenuation, corrects the blue shift and affects the shape of the spectral course of
the extinction.
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