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Abstract: Underwater wireless optical communication (UWOC) has recently gained great research
interest due to its capability of transmitting data underwater with high data rate and low latency.
However, oceanic turbulence seriously degrades the optical signal quality and hence the performance
of practical UWOC systems. Establishing more accurate and efficient phase screen models is in de-
mand for studying the oceanic turbulence effect. In this paper, techniques for generating underwater
random phase screens are studied and supplemented. A promising hybrid method combining sparse
spectrum and Zernike polynomials methods is proposed and investigated, which generates phase
screens with improved accuracy and efficiency.

Keywords: underwater wireless optical communication; oceanic turbulence; the random phase
screens model; hybrid phase screen

1. Introduction

In recent years, with growing human activities in the ocean, underwater wireless com-
munication (UWC) technology enabling wireless data transmission between underwater
vehicles, devices and sensor nodes has attracted worldwide attention [1–4]. UWC tech-
nologies have great potential in ocean exploration and marine environmental monitoring,
including monitoring of the Earth’s environment in order to tackle the Earth’s degradation
and environmental destruction [2], as well as the exploration of oil and gas resources
and extraction of natural resources [3]. Currently, UWC mainly uses acoustic waves as a
physical carrier and has the advantage of long transmission distance [1]. However, under-
water acoustic communication has a very narrow bandwidth [4–6]. In contrast, underwater
wireless optical communication (UWOC) technology offers high-speed data transmission
within short ranges [1]. It also presents great advantages of small size, low latency and
high security performance [7,8]. Since Duntley et al. [9] found that relatively low atten-
uation makes blue–green light suitable as the information carrier for underwater optical
communication, UWOC technology has been widely studied and demonstrated [10–14].

However, the performance of practical UWOC systems can be seriously impacted by
oceanic turbulence, which was commonly ignored before but has been increasingly studied
in recent years. In theory, this effect refers to the random changes of refractive index caused
by the gradient of seawater temperature and salinity, which results in scintillation of the
light intensity at the receiver [15–20]. In general, the methods for studying light propaga-
tion in turbulent media can be broadly classified into three categories: theoretical analysis,
numerical simulation and experimental methods [21]. Numerical simulation has been
widely used to simulate the effect of turbulence because of its superior simulation efficiency,
controllability of turbulence parameters and the acquisition of statistical results [22–24].
As a widely employed approach in the numerical simulation, the phase screen is a pro-
grammable high-resolution method which can effectively simulate the impact of turbulence
on intensity and phase of the propagating light [25]. This result would also significantly
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contribute to underwater coherent optical wireless communication systems [26]. Phase
screen models can provide an essential reference for experimental investigations on atmo-
spheric and underwater turbulence [27–29] by analyzing the optical characteristics of the
turbulence channels. At present, the existing numerical simulation of oceanic turbulence is
mainly based on phase screen models with the power spectrum inversion method [30] or
the Zernike polynomials method [31]. However, these methods have various shortcomings,
such as the absence of low-frequency or high-frequency turbulence components, result-
ing in inaccurate simulation results and unsatisfactory simulation efficiency [32]. As a
solution, the hybrid phase screens technique has also been proposed and demonstrated
to simulate both atmospheric and ocean turbulence, which linearly combines the phase
screens generated by the power spectrum inversion method and by the Zernike polyno-
mials method [25,31,32]. However, there is a lack of comprehensive study of the hybrid
phase screen methods and current methods involve only a limited variety of phase screen
generation techniques.

In this paper, the generation methods of random phase screens are comprehensively
studied and analyzed for the numerical simulation of oceanic turbulence. The optimal
method for generating hybrid phase screens is proposed and validated in a simulation
of beam propagation in oceanic turbulence. The rest of the paper is organized as follows:
Section 2 gives the principles of phase screen generation methods for the numerical simula-
tion of oceanic turbulence, which provides motivation for the study of new methods. In
Section 3, performances of different random phase screen models are comprehensively stud-
ied, and the optimal method for generating effective hybrid phase screens is investigated.
Finally, a brief conclusion of this paper is drawn in Section 4.

2. Phase Screen Model

The turbulence effect leading to phenomena such as phase drift and light intensity
flicker occurs on the receiving plane of the propagated beam, and it can be simulated as a
series of phase screens that randomly change the wavefront phase of the beam by numerical
simulation [33]. The method is called the random phase screens model [34–36] and it has
been widely used for the simulation of atmospheric turbulence [37].

Figure 1 illustrates the random phase screens model of beam propagation in oceanic
turbulent environment. These n phase screens are uniformly placed at z1, z2 = z1 +∆z, z3 =
z1 + 2× ∆z . . . zn = z1 + (n− 1)× ∆z along the propagation direction with a total length
of z. Based on the split-step method, the phase perturbation of propagation caused by the
turbulence effect can be processed separately by discrete steps along the direction of beam
propagation [22,38]. At each discrete step size, random phase perturbations are achieved by
multiplying the field of the arriving beam with the phase screen determined by the refractive
index fluctuation equation. The phase of the beam is randomly affected when it passes
through individual phase screens until it finally reaches the receiving plane [22]. Combining
each of these steps completes the representation of beam propagation in turbulence. Various
methods have been reported to generate phase screens for studying the effect of turbulence,
which can generally be summarized as Frequency Spectrum Method (FSM) and Spatial
Domain Method (SDM) [39]. Interestingly, turbulence phase screens can be also generated
based on the use of both FSM and SDM, which has been introduced in [31,32].
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spectral components, amplitude and wave vectors. Among these, the power spectrum in-
version method (also known as DFT here since it is characterized by discrete Fourier trans-
form) [40,41], sparse spectrum method (SS) [42–44], Paulson, Wu and Davis’ method 
(PWD) [45] and sparse uniform method (SU) [41] are commonly used.  

Although these methods have been deeply studied in the random phase screen gen-
eration of atmospheric turbulence by using an atmospheric spectrum, only the DFT 
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salinity on the refractive index of seawater [49] and the variation range of thermal diffu-
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ranging from −5 to 0 is the ratio of the temperature and the salinity contribution to the 
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Figure 1. Random phase screens model for beam propagation in an oceanic turbulent environment.
Phase screens are respectively represented by φ1, φ2, φ3 . . . φn, where n = 1, 2, 3 . . . . . . in the x–y
plane along the z axis.

2.1. FSMs for Oceanic Turbulence Phase Screen Generation

The FSM generates phase screens by obtaining phase distribution via the turbulence
power spectral density function and converting it from the frequency domain to the spatial
domain. Different methods focus on different aspects of the phase screen, including
spectral components, amplitude and wave vectors. Among these, the power spectrum
inversion method (also known as DFT here since it is characterized by discrete Fourier
transform) [40,41], sparse spectrum method (SS) [42–44], Paulson, Wu and Davis’ method
(PWD) [45] and sparse uniform method (SU) [41] are commonly used.

Although these methods have been deeply studied in the random phase screen gener-
ation of atmospheric turbulence by using an atmospheric spectrum, only the DFT method
has currently been applied to generate oceanic turbulence phase screens [30,46], using the
spectrum of turbulent fluctuations of the seawater refraction index, the phase structure
function (PSF) and spatial coherence radius of light in oceanic turbulence [47,48].

The fluctuation spectrum of ocean refractive index proposed by Nikishov et al. [47] is
given in Equation (1), based on the research about the influence of temperature and salinity
on the refractive index of seawater [49] and the variation range of thermal diffusivity of
salinity [50,51].
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In the equation, Φ is the underwater turbulence refractive index power spectrum
density (PSD) and kx, ky are the frequency components of the x-axis and y-axis in the spatial
frequency domain, respectively. Where ε represents the dynamic dissipation rate per unit
volume of seawater ranging from 10−10 m2/s3 to 10−1 m2/s3, χT is the dissipation rate
of the mean squared temperature ranging from 10−10 K2/s to 10−4 K2/s, ω ranging from
−5 to 0 is the ratio of the temperature and the salinity contribution to the refractive index
spectrum and η is the Kolmogorov microscale length in the order of millimeters for ocean
turbulence. In addition, other parameters are given as: AT = 1.863× 10−2, AS = 1.9× 10−4,

ATS = 9.41× 10−3 and δ = 8.234
(

η
√

k2
x + k2

y)
4/3 + 12.978

(
η
√

k2
x + k2

y)
2 [46].

Inspired by this, this paper proposes ocean turbulence phase screen models based
on SS, PWD and SU methods by substituting the atmospheric fluctuation spectrum with
the fluctuation spectrum of ocean refractive index (Equation (1)). With the PSF of oceanic
turbulence in [48], the proposed models are verified and compared. This also offers more
candidates for studying the hybrid phase screens in the following sections.
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2.2. SDM for Oceanic Turbulence Phase Screen Generation

For spatial domain methods, the turbulence characteristics are calculated directly in the
spatial domain. The Zernike polynomials method is a commonly used SDM [32,52], which
generates phase screens with a PSF consistent with the theoretical values in the low spatial
frequency components [25]. Noll [53] proposed the principle for directly obtaining the
distorted wavefront of turbulence by using a complete set of orthonormal functions, such
as Zernike polynomials, with which Roddier [31,54] generated an atmospheric turbulent
phase screen.

This method is based on combining multiple Zernike modes with their coefficients.
Considering the definition given by Noll, the jth order of the Zernike polynomial composed
of radial polynomials and angular polynomials is expressed as [53]:

Zj(r) = Zm
n (r, θ) =

√
n + 1Rm

n (r)Θ
m(θ) (2)

where r is a two-dimensional polar vector representing the radial distance, m and n are
non-negative integers that correspond to the number of orders j. n is the radial degree and
m the azimuthal degree. The radial polynomial Rm

n (r) and angular polynomial Θm(θ) are
given as [53] where k is the nature number, k = {0, 1, 2, 3, . . .} ∈ N:

Rm
n (r) =

∑
(n−m)/2
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(−1)S(n−s)!
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[
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2 −s
]
!
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2 −s
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)
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Thus, the linear combination of two orthogonal Zernike polynomials can represent
the phase aberration in any direction. With the increase of the order, the description of the
phase aberration becomes more complex, which means the high-frequency components
begin to increase. Therefore, phase screens can be represented by linear combination of a
series of Zernike polynomials [53]:

φ(r) = ∑∞
j=1 ajZj(r) (5)

where φ(r) represents the Zernike phase screen. As the coefficient of the jth order Zernike
polynomial, aj can be obtained by calculating its covariance matrix due to its correlation.
The ensemble average of any two coefficients aj, a′j can be obtained by calculating the phase
structure function, which is defined as follows [53]:

Dϕ

(
r, r′
)
=
〈∣∣ϕ(r)− ϕ

(
r′
)∣∣2〉 = 2

[
Rϕ(0)− Rϕ

(∣∣r− r′
∣∣)] (6)

where Rϕ(|r− r′|) is equal to the ensemble average of phase difference between two
points on phase screens. For oceanic turbulence, the covariance matrix can be derived
by substituting in the PSF of underwater turbulence. The (i, j) element in the covariance
matrix can be written as [55]:

〈aiaj〉 = 0.15(D/r0)
5
3 ·

(−1)
ni+nj−2mi

2 [(ni+1)(nj+1)]
1
2 Γ( 14

3 )Γ[(ni+nj− 5
3 )/2]δmimj

Γ(
ni−nj+17/3

2 )Γ(
nj−ni+17/3

2 )Γ(
ni+nj+23/3

2 )
,

i− j = 2k

(7)

where δmimj is the Kronecker function. In addition, ni nj, mi mj are the Noll coefficients
corresponding to the i,jth order of Zernike polynomials, D is the aperture size of the spatial
domain and r0 is the underwater coherence length. Finally, singular value decomposition
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(SVD) is applied to the covariance matrix, and the coefficient aj can be calculated by
introducing Gaussian random vector b according to the property of its eigenvector U. Then,
by substituting aj into Equation (8), the phase screen expression can be obtained as:

φ(r) = ∑∞
j=1 ajZj(r) = ∑∞

j=1 ∑∞
k=1 UjkbjZj(r) (8)

In simulation, Zernike polynomials for each mode are calculated and the resulting
polynomials are added together to generate the final phase screen. By adjusting the order of
the Zernike modes used for the phase screen, various oceanic conditions can be simulated.
However, although the Zernike method has better performance at a low spatial frequency,
it has the disadvantage of insufficient components at a high spatial frequency [25,56].

2.3. Hybrid Methods for Ocean Turbulence Phase Screen Generation

Based on the power spectrum inversion method and Zernike polynomials method,
hybrid phase screens have been proposed [32,55]. Specifically, the phase screens generated
by these two methods are linearly superposed to obtain hybrid phase screens. Such a
hybrid phase screen has been proved to perform better for simulating turbulence with
higher computational efficiency [25,32]. For comparison, the pros and cons of FSM, SDM
and hybrid methods are summarized in Table 1 below, where these conclusions are verified
by our simulation work in the following sections.

Table 1. Comparison of different phase screen generation methods.

Benefits Limitations

FSM

• Higher computational efficiency
• Generate phase screens with sufficient

high-frequency components [25]

• Generate phase screens with insufficient
low-frequency components [25]

• Research on the simulation of underwater
turbulence is limited

SDM
(Zernike)

• Generate phase screens with sufficient
low-frequency components [25]

• The increased order improves accuracy

• Generate phase screens with insufficient
high-frequency components [32]

• The computational efficiency decreases with
increasing order

Hybrid methods
• Relatively high computational efficiency
• Generate phase screens with higher accuracy [32]

• Research on the simulation of underwater
turbulence is very limited

Combining FSM and SDM is expected to compensate for each other’s deficiencies.
Thus, a hybrid phase screen can be expressed as: ϕh = a × ϕFSM + ϕSDM, where the
different superposition coefficients a are determined by iteratively updating the PSF to
obtain the lowest difference to the theoretical results. ϕh represents the hybrid phase screen
and ϕFSM, ϕSDM represent phase screens generated by FSM and SDM respectively. The
superposition coefficient of the phase screen generated by SDM is normalized, so only the
superposition coefficients of the phase screen generated by FSM are considered.

In this work, based on the comprehensive investigation of FSMs for oceanic turbu-
lence phase screen generation, four hybrid methods are studied, described herein as
DFT + Zernike hybrid method, SS + Zernike hybrid method, PWD + Zernike hybrid
method and SU + Zernike hybrid method.

3. Results and Discussion
3.1. Ocean Turbulence Phase Screens Generated by FSM

Using the oceanic turbulence refractive index spectrum illustrated in Equation (1),
we apply SS, PWD and SU methods to underwater environment and generate the oceanic
turbulence phase screens. PSF can be used as a criterion to verify the simulated phase
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screen [46]. According to the coherence length r0 of ocean turbulence [41,48], the theoretical
value of the PSF of oceanic turbulence D(r) can be obtained as follows [46,48]:

D(r) = 2(r/r0)
5/3 (9)

where r is a variable in two-dimensional coordinates, representing the distance between
any two points in the phase screen. The PSF of the generated phase screens obtained by the
simulation is defined as [46]:

D(r) = 〈[φ(ρ + r)− φ(ρ)]2〉 (10)

where ρ is a two-dimensional coordinate, which represents a position on the phase screen
and r is distance. The equation represents the average mean square of the phase difference
between any two points on the phase screen.

Figure 2 shows the phase screens and phase structure functions (PSFs) obtained by the
four FSMs, respectively. The PSF results presented in Figure 2 are mean values obtained
from 2000 randomly generated phase screens. The distance represented by r is the distance
between two points on phase screens. The small value of r on the axis represents the PSF
for the high frequency component, and the large value of r represents the PSF for the low
frequency component. The r, as a spatial distance, is inversely proportional to the frequency.
Thus, the region having small r corresponds to the high frequency component of the phase
screen. In our simulation, the maximum value of r is the radius of the inscribed circle of the
phase screen, which is denoted as R. The maximum r is scaled to 1 using the normalization
factor R in the calculation of PSFs for simplification. For DFT and PWD methods, they can
be combined with subharmonic compensation (SH) techniques to improve the insufficiency
in the large-scale phase structure of phase screens because there is no sample near zero
region of the power spectrum [41,46,57]. On the other hand, SS and SU methods require no
SH compensation because they can produce unbiased non-periodic samples [41].

From Figure 2, the PSFs obtained by DFT and PWD methods are closer to the theo-
retical PSF at a high frequency while an obvious under-sampling issue can be observed in
the low frequency part. SH is applied with a subharmonic order of 3 and sample level of 4.
The present of SH significantly improves the performance of DFT and PWD methods in the
high frequency region (with small values of r). The PSF results obtained based on SS and
SU methods are very close to the theoretical values when r is less than 0.2.
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Figure 2. The generated phase screens and phase structure functions (PSFs) based on (a) DFT–SH
method, (b) PWD–SH method, (c) SS method and (d) SU method. The theoretical PSF is also plotted
based on Equation (9). Number of sampling points is 1024 × 1024, dimension of phase screens is
1 × 1 m and the radius R of the inscribed circle is 0.5m, according to oceanic parameters: η = 0.005 m,
ε = 10−4 m2/s3, χT = 10−7 K2/s, ω = −0.3.

The computational time of DFT, PWD, SS and SU methods is relatively short, and
there is no significant difference between them at the sampling points from 1 to 4096 [41],
so additional comparison of their computational times is not included in this paper.

To summarize, this result verified the feasibility of SS, PWD, SU methods for the phase
screen generation in the high frequency region. However, the low frequency components
of the phase screens generated by these methods are insufficient.

3.2. Ocean Turbulence Phase Screens Generated by SDM Based on Zernike Polynomial Method

PSFs of oceanic turbulence phase screen based on the Zernike method with different
orders are studied, as shown in Figure 3. The PSF of the phase screen generated by the lower
order of Zernike polynomials deviates greatly from the theoretical curve, and it is closer to
the theoretical PSF with the increased order. The PSF of the phase screen exhibits a greater
proximity to the theoretical curve with the growth of the order of Zernike polynomials. It
can also be seen that the simulated PSF of the Zernike phase screen deviates much from
the theoretical values in the high frequency region but is closer to the theoretical values at
low frequency. In addition, under the same conditions, the PSFs show unusual fluctuations
near the low frequency, which results in deviations from the theoretical curves because of
the weakness of turbulence near the edge [31].

The insets in Figure 3 show that components simulated by order 100 Zernike are
obviously sufficient than those simulated by order 10 Zernike. Moreover, since the Zernike
polynomials are a group of polynomials defined on the unit circle, the phase screen is only
effective in the inscribed circle area.

Although the simulation performance can be improved by increasing the order of
Zernike polynomials, it can be observed that the high frequency components are still
insufficient. Meanwhile, with the order of Zernike polynomials increasing, the complexity
of computation increases exponentially but the improvement becomes less significant.

The computational time can intuitively reveal the simulation complexity of Zernike
polynomials phase screens of different orders [32]. Therefore, the calculation time of single
Zernike phase screens with the order of 10, 20, 30, 40, 50, 100 and 150 is recorded in Figure 4
separately, where the computational time of a single-phase screen generation is the average
of 2000 random results.
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Sampling points are 256 × 256, 512 × 512, 1024 × 1024, respectively.

As shown in Figure 4, all the computational times are normalized to the average
computational time of the phase screen, with 256 × 256 sampling points generated by
10-order Zernike polynomials for comparison. The computational complexity increases
with the order of Zernike polynomials. For 256 × 256 sampling points, the computational
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complexity of 20-order Zernike phase screens is only 2.8 times that of 10-order ones, while
the computational complexity of order 150 became 51 times, surprisingly. For higher-order
Zernike phase screens, the computational time can be extended to be on the order of hours,
which is considered to be extremely inefficient and less necessary. Meanwhile, the influence
of sampling points on computational complexity is also revealed. The more the sampling
points are, the larger the proportion of computing time it occupies.

To summarize, to solve the issue of the Zernike phase screen with insufficient high
frequency components, the order of Zernike polynomials can be continuously increased
but there is always a trade-off between the performance and computational efficiency.

3.3. Ocean Turbulence Phase Screens Generated by Hybrid Methods

In this section, four hybrid methods based on FSM and SDM are investigated (i.e.,
DFT + Zernike, PWD + Zernike, SS + Zernike and SU + Zernike methods). The PSFs of the
phase screens generated by these methods are plotted in Figure 5 with the optimization
of superposition coefficients. The 50-order Zernike phase screens are selected in this
simulation as a trade-off of its relatively reasonable accuracy and computational complexity.
The insets in Figure 5 show the examples of hybrid phase screens, which only consider the
effective area of the inscribed circle.
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Figure 5. Comparison of PSF of hybrid phase screen methods with theoretical values under different
superposition coefficients and phase screen examples. All four methods are (a) the DFT + Zernike
hybrid method, (b) the PWD + Zernike hybrid method, (c) the SS + Zernike hybrid method and
(d) the SU + Zernike hybrid method. Sampling points are 1024 × 1024, the radius R of the inscribed
circle is 5cm and relative oceanic parameters: η = 0.0001 m, ε = 0.01 m2/s3, χT = 10−10 K2/s,
ω = −4.
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Compared with FSM or SDM, the hybrid method generates phase screens with better
PSF curves and complements the insufficient frequency components. The simulation error
can be mitigated by optimizing the superposition coefficients.

The optimal superposition coefficient for each hybrid method can be determined by
calculating the mean square error (MSE) between the theoretical values and simulated
values, as shown in Table 2. Apart from the data calculated in Table 2, the MSE of the 50-
order Zernike phase screen is 20.00× 10−3, and that of the 100-order Zernike is 9.70 × 10−3.
Compared with the optimal error of hybrid phase screens in Table 2, it also proves that
the performance of hybrid methods is superior to high-order Zernike methods. SS and
50-order Zernike show the minimum error when the superposition coefficient is 0.6.

Table 2. Error evaluation of different methods with corresponding coefficients.

Different Superposition Coefficient MSE Error (10−3) Optimal Coef. Error

DFT
+ Zernike 50

Coef. 1 0.9 0.8 0.7 0.8

Error 4.43 7.27 4.17 7.49 4.17

SS
+ Zernike 50

Coef. 1 0.8 0.6 0.4 0.6

Error 46.52 9.46 1.90 6.95 1.90

PWD
+ Zernike 50

Coef. 1 0.8 0.7 0.6 0.8

Error 7.33 2.78 3.97 5.72 2.78

SU
+ Zernike 50

Coef. 1 0.8 0.7 0.6 0.6

Error 36.72 11.09 4.55 2.80 2.80

In addition, the computational speed of the hybrid method has been also investigated;
the time required to calculate a phase screen at different sampling points is recorded in
Table 3, using the 100-order Zernike phase screen as a comparison. The computational time
of hybrid methods is dominated by the Zernike method. The selected linear superposition
coefficients do not change the computational time, so they are neglected in this study.
The oceanic turbulence coherence length r0 = 0.8923 according to the relative parameters:
η = 0.0001 m, ε = 0.01 m2/s3, χT = 10−10 K2/s, ω = −4.

According to the Table 3, the computational time for the single-phase screen (one
frame) at four different number of sampling points are recorded, including 256 × 256,
512 × 512, 1024 × 1024 and 2048 × 2048. The computational times of the phase screen
generation of the four hybrid methods are similar to each other and all of them are shorter
than that of the 100-order Zernike. In addition, the more the sampling points can result
in a greater difference in computational time between the Zernike method and the hybrid
methods. All methods offer a computational time of less than 1 s at the sampling points of
256 × 256, while the Zernike method takes half a minute longer than the hybrid methods
at sampling points of 2048 × 2048. From [41] and Figure 4, the time used for phase
screen generation by FSMs is relatively short. Therefore, the main reason for the increased
computational time is the increased order of Zernike polynomials. In addition, it can be
expected that the hybrid method can save much more time compared to the high-order
Zernike method during the multiple phase screen generation with a large number of
sampling points.
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Table 3. Average computational time for one phase screen generation.

Computational Time (s/Frame)

Method
Sampling Points

256 × 256 512 × 512 1024 × 1024 2048 × 2048

Zernike 100 0.74 3.59 15.32 52.73

DFT + Zernike 50 0.28 1.39 5.41 21.35

SS + Zernike 50 0.30 1.39 5.50 21.63

PWD + Zernike 50 0.30 1.48 5.64 21.97

SU + Zernike 50 0.30 1.37 5.40 21.32

To sum up, with an appropriate superposition coefficient, the SS + Zernike method
offers better performance among the four hybrid methods, based on the results shown in
this section. In the next section, this method is selected for the simulation of the optical
beam propagation in oceanic turbulence.

3.4. Beam Propagation Simulation

Based on the SS + Zernike hybrid phase screen and split-step method, the simulation
can be carried out to study the influence of different-level underwater turbulence on optical
beam propagation. A Gaussian beam with the 3-dB beam size of 2 cm emitted from the
transmission plane propagates through the underwater turbulence with a 10 m distance in
z direction. The simulated impact of the oceanic turbulence on this beam was represented
in 10 equally distributed SS + Zernike phase screens with the size of a 10 × 10 cm plane. In
this simulation, absorption and scattering effects are not considered.

Figure 6 illustrates the phase screens generated by the SS + Zernike methods with
different turbulence conditions and the simulated light spots at the receiving end. Different
conditions have a different strength of turbulence according to [58], where condition 3 has
the strongest strength of the turbulence effect. Figure 6a,d illustrate the simulation results
under the turbulence condition 1, where η = 0.0032 m, ε = 0.01 m2/s3; χT = 10−8 K2/s,
ω = −0.5; Figure 6b,e correspond to the turbulence condition 2, with η = 0.0032, ε = 0.01
m2/s3, χT = 10−6 K2/s; ω = −0.5; Figure 6c,f are produced by the turbulence condition 3,
where η = 0.0032 m, ε = 0.01 m2/s3, χT = 10−5 K2/s, ω = −0.5. It can be observed that,
propagating through a weak turbulence, the phase of the beam is less affected, so its power
distribution is barely distorted, as shown in Figure 6d. On the other hand, the phase and
intensity of the propagating beam is seriously distorted by a strong turbulence, as shown
in Figure 6f.

In conclusion, we demonstrate the feasibility of using the proposed method in the
simulation of the oceanic turbulence effect on light propagating in underwater. The spatial
intensity and phase distributions at the receiving end can be further employed in the
study and prediction of the performance degradation of practical underwater optical
communication systems in a specific turbulent condition.
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4. Conclusions

This paper summarized FSMs, including DFT, PWD, SS, and SU methods, which were
commonly used for atmospheric turbulence. PWD, SS, and SU methods are applied to
underwater turbulent environment in this work by the use of the fluctuation spectrum
of ocean refractive index. The phase screens are generated based on these methods and
verified by the corresponding PSFs. Meanwhile, the Zernike polynomials method of SDM is
also studied with the PSF of the generated phase screen and the computational complexity.

The lack of high/low frequency components of phase screens generated by the above
methods can be solved by employing the hybrid methods. Inspired by [25,32], SS + Zernike,
PWD + Zernike and SU + Zernike hybrid methods are proposed and comprehensively
studied in this work. They are verified to generate phase screens with better efficiency and
accuracy than FSM or the Zernike method. The SS + Zernike hybrid method shows the
best performance with a proper superposition coefficient. In addition, the feasibility of this
method is validated by the simulation of Gaussian beam propagation in oceanic turbulence.

Our future investigations will include further improvements on the hybrid phase
screen model, considering other candidates such as the fractal method and covariance
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method [59,60]. The investigations on the performance of UWOC systems under different
turbulence conditions based on the intensity fluctuation of received light spots and the
scintillation index obtained by the proposed method, will also be a part of our future work.
In addition, possible approaches to mitigate the turbulence impact can be investigated.
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