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Abstract: A new cavity scheme for a self-sweeping fiber laser with separated gain and absorption
dynamics gratings is presented. The scheme is experimentally realized in an Er-doped ring fiber laser
generating in the continuous-wave (CW) regime near the wavelength of 1604 nm. Switching between
single longitudinal mode stabilization and wavelength self-sweeping regimes is demonstrated by
controlling the intracavity losses in the laser. The pump power and optimization of the intracavity
losses made it possible to demonstrate record sweeping range of 2.6 nm in a single-frequency self-
sweeping regime in the telecommunication L-band.

Keywords: self-sweeping; fiber lasers; single-frequency radiation; spatial hole burning; ring cavity;
dynamics gratings; rare earth; erbium

1. Introduction

Fiber lasers, due to their compactness, high power, high quality of output radiation
and a variety of generation regimes, compete with other types of lasers and have a high
practical potential for application in various areas of human life. For example, fiber lasers
are used in telecommunication [1], material processing [2] and sensing [3–5]. A special
place among fiber lasers belongs to lasers with tunable wavelength generation (the so-
called tunable lasers). As a rule, various controllable spectral selectors, such as fiber Bragg
gratings [6], diffraction gratings [7] or interference filters [8], are used to achieve this option.
Recently, however, interest has arisen in lasers with passive tuning (which will be referred
to henceforth as self-sweeping) of the optical frequency/wavelength, which results from
the influence of dynamic population gratings created directly in the laser active medium [9].
Over the past 12 years, the effect of wavelength self-sweeping has been demonstrated in
lasers based on most of the known active fiber dopants: ytterbium, thulium, neodymium,
bismuth, holmium, and erbium (see review [9] and references therein). Wavelength tuning
in the self-sweeping lasers occurs without any external control and results from internal
processes of longitudinal modes competition assisted by periodic inhomogeneity of the
gain. This periodic inhomogeneity results from periodic saturation of the gain medium
originating from intensity pattern in standing wave cavities and is known as spatial hole
burning [10] or dynamic gain grating (DGG) [9] in the laser active medium. The wavelength
self-sweeping process can be described as follows. The lasing longitudinal mode forms a
DGG in the active medium of a self-sweeping laser. The DGG itself, in turn, changes the
competition conditions and leads to the generation of another longitudinal mode. Then,
the new mode forms another DGG, and the process of the generated mode changing
repeats again and again. Such a periodic change in modes/generation wavelengths/optical
frequencies repeated multiple times in the same frequency direction is known as the
wavelength self-sweeping effect (WSSE).

The formation of standing waves is possible in lasers with either linear Fabry–Perot
or bidirectional ring cavities (see Figure 1a,b, respectively). It can be expected that the
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insertion of an additional optical isolator into the ring scheme will have a negative effect
on the formation of the DGG and, as a result, will lead to the disappearance of the WSSE.
However, it has been found in [11] that if there are no output optical isolators (shown
at the output of the ring laser in Figure 1b), then the presence of even a weak Fresnel
reflection from the output fiber connector located at the output of a unidirectional ring fiber
laser can result in the WSSE. An intracavity optical isolator does not result in wavelength
stabilization if the reflected radiation interacts with the laser active medium before it is
blocked by the optical isolator. Suppression of the Fresnel reflection (with either an optical
isolator or an angled fiber connector) stops the WSSE.
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The WSSE in the schemes presented in Figure 1 is accompanied, as a rule, by the
generation of microsecond pulses, with the optical frequency changing sequentially from
pulse to pulse by multiples of the laser cavity’s free spectral range (FSR). It should be
noted that self-sweeping lasers generating single longitudinal mode radiation at each
of the microsecond pulses are more attractive for practical applications. The lengths
and the relative arrangement of passive and active fibers in the laser cavity should
be selected properly to obtain single-frequency self-sweeping operation [12]. Such
lasers generate long sequences of pulses (up to ~1 million). Each of the pulses are
equidistant in the optical frequency domain, and the sequential generation leads to
the laser frequency tuning in a large range of up to 6.5 THz (which corresponds to a
~25 nm wavelength tuning in a self-sweeping ytterbium-doped fiber laser generating at
a ~1070 nm wavelength) [9].

It was established in the first works that the WSSE is usually accompanied by the
intensity relaxation oscillations [9]. Relatively recently, it was shown in [13] that the
generation time of a single longitudinal mode can considerably exceed the relaxation
oscillation period in a self-sweeping laser based on usual Fabry–Perot cavity scheme
(Figure 1a). The intensity dynamics become closer to continuous ones in such a self-
sweeping Er-doped fiber laser. The continuous wave (CW) generation time for each
individual mode becomes longer than the repetition period of the generation of new modes,
and the time gap between the generation of individual modes disappears. This is the key
difference between self-sweeping lasers with CW intensity dynamics and the pulsed ones
investigated earlier. The authors of [13] connected the appearance of the CW generation
regime to the fact that very long Er-doped active fibers are used and the pump radiation
was fully depleted in a shorter segment of the fiber. In this case, a dynamic absorption
grating (DAG) is formed in the active fiber in addition to the DGG. Unpumped active fibers
act as an absorber for the generated laser radiation. It is known (see, for example, [9] and
references therein) that the DAGs contribute to the stabilization of the laser frequency (as
opposite to the DGGs). Thus, competition between the opposite effects (self-sweeping
and stabilization) leads to pulse lengthening from microseconds to several milliseconds
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and to an overlapping of the generated pulses in time, which is observed in self-sweeping
Er-doped fiber lasers [13] as CW intensity dynamics.

A little later [14], the WSSE with CW intensity dynamics was also demonstrated
in laser cavity schemes with fiber-saturable absorbers (Figure 2) traditionally used to
stabilize single-frequency radiation [9]. In these schemes, the DAG formed by a standing
wave in the absorbing fiber placed in the linear part of the cavity plays a key role. The
standing wave selectively saturates the absorption in its anti-nodes for the generated
longitudinal mode by recording a DAG. The DAG prevents a change in the generated
mode due to an increase in losses for modes having different positions of anti-nodes.
Moreover, a circulator (Figure 2a) or an optical isolator (Figure 2b) is usually used to
arrange unidirectional wave propagation in the amplifying part of the laser in order to
avoid a DGG formation. The possibility of stabilizing the single-frequency generation in
such schemes was shown relatively long ago [15], but only recently was the WSSE also
demonstrated in them (see [14,16] concerning Yb- and Er-doped lasers, respectively).
The transition from single-longitudinal mode stabilization to wavelength self-sweeping
with an increase in the pump power at relatively large absorbing fiber lengths was
experimentally demonstrated in an Er-doped fiber laser [16] operating in the ring cavity
configuration (Figure 2a). The self-sweeping lasers with cavity schemes shown in
Figure 2 have CW intensity dynamics with long (up to several milliseconds) overlapping
single-frequency pulses. Note that in a single-frequency CW self-sweeping Er-doped
fiber laser [16], the spectral tuning range was limited to only a few tens of picometers.
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The fact that under certain conditions, the DAG can lead to wavelength self-sweeping
instead of optical frequency stabilization, thereby replacing the DGG function of mode
competition, has already been discussed in [9]. However, it was noted in [16] that a weak
DGG could also be formed in the laser cavity (Figure 2a) due to the limited isolation level of
the used circulator because the laser switched to the stabilization mode when an additional
isolator was inserted into the ring part of the cavity. So, weak DGGs can be formed even in
the cavity schemes presented in Figure 2 and cause a WSSE.

Thus, the analysis of the publications shows that the results on the WSSE in most cases
are based on formation of either the DAG or DGG in active fibers. So, in the self-sweeping
lasers presented up to now, the WSSE occurs predominantly because of either DAG or DGG.
This, in turn, directly affects the intensity dynamics in such lasers (pulsed or continuous
wave, respectively).

Here, we present an alternative scheme of a self-sweeping laser, in which both DGG
and DAG can be formed explicitly (i.e., not due to parasitic reflection) in different parts
of the cavity. In this case, it becomes possible to control the laser generation regime
independently influencing the DGG and DAG. As an example, we demonstrate here
the possibility of changing the generation regimes between single-frequency stabiliza-
tion (predominant influence of the DAG) and single-frequency self-sweeping with CW
intensity dynamics (simultaneous operation of the DGG and DAG) by introducing con-
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trolled losses in the ring part of the laser cavity. Using this approach, we demonstrate
here an Er-doped fiber laser operating in single-frequency generation regime in a wide
self-sweeping range of 2.6 nm near the wavelength of 1.6 µm, which is important for
practical applications.

2. Experimental Setup

The scheme of a ring Er-doped fiber self-sweeping laser based on polarization-maintaining
(PM) components is shown in Figure 3. The laser consists of a ring and linear parts. A
9.6 m long Er-doped fiber, EDF#1 (IXF-EDF-HD-PM, iXblue Photonics), with an absorption
≈ 83 dB/m at 1530 nm is used as an amplifying medium. To obtain generation in the
L-band, a relatively large length of a highly Er-doped active fiber is required. The EDF#1 is
pumped with a laser diode at wavelength of 1548 nm. The pump power can be increased
up to 1 W in an additional Er-doped fiber amplifier. The pump radiation enters the fiber
EDF#1 through a reflective port of a wavelength-division multiplexor (WDM) 1540/1610.
A 0.8 m long polarizing fiber, PZF, (HB1550Z, Fibercore) is inserted into the ring part of the
laser cavity to select the generating polarization state and improve the contrast of DGG and
DAG. The radiation transmitted through the PZF enters a 30/70 fiber coupler located in the
central part of the cavity. The coupler will be henceforth referred to as the central coupler.
A total of 30% of the radiation transmitted through the coupler radiation is out-coupled
from the laser cavity, and the remaining 70% of the radiation is directed into the linear part.
The linear part of the cavity consists of another 1.8 m long Er-doped active fiber, EDF#2,
(Coractive ER35-7-PM), with an absorption ≈ 24 dB/m at a 1530 nm wavelength and a fiber
loop mirror (FLM) with a reflectance of ~80%. An optical isolator is installed at the laser
output to eliminate the influence of unwanted reflections from measuring instruments on
the laser generation dynamics. One standing wave is formed in the linear part of the cavity
due to reflection from the FLM and records DAG in the absorbing fiber EDF#2. Another
standing wave is formed in the ring part of the cavity because the radiation coming from
the linear part is divided by the central coupler into two counter propagating waves. The
ratio of the waves’ powers can be controlled by changing the coupling ratio of the central
fiber coupler, as well as by introducing additional optical losses in the ring part of the laser
scheme. Thus, standing waves in this laser are formed not only in the absorbing fiber but
also in the amplifying fiber (EDF#2 and EDF#1, respectively).
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Figure 3. The scheme of a ring Er-doped fiber self-sweeping laser using DGG and DAG.

Controlling the above-mentioned additional losses, we can change the relative
influence of the DGG and DAG on the laser operation. The losses were changed by
bending a relatively short (~8 cm long only) section of PZF. It should be noted here that
manufacturers of such fibers (for example, Fibercore and IXblue) indicate the presence
of sharp transmission spectral dependence. These dependencies have the same spectral
shape for both orthogonal polarization states, but they are shifted from each other by
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~100 nm. This sharp spectral shape and large spectral shift are used for polarization
selection. More details on the operation principles of such optical fibers can be found
in chapter 8 of the Optical Fibers Handbook [17]. Spectral position of the sharp growth of
the transmission losses depends on bending diameter. The manufacturers recommend
winding a 5 m long PZF on a spool with a 90 mm diameter to obtain >30 dB discrim-
ination between two polarizations and have relatively low transmission losses <3 dB
for the selected polarization. For example, the HB1550Z (11/125) (Fibercore) PZF can
be used in telecom wavelengths ranging from 1500 to 1600 nm [18]. Decreasing the
winding diameter shifts the PZF operating range to the shorter wavelengths and makes
it narrower. We use a much shorter PZF length (0.8 m) because we do not need to obtain
high polarization discrimination to generate a single polarization state in our laser. We
experimentally verified that the short PZF does not introduce significant losses for the
generated polarization at large bending diameters >130 mm. However, reduction in the
bending diameter down to 40 or 60 mm, even if applied to a relatively short (~8 cm)
segment of the PZF, allowed us to noticeably increase bending losses and influence the
laser power and even the laser generation regime.

Short- and long-term spectral dynamics were analyzed using a wavelength meter
(WS6-200, Angstrom/HighFinesse), allowing us to make about 1000 measurements
per second. The intensity dynamics of generated radiation were analyzed using a
fast photodetector and a digital oscilloscope (Rigol, DS6104) with 1 GHz bandwidth.
During the experiments, we investigated the influence of the pump power and ad-
ditional bending losses on the laser generation. Particular attention was focused on
achieving a single-frequency self-sweeping operation with the generation of long pulses,
described in [16].

3. Results
3.1. Laser Operation without Additional Losses

Let us first consider the laser generation regime without introducing additional
bending losses (at large bending diameters of the PZF). The dependence of the output
power on the pump power is shown in Figure 4a. The hysteresis is present near the
generation threshold. One should note that the presence of hysteresis in another self-
sweeping Er-doped fiber ring laser was also reported in [16]. As the pump power
increases (red points), laser generation starts at an upper pump power threshold of
~710 mW (switch-on threshold). Here, the output power increases in a stepwise manner
up to 2.8 mW. As the pump power increases further up to 910 mW, the output power
increases linearly up to ∼5.9 mW. The output power decreases also linearly down to
~1 mW as the pump power decreases (blue points). The switch-off (or lower) threshold
is ~600 mW. The output power slope efficiency is about ~1.5%. Near the lower threshold,
generation becomes unstable and may stop suddenly.
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(b) at the maximum bending of the PZF.

The laser generates near the wavelength of 1604 nm in the telecom L-band, which is
typical for Er-doped lasers with long active fibers. The laser generation regime changes with
pump power. The laser operates in a single longitudinal mode stabilization regime at low
pump powers (from 600 to 780 mW). The characteristic result of long-term (over a 10- min
interval) wavelength stability measurements at a pump power of 780 mW is presented in
Figure 5b. Figure 5b demonstrates that the wavelength fluctuations lie within a ~0.6 pm (or
~70 MHz in the frequency domain) interval. The generation regime becomes less stable
with further power increases. The durations of single longitudinal mode generation periods
become shorter, and short intervals with wavelength self-sweeping begin to appear. The
repetition rate of the self-sweeping intervals increases with power. One should note that
similar wavelength temporal dependencies have also been reported in [16]. Further pump
power increases do not result in the stabilization of the self-sweeping operation. The self-
sweeping intervals become less regular and accompanied by the simultaneous generation
of several longitudinal cavity modes. Thus, we failed to obtain the single-frequency self-
sweeping regime without time intervals of frequency stabilization in the laser configuration
without introducing additional bending losses. Further research was aimed at optimizing
the bending losses and the pump power to obtain a stable single-frequency self-sweeping
generation regime.
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3.2. Laser Operation with Additional Losses

It was found during further experiments that the introduction of additional bending
losses into the ring part of the laser cavity leads not only to a decrease in the output
power, but also to a change in the laser generation regime. The influence of the bending
losses on temporal wavelength dynamics is demonstrated in Figure 5. The pump power
was fixed at a level of 780 mW, and the bending radius of the polarizing fiber was
smoothly changed from 6.5 to ~2 cm, leading to a corresponding output power reduction
from 3.7 to 1.4 mW. The power reduction is shown with black rhombuses in Figure 5a,
where generation regimes are marked with “Stabilized”, “Mixed regime”, and “Self-
sweeping” labels. Temporal wavelength dependencies corresponding to these labels are
shown in Figure 5b–d, respectively. Let us describe this dependence in more detail. First,
the regime of single longitudinal mode stabilization is preserved at large bending radii
(the three upper rhombuses in Figure 5a). Then, in addition to the stabilization regime
shown in Figure 5b, short intervals of self-sweeping begin to appear. An example of the
temporal wavelength dependence in the so-called transient “mixed regime” is shown in
Figure 5c. The inset to Figure 5c plotted for a shorter time interval demonstrates that
the stabilization can, at some point in time, switch to self-sweeping and back. The self-
sweeping intervals are rather short. For example, the inset shows that the wavelength
begins to decrease continuously by ~6.3 pm (~730 MHz) over a 0.2 s interval. The
stabilization periods and the laser output power decrease with the further reduction
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in the PZF bending radius. The stabilization periods disappear completely, when the
output power decreases down to 1.4 mW (see Figure 5d). The laser operates in the
self-sweeping regime with the decrease in wavelength. One should note that the self-
sweeping wavelength range is relatively narrow (less than 0.3 nm) in this case. The
optical spectrum measured with the Optical Spectrum Analyzer (Yokogawa AQ6370)
demonstrates that the OSNR is over 40 dB for all lasing regimes.

Furthermore, the bending losses were fixed at a level corresponding to self-sweeping
operation (Figure 5d) and the dependence of the output lasing power on the pump was
measured again. The measured dependence (shown in Figure 4b) still exhibits hysteresis
with increased values of the both threshold powers. As the pump power increases (red
squares), laser generation begins at the turn-on threshold of 830 mW, where the output
power increases abruptly up to 1.8 mW. Furthermore, the output power increases linearly
with the pump at a slope efficiency of ~0.8% and reaches ~2.5 mW at a pump power
of 910 mW. It should be noted that the slope efficiency is reduced by a factor of two
compared to the case when we do not apply additional bending losses using PZF. As
the pump power decreases down to 710 mW (blue circles), the output lasing power also
decreases down to 1 mW. Furthermore, the generation becomes unstable, and the lasing
power abruptly drops to zero.

Let us turn to the description of the generation regime near the lower generation
threshold. A single longitudinal mode stabilization with rare mode hops is observed at
low pump powers (~710 mW). At pump powers ranging from 710 to 730 mW, the laser
generates in the mixed regime described above (Figure 5c). The single longitudinal mode
stabilization intervals become shorter with the increase in pump power and completely
disappear at the pump power of 730 mW. A similar transition from single longitudinal
mode stabilization to self-sweeping with the increase in pump power was also reported
in [16]. The self-sweeping regime is observed at the pump powers ranging from 730 to
810 mW. The sweeping range does not remain constant. As the power increases from 730
to 810 mW, the sweeping range decreases from 2.6 to 0.2 nm, respectively. In addition,
positions of the self-sweeping borders become less stable at higher powers. An example of
the generation wavelength’s temporal dependence at a pump power of 740 mW is shown
in Figure 6, where the maximum sweeping range is about 2.6 nm. It should be noted that
the generation power changes considerably during the wavelength self-sweeping. The
output power has a minimum value of 0.67 mW at a starting wavelength of 1605.25 nm and
increases up to 1.3 mW at the end of the sweeping (wavelength of 1602.75 nm). The self-
sweeping range as well as the output power fluctuations decrease when the pump power
increases. Furthermore, we present the laser intensity dynamics measured at maximum
sweeping range only.

Typical intensity dynamics measured at a pump power of 740 mW are presented in
Figure 7a. Figure 7a shows that intervals of small intensity fluctuations are periodically
altered by intervals of large intensity fluctuations (by so-called bursts [16]). Figure 7b
shows that the large intensity fluctuations have a harmonic character, corresponding to the
generation of two longitudinal modes separated by 28.1 MHz. The Fourier transform (radio-
frequency) spectrum (Figure 7d) calculated within the burst region, which is highlighted
by the blue rectangle in Figure 7a, confirms the presence of the only high-intensity peak,
confirming a double-frequency generation regime in this interval.
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detailed view of the area highlighted by the red rectangle; (c) Fourier spectrogram of the entire time
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the blue rectangle.

The measured time dependence of the signal intensity (Figure 7a) was also analyzed
using a windowed Fourier transform (Figure 7c). The window width was chosen to be 4.1 µs.
The result of the windowed Fourier transform is a spectrogram (radio frequency spectrum
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temporal dependence) demonstrating temporal variations in the mode’s composition. A
comparison of the original intensity dynamics (Figure 7a) and its spectrogram (Figure 7c)
shows that intermode beatings are present only during the burst intervals, confirming that
single-frequency radiation is generated between the bursts. The generated modes change
in the burst regions, and the intensity beatings appear in the spectrogram at the intermode
beating frequency of 28.1 MHz corresponding to the triple free spectral range (FSR) of the
laser cavity. It can also be found in Figure 7c that less intense intermode beating peaks are
also seen in the first half of the burst at a frequency corresponding to six FSRs (see also a
small peak at 56.8 MHz frequency in Figure 7d). Note that the appearance of additional
peaks at multiple intermode beating frequencies during the transition process of changing
the generated mode was also observed in [19].

The average duration of single-frequency generation is about 1 ms, and the mode-
to-mode transition time (duration of the bursts generation) does not exceed 2 ms. As
the power increases, the single-frequency generation becomes shorter, and the double-
frequency bursts begin to occur more frequently. Nevertheless, the mode-to-mode transition
time reduces with increase in power, and neighboring regions of the two-frequency bursts’
generation begin to overlap at pump powers above 815 mW. The laser starts to operate in
a dual-longitudinal-mode self-sweeping regime with the appearance of triple-frequency
bursts. The dual-longitudinal-mode self-sweeping regime was observed earlier in an
Er-doped fiber laser with a linear cavity [13].

4. Discussion

An opportunity to control the operating parameters in a laser can have high practical
importance in applications requiring certain generation regimes. Examples of the most
interesting regimes are stable single-frequency generation, single-frequency self-sweeping,
and self-sweeping with the largest tuning range. It should be noted that control of the
self-sweeping laser characteristics has already been demonstrated in a number of works.
For example, the possibility of switching from the self-sweeping to the wavelength stopping
regime was demonstrated in Tm-doped self-sweeping fiber lasers with a certain change in
the pump wavelength and/or pump power (see review [9] and references therein). The
authors of these papers associated this behavior with a change in the pump absorption
inhomogeneity along the active fiber. Arguing in terms of dynamic gratings, we can say
that the switching the wavelength dynamics was associated with the variation in the DGG’s
and DAG’s relative influence. It was shown later in [16] that it is also possible to switch
between the stabilization and the wavelength self-sweeping regime by increasing the pump
power and/or lengthening the absorbing fiber responsible for the DAG in the linear part of
a ring cavity. It should be noted that changing the pump laser wavelength or length of a
fiber in a laser cavity is not always convenient for prompt control of the laser generation
regime. One of the options for controlling the laser parameters while maintaining the cavity
scheme is to introduce additional controlled losses. For example, in [20,21], it was shown
that by changing the intracavity losses it is possible to control the tuning range of a self-
sweeping laser. However, in these works, no transitions to stabilization or single-frequency
self-sweeping regimes were reported.

The experimental results of our work demonstrate that by changing the optical losses
in the cavity and the pump power, it is possible to control the lasing regime of a self-
sweeping laser. Moreover, it is possible to achieve the single-frequency self-sweeping
regime at certain power and loss adjustments. This possibility primarily results from used
laser configuration, in which the processes of the DAG and DGG formation are separated
in space in the linear and ring parts of the cavity, respectively. The DAG and DGG
are responsible for operating the optical frequency stabilization and for laser frequency
dynamics, respectively. It is also known that efficiency of the dynamic gratings’ recording
depends on the relative intensities of two counterpropagating waves. The maximum
efficiency is achieved if the input intensities of both waves are equal. The input intensities
become different when the generating radiation passes from the linear to the ring part
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of the cavity due to the 30/70 coupling ratio of the used coupler. Without introducing
additional losses, the influence of the DGG on the wavelength dynamics turns out to be
weak. In this case, the DAG has a larger influence on the laser optical frequency, and a
single longitudinal mode stabilization is observed. We can equalize the amplitudes of the
counterpropagating waves at both ends of the amplifying fiber by introducing additional
losses at the output of the 70% port of the coupler and thus increase the efficiency of the
DGG formation. In this way, we increase the influence of the DGG, which results in the
WSSE. At intermediate losses, we observe an intermediate result of these two gratings’
competing influences.

It should be noted that the DGG amplitude can be controlled in our cavity configu-
ration, for example, by varying the coupling ratio of the central coupler, which usually
requires either replacing the coupler itself or using an expensive adjustable coupler. The
use of the PZF in our scheme gives us the following possibilities: (1) polarization selection
of generated radiation and (2) a relatively simple adjustment of the intracavity losses by
bending a short section of the PZF. The losses introduced near the gain fiber allow for
varying relative amplitudes of counter propagating waves inside the active fiber and corre-
sponding DGG recording efficiency. Here, we show that both of these two possibilities can
be achieved with a short piece (80 cm long) of the PZF. Controlling the bending of a short
section of the PZF appears to be a simpler procedure than winding the fiber onto a spool
with larger diameter. It should be noted that replacing the PZF with a conventional fiber
attenuator will require an additional polarizing element in the cavity (for example, either
adding a polarization beam splitter or using polarizing couplers in the laser cavity instead
of fused ones).

The advantages of the proposed scheme also Ide the absence of optical isolators (as
well as circulators) inside the cavity. An optical isolator used at the output of the laser is
a necessary element to eliminate the influence of possible reflections from the measuring
equipment on the laser generation regime. As a rule, such optical isolators are used in all
laser schemes, regardless of their cavity design.

The single-frequency self-sweeping regime has previously been demonstrated in
other schemes: in a linear scheme with pulsed generation [9] (Figure 1a) and in a ring
unidirectional scheme with CW generation [16] (Figure 2a). Table 1 compares some
characteristics (self-sweeping range, self-sweeping rate, pulse duration and peak output
power) which have already been demonstrated in previous works on single-frequency
self-sweeping fiber lasers [12,14,16,22–24]. It should be noted that for an Er-doped fiber
laser with a single-frequency self-sweeping regime, the wavelength tuning range did
not previously exceed 40 pm [16]. In our new configuration, a self-sweeping range of
2.6 nm is achieved, which is a record to date. Such radiation sources are important
for practical applications. In particular, they can improve the spatial resolution of an
optical frequency domain reflectometer based on a self-sweeping laser by two orders
of magnitude [25]. It should be noted that the lasers operating in a pulsed regime have
higher peak powers (reaching the watt level) compared to the CW ones (a few milliwatts).
The generated power reported in this work is an order of magnitude lower as compared
with previously demonstrated self-sweeping Er-doped laser [16]. A smaller output
power can be connected with a smaller emission cross-section at 1604 nm in comparison
to 1560 nm. Further research to increase the output power can be directed to optimizing
the output coupling ratio. However, it should be noted that in several tasks, such as
remote sensing, the energy of a single pulse is more important instead of the peak power.
The pulse energies generated at a fixed optical frequency for the most single-frequency
self-sweeping lasers do not differ significantly (~1–3 µJ).
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Table 1. Characteristics comparison for demonstrated single-frequency self-sweeping fiber lasers.

Wavelength,
nm

Sweeping
Range, nm

Sweeping
Rate, nm/s

Pulse
Duration, µs

Peak Output
Power, mW

Pulse
Energy, µJ Regime Reference

Er 1604 2.6 0.08 2500 1.1 2.75 CW This work
Er 1560 0.02 0.04 3000 22 66 CW [16]
Yb 1068 4.8 0.24 400 4 1.6 CW [14]
Yb 1070 20 4 2 1500 3 pulse [12]
Nd 1064 1.8 9 1 1900 1.9 pulse [22]
Bi 1460 10 0.75 5 200 1 pulse [23]

Tm 1920 26 10 2 1300 2.6 pulse [24]

5. Conclusions

In conclusion, the presented new cavity scheme for self-sweeping fiber lasers allows
one to control amplitudes of standing waves in ring and linear parts of the laser cavity.
Experimental implementation of the cavity scheme in an Er-doped fiber laser allowed us to
demonstrate the switching between single longitudinal mode stabilization and wavelength
self-sweeping regimes by controlling intracavity losses in the ring part of the cavity. More-
over, the proposed scheme does not require the presence of special isolating elements inside
the laser cavity, which also makes it less expensive and more robust. The optimization
of the pump power and intracavity bending losses in the described cavity configuration
allowed us to demonstrate a record sweeping range of 2.6 nm at a standard telecommunica-
tion wavelength of 1604 nm in a single-frequency self-sweeping regime with CW intensity
dynamics. It is expected that the developed single-frequency self-sweeping fiber source
can increase the spatial resolution of optical frequency domain reflectometry by two orders
of magnitude [25].
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